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Preface

This text is intended for a one or two-semester undergraduate course in abstract algebra.
Traditionally, these courses have covered the theoretical aspects of groups, rings, and fields.
However, with the development of computing in the last several decades, applications that
involve abstract algebra and discrete mathematics have become increasingly important,
and many science, engineering, and computer science students are now electing to minor in
mathematics. Though theory still occupies a central role in the subject of abstract algebra
and no student should go through such a course without a good notion of what a proof is, the
importance of applications such as coding theory and cryptography has grown significantly.

Until recently most abstract algebra texts included few if any applications. However,
one of the major problems in teaching an abstract algebra course is that for many students it
is their first encounter with an environment that requires them to do rigorous proofs. Such
students often find it hard to see the use of learning to prove theorems and propositions;
applied examples help the instructor provide motivation.

This text contains more material than can possibly be covered in a single semester.
Certainly there is adequate material for a two-semester course, and perhaps more; however,
for a one-semester course it would be quite easy to omit selected chapters and still have a
useful text. The order of presentation of topics is standard: groups, then rings, and finally
fields. Emphasis can be placed either on theory or on applications. A typical one-semester
course might cover groups and rings while briefly touching on field theory, using Chapters 1
through 6, 9, 10, 11, 13 (the first part), 16, 17, 18 (the first part), 20, and 21. Parts of
these chapters could be deleted and applications substituted according to the interests of
the students and the instructor. A two-semester course emphasizing theory might cover
Chapters 1 through 6, 9, 10, 11, 13 through 18, 20, 21, 22 (the first part), and 23. On
the other hand, if applications are to be emphasized, the course might cover Chapters 1
through 14, and 16 through 22. In an applied course, some of the more theoretical results
could be assumed or omitted. A chapter dependency chart appears below. (A broken line
indicates a partial dependency.)
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Though there are no specific prerequisites for a course in abstract algebra, students
who have had other higher-level courses in mathematics will generally be more prepared
than those who have not, because they will possess a bit more mathematical sophistication.
Occasionally, we shall assume some basic linear algebra; that is, we shall take for granted an
elementary knowledge of matrices and determinants. This should present no great problem,
since most students taking a course in abstract algebra have been introduced to matrices
and determinants elsewhere in their career, if they have not already taken a sophomore or
junior-level course in linear algebra.

Exercise sections are the heart of any mathematics text. An exercise set appears at the
end of each chapter. The nature of the exercises ranges over several categories; computa-
tional, conceptual, and theoretical problems are included. A section presenting hints and
solutions to many of the exercises appears at the end of the text. Often in the solutions
a proof is only sketched, and it is up to the student to provide the details. The exercises
range in difficulty from very easy to very challenging. Many of the more substantial prob-
lems require careful thought, so the student should not be discouraged if the solution is not
forthcoming after a few minutes of work.

Ideally, students should read the relavent material before attending class. Reading ques-
tions have been added to each chapter before the exercises. To prepare for class, students
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should read the chapter before class and then answer the section’s reading questions to
prepare for the class.

There are additional exercises or computer projects at the ends of many of the chapters.
The computer projects usually require a knowledge of programming. All of these exercises
and projects are more substantial in nature and allow the exploration of new results and
theory.

Sage (sagemath.org?) is a free, open source, software system for advanced mathematics,
which is ideal for assisting with a study of abstract algebra. Sage can be used either on
your own computer, a local server, or on CoCalc (cocalc.com?). Robert Beezer has written
a comprehensive introduction to Sage and a selection of relevant exercises that appear at
the end of each chapter, including live Sage cells in the web version of the book. All of the
Sage code has been subject to automated tests of accuracy, using the most recent version
available at this time: SageMath Version 10.0 (released 2023-05-20).

Thomas W. Judson
Massat, France 2023

3sagemath.org
4cocalc.com


http://sagemath.org
https://cocalc.com

Contents

Acknowledgements

Preface

1 Preliminaries

1.1
1.2
1.3
14
1.5
1.6
1.7

A Short Note on Proofs

Sets and Equivalence Relations
Reading Questions

Exercises .

References and Suggested Readlngs
Sage .

Sage Exercises .

2 The Integers

2.1 Mathematical Induction .
2.2 The Division Algorithm
2.3 Reading Questions
2.4 Exercises . R
2.5  Programming Exercises .
2.6 References and Suggested Readlngs
2.7 Sage . .
2.8 Sage Exercises .
3 Groups
3.1 Integer Equivalence Classes and Symmetries .
3.2 Definitions and Examples.
3.3 Subgroups.
3.4 Reading Questions
3.5 Exercises . . .
3.6 Additional Exermses Detectmg Errors
3.7 References and Suggested Readings.
3.8 Sage .
3.9 Sage Exercises .

viii

iv

13
14
16
16
21

22

22
25
28
29
31
31
32
35

37

37
42
47
49
49
92
54
o4
60



CONTENTS

4 Cyclic Groups

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Cyclic Subgroups .

Multiplicative Group of Complex Numbers.

The Method of Repeated Squares
Reading Questions

Exercises .

Programming Exercises

References and Suggested Readlngs
Sage . .

Sage Exercises .

5 Permutation Groups

5.1
5.2
5.3
5.4
9.5
5.6

Definitions and Notation .
Dihedral Groups .
Reading Questions
Exercises .

Sage . .

Sage FExercises .

6 Cosets and Lagrange’s Theorem

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Cosets .
Lagrange’s Theorem . ..
Fermat’s and Euler’s Theorems
Reading Questions

Exercises .

Sage .

Sage Exercises .

7 Introduction to Cryptography

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

Private Key Cryptography .
Public Key Cryptography
Reading Questions
Exercises .

Additional Exermses Prlmahty and Factorlng

References and Suggested Readings.
Sage . .
Sage Exercises .

8 Algebraic Coding Theory

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Error-Detecting and Correcting Codes
Linear Codes.

Parity-Check and Generator Matrlces
Efficient Decoding

Reading Questions

Exercises . .o
Programming Exercises .
References and Suggested Readlngs
Sage .

ix

62

62
65
69
71
71
74
74
74
83

85

85
91
96
97
99
106

108

108
110
111
112
112
114
117

120

120
122
125
126
127
128
129
132

134

134
141
144
149
152
152
156
156
156



CONTENTS

8.10 Sage Exercises .

9 Isomorphisms

9.1 Definition and Examples .
9.2 Direct Products

9.3 Reading Questions

9.4 Exercises .

9.5 Sage .

9.6 Sage Exercises .

10 Normal Subgroups and Factor Groups

10.1 Factor Groups and Normal Subgroups.
10.2 The Simplicity of the Alternating Group.
10.3 Reading Questions

10.4 Exercises .

10.5 Sage . .

10.6 Sage Exercises .

11 Homomorphisms

11.1 Group Homomorphisms

11.2 The Isomorphism Theorems.

11.3 Reading Questions

11.4 Exercises . .

11.5 Additional Exercmeb Automorphlbms
11.6 Sage . .

11.7 Sage Exercises .

12 Matrix Groups and Symmetry

12.1 Matrix Groups .

12.2 Symmetry . .

12.3 Reading Questions

12.4 Exercises . .
12.5 References and Suggested Readlngs.
12.6 Sage . .

12.7 Sage Exercises .

13 The Structure of Groups

13.1 Finite Abelian Groups .

13.2 Solvable Groups

13.3 Reading Questions

13.4 Exercises . .

13.5 Programming Exercises . .
13.6 References and Suggested Readlngb.
13.7 Sage . .

13.8 Sage Exercises .

159

161

161
165
168
168
172
176

178

178
180
183
183
185
188

190

190
192
194
195
196
197
201

203

203
210
216
217
219
219
219

220

220
224
227
227
229
229
229
231



CONTENTS

14 Group Actions

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

Groups Acting on Sets .

The Class Equation .

Burnside’s Counting Theorem
Reading Questions

Exercises .

Programming Exercise .

References and Suggested Readlng
Sage . .

Sage Exercises .

15 The Sylow Theorems

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8

The Sylow Theorems .
Examples and Applications .
Reading Questions

Exercises .

A Project .

References and Suggested Readlngs
Sage .

Sage Exercises .

16 Rings

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

Rings. . .
Integral Domains and Flelds

Ring Homomorphisms and Ideals.
Maximal and Prime Ideals .

An Application to Software Design .
Reading Questions

Exercises . ..

Programming Exercise .

References and Suggested Readmgs

16.10Sage . .
16.11Sage Exercises .

17 Polynomials

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8

Polynomial Rings .

The Division Algorithm
Irreducible Polynomials
Reading Questions
Exercises .

Additional Exerc1ses Solvmg the Cublc and Quartlc Equatlons

Sage . .
Sage Exercises .

18 Integral Domains

18.1
18.2
18.3

Fields of Fractions
Factorization in Integral Domalns
Reading Questions

xi

232

232
234
236
242
242
244
244
245
249

251

251
254
256
257
258
259
259
266

268

268
271
273
276
278
281
282
285
285
286
295

296

296
299
302
307
307
309
311
316

318

318
321
328



CONTENTS

18.4 Exercises . .
18.5 References and Suggested Readlngs.
18.6 Sage . .
18.7 Sage Exercises .

19 Lattices and Boolean Algebras

19.1 Lattices.

19.2 Boolean Algebras

19.3 The Algebra of Electrical Clrcults
19.4 Reading Questions

19.5 Exercises . .o

19.6 Programming Exercises .
19.7 References and Suggested Readlngs.
19.8 Sage . .

19.9 Sage Exercises .

20 Vector Spaces

20.1 Definitions and Examples.

20.2 Subspaces . .

20.3 Linear Independence

20.4 Reading Questions

20.5 Exercises . .
20.6 References and Suggested Readlngs.
20.7 Sage . .

20.8 Sage Exercises .

21 Fields

21.1 Extension Fields .

21.2 Splitting Fields.

21.3 Geometric Constructions .

21.4 Reading Questions

21.5 Exercises . . .
21.6 References and Suggested Readlngs.
21.7 Sage . .

21.8 Sage Exercises .

22 Finite Fields

22.1 Structure of a Finite Field
22.2 Polynomial Codes.

22.3 Reading Questions

22.4 Exercises .

22.5 Additional Exermses Error Correctlon for BCH Codes .

22.6 References and Suggested Readings.
22.7 Sage . .
22.8 Sage Exercises .

xii

328
330
330
333

334

334
337
342
344
345
347
347
348
353

355

355
356
357
359
359
362
362
367

370

370
378
380
385
385
387
387
395

397

397
401
408
408
410
410
410
412



CONTENTS

23 Galois Theory

23.1 Field Automorphisms .

23.2 The Fundamental Theorem .

23.3 Applications .

23.4 Reading Questions

23.5 Exercises . e e
23.6 References and Suggested Readings.
23.7 Sage . .

23.8 Sage Exercises .

Appendices
A GNU Free Documentation License
B Hints and Answers to Selected Exercises

C Notation

Back Matter

Index

xiii

415

415
419
425
429
430
431
432
443

446

453

467

470



1

Preliminaries

A certain amount of mathematical maturity is necessary to find and study applications
of abstract algebra. A basic knowledge of set theory, mathematical induction, equivalence
relations, and matrices is a must. Even more important is the ability to read and understand
mathematical proofs. In this chapter we will outline the background needed for a course in
abstract algebra.

1.1 A Short Note on Proofs

Abstract mathematics is different from other sciences. In laboratory sciences such as chem-
istry and physics, scientists perform experiments to discover new principles and verify theo-
ries. Although mathematics is often motivated by physical experimentation or by computer
simulations, it is made rigorous through the use of logical arguments. In studying abstract
mathematics, we take what is called an axiomatic approach; that is, we take a collection
of objects § and assume some rules about their structure. These rules are called axioms.
Using the axioms for S, we wish to derive other information about S by using logical argu-
ments. We require that our axioms be consistent; that is, they should not contradict one
another. We also demand that there not be too many axioms. If a system of axioms is too
restrictive, there will be few examples of the mathematical structure.

A statement in logic or mathematics is an assertion that is either true or false. Consider
the following examples:

e 3+56—13+8/2.

o All cats are black.

e 2+3=5.

e 2x = 6 exactly when x = 4.

e If ax? + bz +c =0 and a # 0, then

_ —bE Vb —dac

2a

X

o 3 — 422+ 51— 6.

All but the first and last examples are statements, and must be either true or false.
A mathematical proof is nothing more than a convincing argument about the accuracy
of a statement. Such an argument should contain enough detail to convince the audience; for
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instance, we can see that the statement “2x = 6 exactly when x = 4” is false by evaluating
2 - 4 and noting that 6 # 8, an argument that would satisfy anyone. Of course, audiences
may vary widely: proofs can be addressed to another student, to a professor, or to the
reader of a text. If more detail than needed is presented in the proof, then the explanation
will be either long-winded or poorly written. If too much detail is omitted, then the proof
may not be convincing. Again it is important to keep the audience in mind. High school
students require much more detail than do graduate students. A good rule of thumb for an
argument in an introductory abstract algebra course is that it should be written to convince
one’s peers, whether those peers be other students or other readers of the text.

Let us examine different types of statements. A statement could be as simple as “10/5 =
2;” however, mathematicians are usually interested in more complex statements such as “If
p, then ¢,” where p and ¢ are both statements. If certain statements are known or assumed
to be true, we wish to know what we can say about other statements. Here p is called
the hypothesis and q is known as the conclusion. Consider the following statement: If
ax? +bxr +c=0and a # 0, then

. —b+ Vb2 —4ac

2a
The hypothesis is az? + bz + ¢ = 0 and a # 0; the conclusion is

—b+Vb? — dac
2a '

xr =

Notice that the statement says nothing about whether or not the hypothesis is true. How-
ever, if this entire statement is true and we can show that az? + bx + ¢ = 0 with a # 0 is
true, then the conclusion must be true. A proof of this statement might simply be a series
of equations:

ar’ +br+c=0

9 b &
"+ -r=——
a a

NCROE
a 2a 2a a
($+b>2: b? — dac
2a 4q?

b Vb —dac

"% T T 2a
—b+ Vb2 —4dac
T = )
2a

If we can prove a statement true, then that statement is called a proposition. A
proposition of major importance is called a theorem. Sometimes instead of proving a
theorem or proposition all at once, we break the proof down into modules; that is, we prove
several supporting propositions, which are called lemmas, and use the results of these
propositions to prove the main result. If we can prove a proposition or a theorem, we will
often, with very little effort, be able to derive other related propositions called corollaries.

Some Cautions and Suggestions

There are several different strategies for proving propositions. In addition to using different
methods of proof, students often make some common mistakes when they are first learning
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how to prove theorems. To aid students who are studying abstract mathematics for the
first time, we list here some of the difficulties that they may encounter and some of the
strategies of proof available to them. It is a good idea to keep referring back to this list as
a reminder. (Other techniques of proof will become apparent throughout this chapter and
the remainder of the text.)

e A theorem cannot be proved by example; however, the standard way to show that a
statement is not a theorem is to provide a counterexample.

¢ Quantifiers are important. Words and phrases such as only, for all, for every, and for
some possess different meanings.

e Never assume any hypothesis that is not explicitly stated in the theorem. You cannot
take things for granted.

e Suppose you wish to show that an object exists and is unique. First show that there
actually is such an object. To show that it is unique, assume that there are two such
objects, say r and s, and then show that r = s.

e Sometimes it is easier to prove the contrapositive of a statement. Proving the state-
ment “If p, then ¢” is exactly the same as proving the statement “If not ¢, then not
p.”

o Although it is usually better to find a direct proof of a theorem, this task can some-
times be difficult. It may be easier to assume that the theorem that you are trying
to prove is false, and to hope that in the course of your argument you are forced to
make some statement that cannot possibly be true.

Remember that one of the main objectives of higher mathematics is proving theorems.
Theorems are tools that make new and productive applications of mathematics possible. We
use examples to give insight into existing theorems and to foster intuitions as to what new
theorems might be true. Applications, examples, and proofs are tightly interconnected—
much more so than they may seem at first appearance.

1.2 Sets and Equivalence Relations

Set Theory

A set is a well-defined collection of objects; that is, it is defined in such a manner that we
can determine for any given object x whether or not x belongs to the set. The objects that
belong to a set are called its elements or members. We will denote sets by capital letters,
such as A or X; if a is an element of the set A, we write a € A.

A set is usually specified either by listing all of its elements inside a pair of braces or
by stating the property that determines whether or not an object x belongs to the set. We
might write

X ={z1,29,...,2,}

for a set containing elements x1, o, ..., T, or
X = {x: x satisfies P}

if each x in X satisfies a certain property P. For example, if F is the set of even positive
integers, we can describe E by writing either

E={2,4,6,...} or E ={z:zisan even integer and x > 0}.
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We write 2 € F when we want to say that 2 is in the set F, and —3 ¢ E to say that —3 is
not in the set E.
Some of the more important sets that we will consider are the following;:
N = {n : n is a natural number} = {1,2,3,...};
Z ={n:nisaninteger} = {...,—1,0,1,2,...};
Q = {r : r is a rational number} = {p/q : p,q € Z where q # 0};
R = {z : x is a real number};

C ={z: z is a complex number}.

We can find various relations between sets as well as perform operations on sets. A set
A is a subset of B, written A C B or B D A, if every element of A is also an element of B.
For example,
{4,5,8} € {2,3,4,5,6,7,8,9}
and
NcZcQcRcC.

Trivially, every set is a subset of itself. A set B is a proper subset of a set A if B C A but
B # A. If A is not a subset of B, we write A ¢ B; for example, {4,7,9} ¢ {2,4,5,8,9}.
Two sets are equal, written A = B, if we can show that A C B and B C A.

It is convenient to have a set with no elements in it. This set is called the empty set
and is denoted by (). Note that the empty set is a subset of every set.

To construct new sets out of old sets, we can perform certain operations: the union
AU B of two sets A and B is defined as

AUB={z:x€ Aorx € B};
the intersection of A and B is defined by
ANB={z:z € Aand z € B}.
If A={1,3,5} and B ={1,2,3,9}, then
AUB=1{1,2,3,5,9} and ANB={1,3}.

We can consider the union and the intersection of more than two sets. In this case we write

LnJAi:AlLJ...UAn

i=1
and
n
(Ai=A1n...n4,
i=1
for the union and intersection, respectively, of the sets Aq,..., A,.

When two sets have no elements in common, they are said to be disjoint; for example,
if F/ is the set of even integers and O is the set of odd integers, then E and O are disjoint.
Two sets A and B are disjoint exactly when AN B = ().

Sometimes we will work within one fixed set U, called the universal set. For any set
A C U, we define the complement of A, denoted by A’, to be the set

A'={z:2xeUandz¢ A}

We define the difference of two sets A and B to be

A\B=ANB' ={z:2€ Aand x ¢ B}.
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Example 1.1 Let R be the universal set and suppose that

A={reR:0<2z <3} and B={zreR:2<x <4}
Then

ANB={rzeR:2<z <3}

AUB={zeR:0<z <4}

A\B={zeR:0<z <2}
Al={reR:z<0or x> 3}

Proposition 1.2 Let A, B, and C be sets. Then
1. AUA=A,  ANA=A, and A\ A=0;

2. AUD=Aand AND=1(;

3. AU(BUC)=(AUB)UC and AN(BNC)=(AnB)NC;
J. AUB=BUAand ANB = BN A;

5. AU(BNC)=(AUB)N(AUC);

6. AN(BUC)=(ANB)U(ANC).
Proor. We will prove (1) and (3) and leave the remaining results to be proven in the

exercises.
(1) Observe that

AUA={x:x € Aorzc A}
={zx:x e A}
=A

and

ANA={z:xz € Aand z € A}
={zx:xe€ A}
= A.
Also, ANA=ANA =0.
(3) For sets A, B, and C,

AUBUC)=AU{z:x€BorxecC}
={zx:x€AorzeB, orxeC}
={z:z€Aorxe B}UuC
=(AUB)UC.

A similar argument proves that AN (BNC)=(ANnB)NC. [ |
Theorem 1.3 De Morgan’s Laws. Let A and B be sets. Then
1. (AUB) =A'NnB;

2. (ANB) = A UB.
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Proor. (1) If AUB = (), then the theorem follows immediately since both A and B are the
empty set. Otherwise, we must show that (AU B) € A’N B’  and (AU B) D A’ N B’. Let
x € (AUB)". Then x ¢ AUB. So z is neither in A nor in B, by the definition of the union
of sets. By the definition of the complement, x € A’ and x € B’. Therefore, z € A’ N B’
and we have (AU B)' c A'NB'.

To show the reverse inclusion, suppose that x € A’ N B’. Then z € A’ and x € B’, and
sox ¢ Aand x ¢ B. Thus z ¢ AUB and so z € (AU B)’. Hence, (AUB)' D A’'N B’ and
so (AUB) =A'nB.

The proof of (2) is left as an exercise. [ |

Example 1.4 Other relations between sets often hold true. For example,
(A\B)N(B\ A) = 0.
To see that this is true, observe that
(A\B)N(B\A)=(AnB)Nn(BNn 4

=ANnA'NnBNnB
= 0.

Cartesian Products and Mappings

Given sets A and B, we can define a new set A x B, called the Cartesian product of A
and B, as a set of ordered pairs. That is,

Ax B={(a,b):ac Aandbe B}.

Example 1.5 If A = {z,y}, B={1,2,3}, and C = (), then A x B is the set

{(2,1),(2,2),(2,3), (v, 1), (¥, 2), (y,3)}

and
AxC=0.
O
We define the Cartesian product of n sets to be
Ay x - x Ay ={(a1,...,an) 1 a; € A; fori=1,...,n}.
If A=A = Ay =--- = A,, we often write A" for A x --- x A (where A would be written

n times). For example, the set R3 consists of all of 3-tuples of real numbers.

Subsets of Ax B are called relations. We will define a mapping or function f C AxB
from a set A to a set B to be the special type of relation where each element a € A has
a unique element b € B such that (a,b) € f. Another way of saying this is that for every

element in A, f assigns a unique element in B. We usually write f : A — B or A I, B.
Instead of writing down ordered pairs (a,b) € A x B, we write f(a) =bor f:aw b The
set A is called the domain of f and

f(A)={f(a):ac A} CB

is called the range or image of f. We can think of the elements in the function’s domain
as input values and the elements in the function’s range as output values.
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Example 1.6 Suppose A = {1,2,3} and B = {a,b,c}. In Figure 1.7 we define relations f
and g from A to B. The relation f is a mapping, but g is not because 1 € A is not assigned
to a unique element in B; that is, g(1) = a and g(1) = b.

A B

Figure 1.7 Mappings and relations

O

Given a function f : A — B, it is often possible to write a list describing what the
function does to each specific element in the domain. However, not all functions can be
described in this manner. For example, the function f : R — R that sends each real number
to its cube is a mapping that must be described by writing f(z) = 22 or f : x + 3.

Consider the relation f : Q — Z given by f(p/q) = p. We know that 1/2 = 2/4, but
is f(1/2) = 1 or 2?7 This relation cannot be a mapping because it is not well-defined. A
relation is well-defined if each element in the domain is assigned to a unique element in
the range.

If f: A— Bisamap and the image of f is B, i.e., f(A) = B, then f is said to be onto
or surjective. In other words, if there exists an a € A for each b € B such that f(a) = b,
then f is onto. A map is one-to-one or injective if a1 # ag implies f(a1) # f(a2).
Equivalently, a function is one-to-one if f(a1) = f(a2) implies a; = az. A map that is both
one-to-one and onto is called bijective.

Example 1.8 Let f: Z — Q be defined by f(n) =n/1. Then f is one-to-one but not onto.
Define g : Q — Z by g(p/q) = p where p/q is a rational number expressed in its lowest
terms with a positive denominator. The function ¢ is onto but not one-to-one. ([l
Given two functions, we can construct a new function by using the range of the first
function as the domain of the second function. Let f: A — B and g : B — C be mappings.
Define a new map, the composition of f and g from A to C, by (go f)(z) = g(f(x)).
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A B c

Figure 1.9 Composition of maps

Example 1.10 Consider the functions f : A — B and g : B — C that are defined in
Figure 1.9 (top). The composition of these functions, go f : A — C, is defined in Figure 1.9
(bottom). O

Example 1.11 Let f(x) = 22 and g(z) = 2z + 5. Then
(fog)(z) = f(g(x)) = (22 +5)* = 4a® + 20z + 25
and
(9o )z) = g(f(x)) = 22° +5.
In general, order makes a difference; that is, in most cases fog # go f. ([

Example 1.12 Sometimes it is the case that fog=go f. Let f(z) = 2 and g(z) = ¥/x.
Then

(fog)(x) = flg(x) = f(Vz)=(Vz)’ =
and

(g0 f)(z) = g(f(x)) = g(a®) = Vad = x.

Example 1.13 Given a 2 x 2 matrix
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we can define a map T4 : R? — R? by
Ta(z,y) = (ax + by, cx + dy)

for (x,7) in R2. This is actually matrix multiplication; that is,

a b\ (x\ [ax+by
c d) \y) \ex+dy/)’
Maps from R” to R" given by matrices are called linear maps or linear transformations.

[l
Example 1.14 Suppose that S = {1,2,3}. Define a map 7 : S — S by

This is a bijective map. An alternative way to write 7 is

1 2 3 1 2 3
m(l) = m - ’
( (1) m(2) (3)> <2 1 3>

For any set S, a one-to-one and onto mapping 7 : S — S is called a permutation of S. [
Theorem 1.15 Let f: A— B, g: B—>C, and h: C — D. Then
1. The composition of mappings is associative; that is, (hog)o f =ho(go f);

2. If f and g are both one-to-one, then the mapping g o f is one-to-one;
3. If f and g are both onto, then the mapping g o f is onto;

4. If f and g are bijective, then so is go f.
Proor. We will prove (1) and (3). Part (2) is left as an exercise. Part (4) follows directly
from (2) and (3).
(1) We must show that
ho(gef)=(hog)of.

For a € A we have

(ho(gof))(a)=h((go f)(a))

(3) Assume that f and g are both onto functions. Given ¢ € C, we must show that
there exists an a € A such that (go f)(a) = g(f(a)) = ¢. However, since g is onto, there
is an element b € B such that g(b) = c. Similarly, there is an a € A such that f(a) = b.
Accordingly,

(go f)a) = g(f(a)) = g(b) = c.

|

If S is any set, we will use idg or id to denote the identity mapping from S to itself.

Define this map by id(s) = s for all s € S. A map g : B — A is an inverse mapping

of f: A— Bif gof =1ids and f o g = idp; in other words, the inverse function of a

function simply “undoes” the function. A map is said to be inwvertible if it has an inverse.
We usually write f~! for the inverse of f.
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Example 1.16 The function f(x) = 2® has inverse f~!(x) = /= by Example 1.12. O

Example 1.17 The natural logarithm and the exponential functions, f(x) = Inz and
f~1(z) = €®, are inverses of each other provided that we are careful about choosing domains.
Observe that

and
whenever composition makes sense. O

)

Then A defines a map from R? to R? by

Example 1.18 Suppose that

We can find an inverse map of T4 by simply inverting the matrix A; that is, Tgl =Ty-1.
In this example,
Al 2 -1\
-5 3 )’

hence, the inverse map is given by
Tgl(ac, y) = (2 — y, —bx + 3y).
It is easy to check that
Tgl oTa(x,y) =Tao Tgl(:v,y) = (z,y).
Not every map has an inverse. If we consider the map

Tp(z,y) = (3z,0)

B:30,
00

then an inverse map would have to be of the form

given by the matrix

Tgl(w, y) = (az + by, cx + dy)

and
(z,y) = Tp o Tz (x,y) = (3az + 3by, 0)
for all x and y. Clearly this is impossible because y might not be 0. O

Example 1.19 Given the permutation

12 3
m =
(231)
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on S = {1,2,3}, it is easy to see that the permutation defined by

-1 1 2 3
i =
31 2

is the inverse of 7. In fact, any bijective mapping possesses an inverse, as we will see in the
next theorem. 0

Theorem 1.20 A mapping is invertible if and only if it is both one-to-one and onto.
PROOF. Suppose first that f : A — B is invertible with inverse ¢ : B — A. Then
go f =1idj, is the identity map; that is, g(f(a)) = a. If aj,as € A with f(a1) = f(a2), then
a1 = g(f(a1)) = g(f(a2)) = az. Consequently, f is one-to-one. Now suppose that b € B.
To show that f is onto, it is necessary to find an a € A such that f(a) = b, but f(g(b)) =0
with g(b) € A. Let a = g(b).

Conversely, let f be bijective and let b € B. Since f is onto, there exists an a € A such
that f(a) =b. Because f is one-to-one, a must be unique. Define g by letting g(b) = a. We
have now constructed the inverse of f. |

Equivalence Relations and Partitions

A fundamental notion in mathematics is that of equality. We can generalize equality with
equivalence relations and equivalence classes. An equivalence relation on a set X is a
relation R C X x X such that

e (z,z) € R for all z € X (reflexive property);
e (z,y) € R implies (y,z) € R (symmetric property);
o (z,y) and (y,2) € R imply (z,2) € R (transitive property).

Given an equivalence relation R on a set X, we usually write = ~ y instead of (z,y) € R.
If the equivalence relation already has an associated notation such as =, =, or =, we will
use that notation.

Example 1.21 Let p, ¢, 7, and s be integers, where g and s are nonzero. Define p/q ~ r/s
if ps = qr. Clearly ~ is reflexive and symmetric. To show that it is also transitive, suppose
that p/q ~ r/s and r/s ~ t/u, with ¢, s, and w all nonzero. Then ps = ¢r and ru = st.
Therefore,

psu = qru = qst.

Since s # 0, pu = gt. Consequently, p/q ~ t/u. O

Example 1.22 Suppose that f and g are differentiable functions on R. We can define an
equivalence relation on such functions by letting f(z) ~ g(z) if f/'(x) = ¢'(z). It is clear that
~ is both reflexive and symmetric. To demonstrate transitivity, suppose that f(z) ~ g(x)
and g(x) ~ h(x). From calculus we know that f(x)—g(z) = ¢1 and g(z) — h(z) = a2, where
c1 and ¢y are both constants. Hence,

f(x) = h(z) = (f(z) —g(z)) + (9(z) = h(z)) = c1 + 2
and f'(x) — h'(z) = 0. Therefore, f(z) ~ h(z). O

Example 1.23 For (z1,%1) and (22, y2) in R?, define (z1,v1) ~ (w2, y2) if 22 + 192 = 23 +y2.
Then ~ is an equivalence relation on R2. O

Example 1.24 Let A and B be 2 x 2 matrices with entries in the real numbers. We can
define an equivalence relation on the set of 2 x 2 matrices, by saying A ~ B if there exists
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an invertible matrix P such that PAP~! = B. For example, if

A (1 ?) and o (18 )
11 11 20

then A ~ B since PAP~! = B for
P (2 5) .
1 3

Let I be the 2 x 2 identity matrix; that is,

()

Then TAI~' = TAI = A; therefore, the relation is reflexive. To show symmetry, suppose
that A ~ B. Then there exists an invertible matrix P such that PAP~! = B. So

A=P'BP=pPlBP 1L

Finally, suppose that A ~ B and B ~ C. Then there exist invertible matrices P and Q
such that PAP™! = B and QBQ™! = C. Since

C=QBQ ' =QPAP'Q™!' = (QP)A(QP)™,

the relation is transitive. Two matrices that are equivalent in this manner are said to be
stmilar. ([

A partition P of a set X is a collection of nonempty sets X1, Xo, ... such that X;NX; =
() for i # j and |J,, X = X. Let ~ be an equivalence relation on a set X and let # € X. Then
[x] ={y € X : y ~ z} is called the equivalence class of x. We will see that an equivalence
relation gives rise to a partition via equivalence classes. Also, whenever a partition of a
set exists, there is some natural underlying equivalence relation, as the following theorem
demonstrates.

Theorem 1.25 Given an equivalence relation ~ on a set X, the equivalence classes of X
form a partition of X. Conversely, if P = {X;} is a partition of a set X, then there is an
equivalence relation on X with equivalence classes X;.

PROOF. Suppose there exists an equivalence relation ~ on the set X. For any = € X, the
reflexive property shows that = € [z] and so [z] is nonempty. Clearly X = (J,cx[z]. Now
let 2,y € X. We need to show that either [x] = [y] or [z] N [y] = . Suppose that the
intersection of [x] and [y] is not empty and that z € [z] N [y]. Then z ~ z and z ~ y. By
symmetry and transitivity z ~ y; hence, [z] C [y]. Similarly, [y] C [z] and so [z] = [y].
Therefore, any two equivalence classes are either disjoint or exactly the same.

Conversely, suppose that P = {X;} is a partition of a set X. Let two elements be
equivalent if they are in the same partition. Clearly, the relation is reflexive. If = is in the
same partition as y, then y is in the same partition as x, so x ~ y implies y ~ x. Finally, if
x is in the same partition as y and y is in the same partition as z, then x must be in the
same partition as z, and transitivity holds. |

Corollary 1.26 Two equivalence classes of an equivalence relation are either disjoint or
equal.

Let us examine some of the partitions given by the equivalence classes in the last set of
examples.
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Example 1.27 In the equivalence relation in Example 1.21, two pairs of integers, (p, q) and
(r,s), are in the same equivalence class when they reduce to the same fraction in its lowest
terms. O

Example 1.28 In the equivalence relation in Example 1.22; two functions f(z) and g(z)
are in the same partition when they differ by a constant. ([

Example 1.29 We defined an equivalence class on R? by (x1,y1) ~ (w2,y2) if 27 + v} =
73 + y3. Two pairs of real numbers are in the same partition when they lie on the same
circle about the origin. O

Example 1.30 Let » and s be two integers and suppose that n € N. We say that r is
congruent to s modulo n, or r is congruent to s mod n, if r — s is evenly divisible by n;
that is, 7 — s = nk for some k € Z. In this case we write r = s (mod n). For example,
41 = 17 (mod 8) since 41 — 17 = 24 is divisible by 8. We claim that congruence modulo
n forms an equivalence relation of Z. Certainly any integer r is equivalent to itself since
r —r = 0 is divisible by n. We will now show that the relation is symmetric. If r = s
(mod n), then r —s = —(s — r) is divisible by n. So s — r is divisible by n and s = r
(mod n). Now suppose that r = s (mod n) and s = ¢ (mod n). Then there exist integers
k and [ such that » — s = kn and s — t = In. To show transitivity, it is necessary to prove
that r — t is divisible by n. However,

r_t:T_$+s_t:kn+ln:(k+l)n7

and so r — t is divisible by n.
If we consider the equivalence relation established by the integers modulo 3, then

0]=1{...,-3,0,3,6,...},
] ={.,-21,47...},
2] ={...,~1,2,5,8,...}.

Notice that [0] U [1] U [2] = Z and also that the sets are disjoint. The sets [0], [1], and [2]
form a partition of the integers.

The integers modulo n are a very important example in the study of abstract algebra
and will become quite useful in our investigation of various algebraic structures such as
groups and rings. In our discussion of the integers modulo n we have actually assumed a
result known as the division algorithm, which will be stated and proved in Chapter 2. [

1.3 Reading Questions

1. What do relations and mappings have in common?
What makes relations and mappings different?

3. State carefully the three defining properties of an equivalence relation. In other words,
do not just name the properties, give their definitions.

What is the big deal about equivalence relations? (Hint: Partitions.)

5. Describe a general technique for proving that two sets are equal.
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1.4 Exercises

1.

18.

Suppose that

A={x:z € Nand z is even},
B ={z:2z € N and z is prime},
C ={z:2z € N and z is a multiple of 5}.

Describe each of the following sets.

(a) ANB c)

(
(b) BNnC (d) An(BUCQC)
If A={a,b,c}, B={1,2,3}, C = {x}, and D = (), list all of the elements in each of

the following sets.
(a) AxB (¢) Ax BxC

AU
AN

(b) Bx A (d) Ax D
Find an example of two nonempty sets A and B for which A x B = B x A is true.
Prove AUD = A and ANQ = 0.
Prove AUB=BUAand ANB=BNA.
Prove AU(BNC)=(AUB)N(AUC).
Prove AN(BUC)=(ANB)U(ANC).
Prove A C B if and only if AN B = A.
Prove (ANB) = A UDB'.

. Prove AUB=(ANB)U(A\B)U(B\A).
. Prove (AUB
. Prove (ANB
. Prove (AUB)\ B=A\B.

. Prove A\ (BUC)=(A\B)Nn(A\CO).

. Prove AN(B\C)=(ANB)\ (ANCOC).

. Prove (A\B)U(B\A)=(AUB)\ (ANB).

. Which of the following relations f : Q — Q define a mapping? In each case, supply a

xC=(AxC)U(BxC).

)
)\ B = 0.

reason why f is or is not a mapping.

@) Flp/a) = 25 (©) o)) = p;q
3p p
(b) fp/a) =3, (d) f(p/q) = 7_6

Determine which of the following functions are one-to-one and which are onto. If the
function is not onto, determine its range.

(a) f:R — R defined by f(z

n?+3

sinx

)
(b) f:7Z — Z defined by f(n)
(c) f:R — R defined by f(x) =
(d) f:Z — Z defined by f(z) =
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19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

Let f: A — Band g : B — C be invertible mappings; that is, mappings such that f~!
and g1 exist. Show that (go f)~!= f~log™h

(a) Define a function f : N — N that is one-to-one but not onto.

(b) Define a function f : N — N that is onto but not one-to-one.

Prove the relation defined on R? by (z1,y1) ~ (wa,92) if 2 + y3 = 23 + y3 is an
equivalence relation.

Let f: A— B and g: B — C be maps.
(a

(b) If g o f is onto, show that g is onto.

)
)
)
)

If f and g are both one-to-one functions, show that g o f is one-to-one.

(c) If go f is one-to-one, show that f is one-to-one.

(d

(e) If go f is onto and g is one-to-one, show that f is onto.

If g o f is one-to-one and f is onto, show that ¢ is one-to-one.

Define a function on the real numbers by

r+1
x—1

flz) =

What are the domain and range of f? What is the inverse of f? Compute fo f~! and
ftof.
Let f: X — Y be a map with A;, 4> C X and B;,Bs C Y.

(a) Prove f(A1UAz2) = f(A1) U f(As2).
(b) Prove f(A1 N As) C f(A1) N f(A2). Give an example in which equality fails.

(c) Prove f~1(B1 U Bs) = f~1(By) U f~1(Bs), where
fY(B)={reX: f(zx) € B}.

(d) Prove f~'(B1N Ba) = f~1(B1) N f~1(Ba).

(e) Prove f~H(Y'\ Bi) = X \ f~!(B1).

Determine whether or not the following relations are equivalence relations on the given
set. If the relation is an equivalence relation, describe the partition given by it. If the
relation is not an equivalence relation, state why it fails to be one.

(a) z~yinRifz >y (c) z~yinRif [z —y|] <4

(b) m~ninZif mn >0 (d) m~ninZif m =n (mod 6)
Define a relation ~ on R? by stating that (a,b) ~ (c,d) if and only if a® + b? < ¢ + d2.
Show that ~ is reflexive and transitive but not symmetric.

Show that an m X n matrix gives rise to a well-defined map from R" to R™.
Find the error in the following argument by providing a counterexample. “The reflexive

property is redundant in the axioms for an equivalence relation. If x ~ y, then y ~ x
by the symmetric property. Using the transitive property, we can deduce that z ~ x.”

Projective Real Line. Define a relation on R?\ {(0,0)} by letting (z1,y1) ~ (72, ¥2)
if there exists a nonzero real number A such that (z1,y1) = (Az2, A\y2). Prove that ~
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defines an equivalence relation on R?\ (0,0). What are the corresponding equivalence
classes? This equivalence relation defines the projective line, denoted by P(R), which
is very important in geometry.
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1.6 Sage

Sage is a powerful system for studying and exploring many different areas of mathematics.
In this textbook, you will study a variety of algebraic structures, such as groups, rings and
fields. Sage does an excellent job of implementing many features of these objects as we will
see in the chapters ahead. But here and now, in this initial chapter, we will concentrate on
a few general ways of getting the most out of working with Sage.

You may use Sage several different ways. It may be used as a command-line program
when installed on your own computer. Or it might be a web application such as the
SageMathCloud. Our writing will assume that you are reading this as a worksheet within
the Sage Notebook (a web browser interface), or this is a section of the entire book presented
as web pages, and you are employing the Sage Cell Server via those pages. After the first few
chapters the explanations should work equally well for whatever vehicle you use to execute
Sage commands.
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Executing Sage Commands

Most of your interaction will be by typing commands into a compute cell. If you are reading
this in the Sage Notebook or as a webpage version of the book, then you will see a compute
cell just below this paragraph. Click once inside the compute cell and if you are in the Sage
Notebook, you will get a more distinctive border around it, a blinking cursor inside, plus a
cute little “evaluate” link below.At the cursor, type 2+2 and then click on the evaluate link.
Did a 4 appear below the cell? If so, you have successfully sent a command off for Sage to
evaluate and you have received back the (correct) answer.

Here is another compute cell. Try evaluating the command factorial(300) here. Hmmmmm.
That is quite a big integer! If you see slashes at the end of each line, this means the result
is continued onto the next line, since there are 615 total digits in the result.

To make new compute cells in the Sage Notebook (only), hover your mouse just above
another compute cell, or just below some output from a compute cell. When you see a
skinny blue bar across the width of your worksheet, click and you will open up a new
compute cell, ready for input. Note that your worksheet will remember any calculations
you make, in the order you make them, no matter where you put the cells, so it is best to
stay organized and add new cells at the bottom.

Try placing your cursor just below the monstrous value of 300! that you have. Click on
the blue bar and try another factorial computation in the new compute cell.

Each compute cell will show output due to only the very last command in the cell. Try
to predict the following output before evaluating the cell.

a = 1@
b =6

b =Db - 10
a = a + 20
a

30

The following compute cell will not print anything since the one command does not
create output. But it will have an effect, as you can see when you execute the subsequent
cell. Notice how this uses the value of b from above. Execute this compute cell once.
Exactly once. Even if it appears to do nothing. If you execute the cell twice, your credit
card may be charged twice.

b =b + 50

Now execute this cell, which will produce some output.

b + 20

66

So b came into existence as 6. We subtracted 10 immediately afterward. Then a
subsequent cell added 50. This assumes you executed this cell exactly once! In the last
cell we create b+20 (but do not save it) and it is this value (66) that is output, while b is
still 46.

You can combine several commands on one line with a semi-colon. This is a great way
to get multiple outputs from a compute cell. The syntax for building a matrix should be
somewhat obvious when you see the output, but if not, it is not particularly important to
understand now.
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A = matrix([[3, 11, [5,211); A

[3 11
[5 2]

print(A); print(); print(A.inverse())

[3 1]

[5 2]
<BLANKLINE >
L 2 -1]

(-5 31

Immediate Help

)

Some commands in Sage are “functions,” an example is factorial() above. Other com-
mands are “methods” of an object and are like characteristics of objects, an example is
.inverse() as a method of a matrix. Once you know how to create an object (such as a
matrix), then it is easy to see all the available methods. Write the name of the object, place
a period (“dot”) and hit the TAB key. If you have A defined from above, then the compute
cell below is ready to go, click into it and then hit TAB (not “evaluate”!). You should get
a long list of possible methods.

A.

To get some help on how to use a method with an object, write its name after a dot
(with no parentheses) and then use a question-mark and hit TAB. (Hit the escape key “ESC”
to remove the list, or click on the text for a method.)

A.inverse?

With one more question-mark and a TAB you can see the actual computer instructions
that were programmed into Sage to make the method work, once you scoll down past the
documentation delimited by the triple quotes ("""):

A.inverse??

It is worthwhile to see what Sage does when there is an error. You will probably see a
lot of these at first, and initially they will be a bit intimidating. But with time, you will
learn how to use them effectively and you will also become more proficient with Sage and
see them less often. Execute the compute cell below, it asks for the inverse of a matrix that
has no inverse. Then reread the commentary.

B = matrix([[2, 201, [5, 50]1)
B.inverse ()

Traceback (most recent call last):

ZeroDivisionError: matrix must be nonsingular

Click just to the left of the error message to expand it fully (another click hides it totally,
and a third click brings back the abbreviated form). Read the bottom of an error message
first, it is your best explanation. Here a ZeroDivisionError is not 100% accurate, but is
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close. The matrix is not invertible, not dissimilar to how we cannot divide scalars by zero.
The remainder of the message begins at the top showing were the error first happened in
your code and then the various places where intermediate functions were called, until the
actual piece of Sage where the problem occurred. Sometimes this information will give you
some clues, sometimes it is totally undecipherable. So do not let it scare you if it seems
mysterious, but do remember to always read the last line first, then go back and read the
first few lines for something that looks like your code.

Annotating Your Work

It is easy to comment on your work when you use the Sage Notebook. (The following only
applies if you are reading this within a Sage Notebook. If you are not, then perhaps you
can go open up a worksheet in the Sage Notebook and experiment there.) You can open
up a small word-processor by hovering your mouse until you get a skinny blue bar again,
but now when you click, also hold the SHIFT key at the same time. Experiment with fonts,
colors, bullet lists, etc and then click the “Save changes” button to exit. Double-click on
your text if you need to go back and edit it later.

Open the word-processor again to create a new bit of text (maybe next to the empty
compute cell just below). Type all of the following exactly,

Pythagorean Theorem: $c*2=a*2+b”*2$

and save your changes. The symbols between the dollar signs are written according to the
mathematical typesetting language known as TEX — cruise the internet to learn more about
this very popular tool. (Well, it is extremely popular among mathematicians and physical
scientists.)

Lists

Much of our interaction with sets will be through Sage lists. These are not really sets — they
allow duplicates, and order matters. But they are so close to sets, and so easy and powerful
to use that we will use them regularly. We will use a fun made-up list for practice, the
quote marks mean the items are just text, with no special mathematical meaning. Execute
these compute cells as we work through them.

zoo = ['snake', 'parrot', 'elephant', 'baboon', 'beetle']
Z00
['snake', 'parrot', 'elephant', 'baboon', 'beetle']

So the square brackets define the boundaries of our list, commas separate items, and we
can give the list a name. To work with just one element of the list, we use the name and
a pair of brackets with an index. Notice that lists have indices that begin counting at zero.
This will seem odd at first and will seem very natural later.

zoo[2]

'elephant'

We can add a new creature to the zoo, it is joined up at the far right end.

zoo.append('ostrich'); zoo

['snake', 'parrot', 'elephant', 'baboon', 'beetle', 'ostrich']

We can remove a creature.
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zoo.remove ( 'parrot')
z0o

['snake', 'elephant', 'baboon', 'beetle', 'ostrich']

We can extract a sublist. Here we start with element 1 (the elephant) and go all the
way up to, but not including, element 3 (the beetle). Again a bit odd, but it will feel natural
later. For now, notice that we are extracting two elements of the lists, exactly 3 — 1 = 2
elements.

mammals = zoo[1:3]
mammals
['elephant', 'baboon']

Often we will want to see if two lists are equal. To do that we will need to sort a list
first. A function creates a new, sorted list, leaving the original alone. So we need to save
the new one with a new name.

newzoo = sorted(zoo)
newzoo
[ 'baboon', 'beetle', 'elephant', 'ostrich', 'snake']

zoo.sort ()
Z0o

[ 'baboon', 'beetle', 'elephant', 'ostrich', 'snake']

Notice that if you run this last compute cell your zoo has changed and some commands
above will not necessarily execute the same way. If you want to experiment, go all the way
back to the first creation of the zoo and start executing cells again from there with a fresh
Z00.

A construction called a list comprehension is especially powerful, especially since it
almost exactly mirrors notation we use to describe sets. Suppose we want to form the plural
of the names of the creatures in our zoo. We build a new list, based on all of the elements
of our old list.

plurality_zoo = [animal+'s' for animal in zoo]
plurality_zoo

[ 'baboons', 'beetles', 'elephants', 'ostrichs', 'snakes']

Almost like it says: we add an “s” to each animal name, for each animal in the zoo, and
place them in a new list. Perfect. (Except for getting the plural of “ostrich” wrong.)

Lists of Integers

One final type of list, with numbers this time. The srange() function will create lists of
integers. (The “s” in the name stands for “Sage” and so will produce integers that Sage
understands best. Many early difficulties with Sage and group theory can be alleviated by
using only this command to create lists of integers.) In its simplest form an invocation
like srange(12) will create a list of 12 integers, starting at zero and working up to, but not
including, 12. Does this sound familiar?
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dozen = srange(12); dozen

(e, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
Here are two other forms, that you should be able to understand by studying the exam-
ples.

teens = srange (13, 20); teens

(13, 14, 15, 16, 17, 18, 19]

decades = srange (1900, 2000, 10); decades

[1900, 1910, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1990]

Saving and Sharing Your Work

There is a “Save” button in the upper-right corner of the Sage Notebook. This will save a
current copy of your worksheet that you can retrieve your work from within your notebook
again later, though you have to re-execute all the cells when you re-open the worksheet.

There is also a “File” drop-down list, on the left, just above your very top compute cell
(not be confused with your browser’s File menu item!). You will see a choice here labeled
“Save worksheet to a file...” When you do this, you are creating a copy of your worksheet
in the sws format (short for “Sage WorkSheet”). You can email this file, or post it on a
website, for other Sage users and they can use the “Upload” link on the homepage of their
notebook to incorporate a copy of your worksheet into their notebook.

There are other ways to share worksheets that you can experiment with, but this gives
you one way to share any worksheet with anybody almost anywhere.

We have covered a lot here in this section, so come back later to pick up tidbits you
might have missed. There are also many more features in the Sage Notebook that we have
not covered.

1.7 Sage Exercises

1. This exercise is just about making sure you know how to use Sage. You may be
using the Sage Notebook server the online CoCalc service through your web browser.
In either event, create a new worksheet. Do some non-trivial computation, maybe a
pretty plot or some gruesome numerical computation to an insane precision. Create
an interesting list and experiment with it some. Maybe include some nicely formatted
text or TEX using the included mini-word-processor of the Sage Notebook (hover until
a blue bar appears between cells and then shift-click) or create commentary in cells
within CoCalc using the magics %html or %md on a line of their own followed by text
in HTML or Markdown syntax (respectively).

Use whatever mechanism your instructor has in place for submitting your work. Or
save your worksheet and then trade with a classmate.
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The Integers

The integers are the building blocks of mathematics. In this chapter we will investigate
the fundamental properties of the integers, including mathematical induction, the division
algorithm, and the Fundamental Theorem of Arithmetic.

2.1 Mathematical Induction
Suppose we wish to show that

n(n+1)

1424... =
+24---+n 5

for any natural number n. This formula is easily verified for small numbers such as n = 1,
2, 3, or 4, but it is impossible to verify for all natural numbers on a case-by-case basis. To
prove the formula true in general, a more generic method is required.

Suppose we have verified the equation for the first n cases. We will attempt to show
that we can generate the formula for the (n + 1)th case from this knowledge. The formula
is true for n = 1 since

1(1+1)
1=—— "
2
If we have verified the first n cases, then
nn—+1
1+2+~--+n+(n+1):(2)+n+1
_n2+3n+2
B 2
~ (n+D[(n+1)+1]
= 5 )

This is exactly the formula for the (n + 1)th case.

This method of proof is known as mathematical induction. Instead of attempting to
verify a statement about some subset S of the positive integers N on a case-by-case basis, an
impossible task if S is an infinite set, we give a specific proof for the smallest integer being
considered, followed by a generic argument showing that if the statement holds for a given
case, then it must also hold for the next case in the sequence. We summarize mathematical
induction in the following axiom.

Principle 2.1 First Principle of Mathematical Induction. Let S(n) be a statement
about integers for n € N and suppose S(ng) is true for some integer ng. If for all integers k

22
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with k > ng, S(k) implies that S(k + 1) is true, then S(n) is true for all integers n greater
than or equal to ng.

Example 2.2 For all integers n > 3, 2" > n + 4. Since
8§=23>344="T,

the statement is true for ng = 3. Assume that 28 > k +4 for k > 3. Then 2Ft1 =2.2F >
2(k+4). But
20k+4)=2k+8>k+5=(k+1)+4

since k is positive. Hence, by induction, the statement holds for all integers n > 3. [l
Example 2.3 Every integer 10"T! + 3. 10" + 5 is divisible by 9 for n € N. For n = 1,
101 +3-10+5=135=9-15

is divisible by 9. Suppose that 10*+1 4 3. 10* + 5 is divisible by 9 for k > 1. Then

100D+ 3108+ 45 = 10842 4 3. 108! 450 — 45

= 10(10"*1 +3.10% +-5) — 45
is divisible by 9. ([
Example 2.4 We will prove the binomial theorem using mathematical induction; that is,
" /n
(a+b)" = kzo (k) akpnk,

where a and b are real numbers, n € N, and

(1) = m

is the binomial coefficient. We first show that

n+1 _(n n n
k - \k k—1/"
This result follows from

<Z> + (k i 1> = k!(nn! PIRECE 1)!(3! ket 1)
(n+1)!

T K(n+1—k)

_(n+1

= L)
If n = 1, the binomial theorem is easy to verify. Now assume that the result is true for n
greater than or equal to 1. Then

(a4 5" = (a+b)(a+Db)"
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_ ~ (n k+1pn—k — (n kpn+l—k
—Z<k>a b —i—Z(k)ab
k=0 k=0
—a Y (k n 1) dFpr Ly (Z) aFpri—k et
=1 N k=1
_n+l g n n kin+1—k n-+1
—a +;[<k_1>+<k>]ab +b

1
_ < <n + 1) aFpnti—k
‘ k

Jr

B
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O
We have an equivalent statement of the Principle of Mathematical Induction that is
often very useful.

Principle 2.5 Second Principle of Mathematical Induction. Let S(n) be a statement
about integers for n € N and suppose S(ng) is true for some integer ng. If S(ng),S(no +
1),...,S(k) imply that S(k+ 1) for k > ng, then the statement S(n) is true for all integers
n > ng.

A nonempty subset S of Z is well-ordered if S contains a least element. Notice that
the set Z is not well-ordered since it does not contain a smallest element. However, the
natural numbers are well-ordered.

Principle 2.6 Principle of Well-Ordering. Fvery nonempty subset of the natural
numbers is well-ordered.
The Principle of Well-Ordering is equivalent to the Principle of Mathematical Induction.

Lemma 2.7 The Principle of Mathematical Induction implies that 1 is the least positive

natural number.
PROOF. Let S={n € N:n>1}. Then 1 € S. Assume that n € S. Since 0 < 1, it must

be the case that n = n 4+ 0 < n 4+ 1. Therefore, 1 < n < n+ 1. Consequently, if n € S,
then n 4+ 1 must also be in S, and by the Principle of Mathematical Induction, and we have
S=N. [ |
Theorem 2.8 The Principle of Mathematical Induction implies the Principle of Well-
Ordering. That is, every nonempty subset of N contains a least element.

PrROOF. We must show that if S is a nonempty subset of the natural numbers, then S
contains a least element. If S contains 1, then the theorem is true by Lemma 2.7. Assume
that if S contains an integer k such that 1 < k£ < n, then S contains a least element. We
will show that if a set S contains an integer less than or equal to n + 1, then S has a least
element. If S does not contain an integer less than n + 1, then n + 1 is the smallest integer
in S. Otherwise, since S is nonempty, .S must contain an integer less than or equal to n. In
this case, by induction, S contains a least element. |

Induction can also be very useful in formulating definitions. For instance, there are two
ways to define n!, the factorial of a positive integer n.

o The explicit definition: n! =1-2-3---(n —1) - n.
o The inductive or recursive definition: 1! =1 and n! = n(n — 1)! for n > 1.

Every good mathematician or computer scientist knows that looking at problems recursively,
as opposed to explicitly, often results in better understanding of complex issues.
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2.2 The Division Algorithm

An application of the Principle of Well-Ordering that we will use often is the division
algorithm.

Theorem 2.9 Division Algorithm. Let a and b be integers, with b > 0. Then there
exist unique integers q and r such that

a=bg+r

where 0 < r < b.

PRroOOF. This is a perfect example of the existence-and-uniqueness type of proof. We must
first prove that the numbers ¢ and r actually exist. Then we must show that if ¢’ and r’
are two other such numbers, then ¢ = ¢/ and r =7/,

Ezxistence of ¢ and r. Let
S={a—-0bk:keZand a—0bk>0}.

If 0 € S, then b divides a, and we can let ¢ = a/b and r = 0. If 0 ¢ S, we can use the
Well-Ordering Principle. We must first show that S is nonempty. If a > 0, then a—5b-0 € S.
If a < 0, then a — b(2a) = a(l —2b) € S. In either case S # (). By the Well-Ordering
Principle, S must have a smallest member, say r = a — bq. Therefore, a = bg+r, r > 0.
We now show that r < b. Suppose that r > b. Then

a—blg+1l)=a—-bg—b=r—>b>0.

In this case we would have a — b(¢ + 1) in the set S. But then a — b(q + 1) < a — bg, which

would contradict the fact that » = a — bg is the smallest member of S. So r < b. Since
0¢S,r+#bandsor<b.

Uniqueness of ¢ and r. Uniqueness of ¢ and r. Suppose there exist integers r, 7’ ¢, and ¢’
such that
a=bg+r,0<r<b and a=bd +r,0<r <b.

Then bg+r = bg'+r'. Assume that v’ > r. From the last equation we have b(¢—q’) = r' —r;
therefore, b must divide v’ —r and 0 < 7/ —r <7’ < b. This is possible only if ' —r = 0.
Hence, r =1’ and ¢ = ¢'. [ |

Let a and b be integers. If b = ak for some integer k, we write a | b. An integer d is
called a common divisor of a and b if d | a and d | b. The greatest common divisor of
integers a and b is a positive integer d such that d is a common divisor of a and b and if d’
is any other common divisor of a and b, then d’' | d. We write d = ged(a, b); for example,
ged(24,36) = 12 and ged(120,102) = 6. We say that two integers a and b are relatively
prime if ged(a,b) = 1.

Theorem 2.10 Let a and b be nonzero integers. Then there exist integers r and s such that
ged(a, b) = ar + bs.

Furthermore, the greatest common divisor of a and b is unique.
PROOF. Let
S ={am+bn:m,n e Z and am + bn > 0}.

Clearly, the set S is nonempty; hence, by the Well-Ordering Principle S must have a smallest
member, say d = ar + bs. We claim that d = ged(a,b). Write a = dg + ' where 0 < ' < d.
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If v/ > 0, then

' =a—dg
=a — (ar + bs)q
=a—arq— bsq

= a(l —rq) + b(—sq),

which is in S. But this would contradict the fact that d is the smallest member of S. Hence,
r’ = 0 and d divides a. A similar argument shows that d divides b. Therefore, d is a common
divisor of a and b.

Suppose that d’ is another common divisor of a and b, and we want to show that d’ | d.
If we let @ = d’h and b = d’k, then

d=ar+bs=dhr+dks=d(hr+ks).

So d’ must divide d. Hence, d must be the unique greatest common divisor of @ and b. W

Corollary 2.11 Let a and b be two integers that are relatively prime. Then there exist
integers v and s such that ar + bs = 1.

The Euclidean Algorithm

Among other things, Theorem 2.10 allows us to compute the greatest common divisor of
two integers.

Example 2.12 Let us compute the greatest common divisor of 945 and 2415. First observe
that

2415 =945-2 4 525
945 = 525 -1 4420
525 =420-1+ 105
420 =105-4+0.

Reversing our steps, 105 divides 420, 105 divides 525, 105 divides 945, and 105 divides 2415.
Hence, 105 divides both 945 and 2415. If d were another common divisor of 945 and 2415,
then d would also have to divide 105. Therefore, gcd(945,2415) = 105.

If we work backward through the above sequence of equations, we can also obtain num-
bers r and s such that 945r + 2415s = 105. Observe that

105 = 525 4 (—1) - 420
=525+ (—1)-[945 + (—1) - 525]
=2-525+(—1)-945
=2-[2415+ (—2) - 945] 4+ (—1) - 945
=2-2415 4 (=5) - 945.
So r = —5 and s = 2. Notice that » and s are not unique, since r = 41 and s = —16 would
also work. O

To compute ged(a,b) = d, we are using repeated divisions to obtain a decreasing se-
quence of positive integers ry > ro > -+ > 1, = d; that is,

b=uaq +71
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a=1ryqs+12

r1L =Tr2q3 + T3

Th—2 = Tn—1qn + Tn

Tn—1 = T"ndn+1-

To find r and s such that ar+bs = d, we begin with this last equation and substitute results
obtained from the previous equations:

d=ry,

T"n—2 — Tn—14n
=Tn—2 — Qn(rn—i’) - Qn—lrn—2>

—QGnTn—3 + (1 + QnQn—l)Tn—2

= ra + sb.

The algorithm that we have just used to find the greatest common divisor d of two integers
a and b and to write d as the linear combination of ¢ and b is known as the Fuclidean
algorithm.

Prime Numbers

Let p be an integer such that p > 1. We say that p is a prime number, or simply p is
prime, if the only positive numbers that divide p are 1 and p itself. An integer n > 1 that
is not prime is said to be composite.

Lemma 2.13 Euclid. Let a and b be integers and p be a prime number. If p | ab, then
either p | a or p | b.

PROOF. Suppose that p does not divide a. We must show that p | b. Since ged(a,p) = 1,
there exist integers r and s such that ar +ps = 1. So

b =b(ar + ps) = (ab)r + p(bs).

Since p divides both ab and itself, p must divide b = (ab)r + p(bs). [ |

Theorem 2.14 Euclid. There exist an infinite number of primes.

ProoOF. We will prove this theorem by contradiction. Suppose that there are only a finite
number of primes, say pi,p2,...,Pn. Let P = pip2---p, + 1. Then P must be divisible
by some p; for 1 < ¢ < n. In this case, p; must divide P — pips---p, = 1, which is a
contradiction. Hence, either P is prime or there exists an additional prime number p # p;
that divides P. |

Theorem 2.15 Fundamental Theorem of Arithmetic. Let n be an integer such that
n > 1. Then

n=pip2 - Pk;
where pi,...,pr are primes (not necessarily distinct). Furthermore, this factorization is
unique; that is, if

n=4qq2" -4,

then k =1 and the q;’s are just the p;’s rearranged.
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PROOF.

Uniqueness. To show uniqueness we will use induction on n. The theorem is certainly true
for n = 2 since in this case n is prime. Now assume that the result holds for all integers m
such that 1 < m < n, and

n=Dpip2- Pk = 4192 qi,
where pj < ps < --- < prand ¢ < g2 < -+ < ¢. By Lemma 2.13, p; | ¢; for some
i=1,...,land ¢1 | p; for some j =1,..., k. Since all of the p;’s and ¢;’s are prime, p; = ¢;
and ¢ = p;. Hence, p1 = ¢1 since p1 < p; = ¢1 < ¢; = p1. By the induction hypothesis,

n' =papr=qaq
has a unique factorization. Hence, k =1 and ¢; = p; fori =1,... k.

Ezistence. To show existence, suppose that there is some integer that cannot be written
as the product of primes. Let S be the set of all such numbers. By the Principle of Well-
Ordering, S has a smallest number, say a. If the only positive factors of a are a and 1, then
a is prime, which is a contradiction. Hence, a = ajas where 1 < a1 < a and 1 < ag < a.
Neither a1 € S nor as € S, since a is the smallest element in S. So

air =pi1---Pr
a2 =4q1---4gs.

Therefore,
G = a1a2 = p1---Prq1---(gs-

So a ¢ S, which is a contradiction. [ ]

[ ] Historical Note [ ]

Prime numbers were first studied by the ancient Greeks. Two important results from antiq-
uity are Euclid’s proof that an infinite number of primes exist and the Sieve of Eratosthenes,
a method of computing all of the prime numbers less than a fixed positive integer n. One
problem in number theory is to find a function f such that f(n) is prime for each integer n.
Pierre Fermat (16017-1665) conjectured that 22" + 1 was prime for all n, but later it was
shown by Leonhard Euler (1707-1783) that

922" 4 1 = 4,294,967,297

is a composite number. One of the many unproven conjectures about prime numbers is
Goldbach’s Conjecture. In a letter to Euler in 1742, Christian Goldbach stated the conjec-
ture that every even integer with the exception of 2 seemed to be the sum of two primes:
4=2+4+26=34+3,8=3+25,.... Although the conjecture has been verified for the
numbers up through 4 x 10'®, it has yet to be proven in general. Since prime numbers play
an important role in public key cryptography, there is currently a great deal of interest in
determining whether or not a large number is prime.

2.3 Reading Questions

1. Use Sage to express 123456792 as a product of prime numbers.
2. Find the greatest common divisor of 84 and 52.
3. Find integers r and s so that r(84) + s(52) = gcd(84, 52).
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4.
5.

Explain the use of the term “induction hypothesis.”

What is Goldbach’s Conjecture? And why is it called a “conjecture”?

2.4 Exercises

1.

10.

11.
12.

13.

14.

Prove that
24924 an? = nn+1)2n+1)
6
for n € N.
Prove that ) )
134+254...4pn3 = M
4
for n € N.
Prove that n! > 2" for n > 4.
Prove that 5 .
x+4x+7x+~--+(3n—2)x:n(n;)x
for n € N.

Prove that 10"T! 4+ 10" + 1 is divisible by 3 for n € N.
Prove that 4 - 10%" 4+ 9 - 10?"~! 4 5 is divisible by 99 for n € N.
Show that

1 n
Yarag - ap < — g ag.
n
k=1

Prove the Leibniz rule for f(™ (x), where f (") is the nth derivative of f; that is, show
that

n

(19 =3 ()19 @ i)

k=0
Use induction to prove that 1+ 24224 ... 42" =21 — 1 for n € N.

Prove that
1+1+ N 1 _n
2 6 nn+1) n+1

for n € N.
If x is a nonnegative real number, then show that (14 )" —1 > nz forn =0,1,2,....

Power Sets. Let X be a set. Define the power set of X, denoted P(X), to be the
set of all subsets of X. For example,

P({av b}) = {(Da {a}a {b}v {av b}}

For every positive integer n, show that a set with exactly n elements has a power set
with exactly 2" elements.

Prove that the two principles of mathematical induction stated in Section 2.1 are
equivalent.

Show that the Principle of Well-Ordering for the natural numbers implies that 1 is the
smallest natural number. Use this result to show that the Principle of Well-Ordering
implies the Principle of Mathematical Induction; that is, show that if S C N such that
le Sand n+ 1€ S whenever n € S, then S = N.
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15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.
26.

For each of the following pairs of numbers a and b, calculate ged(a, b) and find integers
r and s such that ged(a,b) = ra + sb.

(a) 14 and 39 (d) 471 and 562
(b) 234 and 165 (e) 23771 and 19945
(c) 1739 and 9923 (f) —4357 and 3754

Let @ and b be nonzero integers. If there exist integers r and s such that ar + bs = 1,
show that a and b are relatively prime.

Fibonacci Numbers. The Fibonacci numbers are
1,1,2,3,5,8,13,21,....

We can define them inductively by f1 =1, fo =1, and fh12 = fn+1 + fn for n € N,
(a) Prove that f, < 2.

(b) Prove that foi1fu-1=fi+(=1)" n>2.
(¢) Prove that f, = [(1++/5)" — (1 —v/5)"]/2"V/5.
)

(d) Show that ¢ = lim, e fnir1/fn = (V5 +1)/2. The constant ¢ is known as the
golden ratio.

(e) Prove that f, and f,41 are relatively prime.

Let a and b be integers such that ged(a,b) = 1. Let r and s be integers such that
ar + bs = 1. Prove that

ged(a, s) = ged(r,b) = ged(r, s) = 1.
Let z,y € N be relatively prime. If xy is a perfect square, prove that x and y must
both be perfect squares.

Using the division algorithm, show that every perfect square is of the form 4k or 4k +1
for some nonnegative integer k.

Suppose that a, b, r, s are pairwise relatively prime and that

a® +b> =r?

a® — b = §°.

Prove that a, r, and s are odd and b is even.

Let n € N. Use the division algorithm to prove that every integer is congruent mod n
to precisely one of the integers 0,1,...,n — 1. Conclude that if r is an integer, then
there is exactly one s in Z such that 0 < s < n and [r] = [s]. Hence, the integers are
indeed partitioned by congruence mod n.

Define the least common multiple of two nonzero integers a and b, denoted by
lem(a, b), to be the nonnegative integer m such that both a and b divide m, and if a
and b divide any other integer n, then m also divides n. Prove there exists a unique
least common multiple for any two integers a and b.

If d = ged(a, b) and m = lem(a, b), prove that dm = |ab|.
Show that lem(a, b) = ab if and only if ged(a, b) = 1.

Prove that ged(a,c) = ged(b,¢) = 1 if and only if ged(ab, c) = 1 for integers a, b, and
c.
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27.
28.
29.
30.
31.

Let a,b,c € Z. Prove that if ged(a,b) = 1 and a | be, then a | c.

Let p > 2. Prove that if 2P — 1 is prime, then p must also be prime.
Prove that there are an infinite number of primes of the form 6n 4+ 5.
Prove that there are an infinite number of primes of the form 4n — 1.

Using the fact that 2 is prime, show that there do not exist integers p and ¢ such that
p? = 2¢2. Demonstrate that therefore v/2 cannot be a rational number.

2.5 Programming Exercises

1.

The Sieve of Eratosthenes. One method of computing all of the prime numbers
less than a certain fixed positive integer N is to list all of the numbers n such that
1 < n < N. Begin by eliminating all of the multiples of 2. Next eliminate all of the
multiples of 3. Now eliminate all of the multiples of 5. Notice that 4 has already been
crossed out. Continue in this manner, noticing that we do not have to go all the way
to N; it suffices to stop at v/N. Using this method, compute all of the prime numbers
less than N = 250. We can also use this method to find all of the integers that are
relatively prime to an integer N. Simply eliminate the prime factors of IV and all of
their multiples. Using this method, find all of the numbers that are relatively prime
to N = 120. Using the Sieve of Eratosthenes, write a program that will compute all
of the primes less than an integer N.

Let N° = NU {0}. Ackermann’s function is the function A : N° x N® — N defined by
the equations

A0,y) =y +1,
A(:B +1,0) = A(x, 1),
Alz+1y+1) = Az, A(z + 1,9)).

Use this definition to compute A(3,1). Write a program to evaluate Ackermann’s
function. Modify the program to count the number of statements executed in the
program when Ackermann’s function is evaluated. How many statements are executed

in the evaluation of A(4,1)? What about A(5,1)?

Write a computer program that will implement the Euclidean algorithm. The program
should accept two positive integers a and b as input and should output ged(a,b) as
well as integers r and s such that

ged(a, b) = ra + sb.
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2.7 Sage

Many properties of the algebraic objects we will study can be determined from properties
of associated integers. And Sage has many powerful functions for analyzing integers.

Division Algorithm

The code a % b will return the remainder upon division of a by b. In other words, the
result is the unique integer r such that (1) 0 < r < b, and (2) a = bq + r for some integer
g (the quotient), as guaranteed by the Division Algorithm (Theorem 2.9). Then (a —r)/b
will equal g. For example,

r =14 % 3

r

2

q= (14 - r)/3
q

4

It is also possible to get both the quotient and remainder at the same time with the
.quo_rem() method (quotient and remainder).

4

1
3

a
b
a.quo_rem(b)

(4, 2)
A remainder of zero indicates divisibility. So (a % b) == 0@ will return True if b divides
a, and will otherwise return False.

(20 % 5) == 0
True
(17 % 4) == 0
False

The .divides() method is another option.

c =5
c.divides (20)

True
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d = 4
d.divides (17)

False

Greatest Common Divisor

The greatest common divisor of a and b is obtained with the command gcd(a, b), where
in our first uses, @ and b are integers. Later, a and b can be other objects with a notion of
divisibility and “greatness,” such as polynomials. For example,

gcd (2776, 2452)

We can use the gcd command to determine if a pair of integers are relatively prime.

a = 31049
b = 2105
gcd(a, b) == 1

True

a = 3563
b = 2947
gcd(a, b) == 1

False

The command xgcd(a,b) (“eXtended GCD”) returns a triple where the first element is
the greatest common divisor of a and b (as with the gcd(a,b) command above), but the
next two elements are values of r and s such that ra 4+ sb = ged(a, b).

xgcd (633,331)

(1, -137, 262)

Portions of the triple can be extracted using [ 1(“indexing”) to access the entries of the
triple, starting with the first as number 0. For example, the following should always return
the result True, even if you change the values of a and b. Try changing the values of a and
b below, to see that the result is always True.

a = 633
b = 331
extended = xgcd(a, b)

g = extended[0]
r = extended[1]
s = extended[2]
g == rxa + S*b
True

Studying this block of code will go a long way towards helping you get the most out of
Sage’s output. Note that = is how a value is assigned to a variable, while as in the last line,
== is how we compare two items for equality.
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Primes and Factoring

The method .is_prime() will determine if an integer is prime or not.

a = 117371
a.is_prime()

True

b = 14547073
b.is_prime()

False

b == 1597 * 9109

True

The command random_prime(a, proof=True) will generate a random prime number
between 2 and a. Experiment by executing the following two compute cells several times.
(Replacing proof=True by proof=False will speed up the search, but there will be a very,
very, very small probability the result will not be prime.)

a = random_prime (10221, proof=True)
a

424729101793542195193

a.is_prime()

True

The command prime_range(a, b) returns an ordered list of all the primes from a to
b — 1, inclusive. For example,

prime_range (500, 550)

[503, 509, 521, 523, 541, 547]

The commands next_prime(a) and previous_prime(a) are other ways to get a single
prime number of a desired size. Give them a try below if you have an empty compute cell
there (as you will if you are reading in the Sage Notebook, or are reading the online version).
(The hash symbol, #, is used to indicate a “comment” line, which will not be evaluated by
Sage. So erase this line, or start on the one below it.)In addition to checking if integers are
prime or not, or generating prime numbers, Sage can also decompose any integer into its
prime factors, as described by the Fundamental Theorem of Arithmetic (Theorem 2.15).

a = 2600
a.factor ()

2*3 *x 572 % 13

So 2600 = 23 x 5% x 13 and this is the unique way to write 2600 as a product of prime
numbers (other than rearranging the order of the primes themselves in the product).
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While Sage will print a factorization nicely, it is carried internally as a list of pairs of
integers, with each pair being a base (a prime number) and an exponent (a positive integer).
Study the following carefully, as it is another good exercise in working with Sage output in
the form of lists.

a = 2600

factored = a.factor ()
first_term = factored[0]
first_term

(2, 3

second_term = factored[1]
second_term

(5, 2)

third_term = factored[2]
third_term

s, 1

first_prime = first_term[0]
first_prime

first_exponent = first_term[1]
first_exponent

The next compute cell reveals the internal version of the factorization by asking for the
actual list. And we show how you could determine exactly how many terms the factorization
has by using the length command, len().

list(factored)

[(2, 3>, (5, 2), (13, NI

len(factored)

Can you extract the next two primes, and their exponents, from a?

2.8 Sage Exercises

These exercises are about investigating basic properties of the integers, something we will
frequently do when investigating groups. Sage worksheets have extensive capabilities for
making new cells with carefully formatted text, include support for IXITEX syntax to express
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mathematics. So when a question asks for explanation or commentary, make a new cell and
communicate clearly with your audience.

1.

Use the next_prime() command to construct two different 8-digit prime numbers and
save them in variables named a and b.
Use the .is_prime() method to verify that your primes a and b are really prime.

Verify that 1 is the greatest common divisor of your two primes from the previous
exercises.

Find two integers that make a “linear combination” of your two primes equal to 1.
Include a verification of your result.

Determine a factorization into powers of primes for ¢ = 4598 037 234.

Write a compute cell that defines the same value of ¢ again, and then defines a candidate
divisor of ¢ named d. The third line of the cell should return True if and only if d is
a divisor of c. Hlustrate the use of your cell by testing your code with d = 7 and in a
new copy of the cell, testing your code with d = 11.



Groups

We begin our study of algebraic structures by investigating sets associated with single
operations that satisfy certain reasonable axioms; that is, we want to define an operation
on a set in a way that will generalize such familiar structures as the integers Z together
with the single operation of addition, or invertible 2 x 2 matrices together with the single
operation of matrix multiplication. The integers and the 2 x 2 matrices, together with their
respective single operations, are examples of algebraic structures known as groups.

The theory of groups occupies a central position in mathematics. Modern group theory
arose from an attempt to find the roots of a polynomial in terms of its coefficients. Groups
now play a central role in such areas as coding theory, counting, and the study of symmetries;
many areas of biology, chemistry, and physics have benefited from group theory.

3.1 Integer Equivalence Classes and Symmetries

Let us now investigate some mathematical structures that can be viewed as sets with single
operations.

The Integers mod n

The integers mod n have become indispensable in the theory and applications of algebra.
In mathematics they are used in cryptography, coding theory, and the detection of errors
in identification codes.

We have already seen that two integers a and b are equivalent mod n if n divides a — b.
The integers mod n also partition Z into n different equivalence classes; we will denote the set
of these equivalence classes by Z,. Consider the integers modulo 12 and the corresponding
partition of the integers:

[0]
1] =

{...,-12,0,12,24,...},
{...,=11,1,13,25,...},
1] ={...,-1,11,23,35,...}.
When no confusion can arise, we will use 0,1,...,11 to indicate the equivalence classes

[0],[1],...,[11] respectively. We can do arithmetic on Z,,. For two integers a and b, define
addition modulo n to be (a 4+ b) (mod n); that is, the remainder when a + b is divided by

37
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n. Similarly, multiplication modulo n is defined as (ab) (mod n), the remainder when ab is
divided by n.

Example 3.1 The following examples illustrate integer arithmetic modulo n:

7+4=1 (mod5) 7-3=1 (mod 5)
3+45=0 (mod 8) 3:5=7 (mod 8)
3+4=7 (mod 12) 3-4=0 (mod 12).

In particular, notice that it is possible that the product of two nonzero numbers modulo n
can be equivalent to 0 modulo n. U

Example 3.2 Most, but not all, of the usual laws of arithmetic hold for addition and
multiplication in Z,,. For instance, it is not necessarily true that there is a multiplicative
inverse. Consider the multiplication table for Zg in Figure 3.3. Notice that 2, 4, and 6 do
not have multiplicative inverses; that is, for n = 2, 4, or 6, there is no integer k such that
kn =1 (mod 8).

N O O W N = O

O O O O O O O OO
N O U W N O
DN OO RN O
TN N == O W oW
= O b= O = O = Oi-
W O =N Ot OOt
N = OO O N O OO
= N Wk O N O

Figure 3.3 Multiplication table for Zg
O

Proposition 3.4 Let Z,, be the set of equivalence classes of the integers mod n and a,b, c €
/e

1. Addition and multiplication are commutative:

a+b=b+a (modn)
ab=ba (mod n).

2. Addition and multiplication are associative:

(a+b)+c=a+(b+c) (modn)
(ab)c = a(bc) (mod n).

3. There are both additive and multiplicative identities:

a+0=a (mod n)

a-1=a (modn).

4. Multiplication distributes over addition:

a(b+c) =ab+ac (mod n).
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5. For every integer a there is an additive inverse —a:

a+(—a)=0 (mod n).

6. Leta be a nonzero integer. Then ged(a,n) = 1 if and only if there exists a multiplicative
inverse b for a (mod n); that is, a nonzero integer b such that

ab=1 (mod n).
ProOF. We will prove (1) and (6) and leave the remaining properties to be proven in the
exercises.

(1) Addition and multiplication are commutative modulo n since the remainder of a + b
divided by n is the same as the remainder of b + a divided by n.

(6) Suppose that gcd(a,n) = 1. Then there exist integers r and s such that ar +ns = 1.
Since ns = 1 — ar, it must be the case that ar = 1 (mod n). Letting b be the equivalence
class of r, ab=1 (mod n).

Conversely, suppose that there exists an integer b such that ab = 1 (mod n). Then n
divides ab — 1, so there is an integer k such that ab — nk = 1. Let d = ged(a,n). Since d
divides ab — nk, d must also divide 1; hence, d = 1. |
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Symmetries

A B tdentity 4 B
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D C D C
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rotation
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horizontal axis
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Figure 3.5 Rigid motions of a rectangle

A symmetry of a geometric figure is a rearrangement of the figure preserving the
arrangement of its sides and vertices as well as its distances and angles. A map from the
plane to itself preserving the symmetry of an object is called a rigid motion. For example,
if we look at the rectangle in Figure 3.5, it is easy to see that a rotation of 180° or 360°
returns a rectangle in the plane with the same orientation as the original rectangle and the
same relationship among the vertices. A reflection of the rectangle across either the vertical
axis or the horizontal axis can also be seen to be a symmetry. However, a 90° rotation in
either direction cannot be a symmetry unless the rectangle is a square.
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Let us find the symmetries of the equilateral triangle AABC. To find a symmetry of
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ANABC, we must first examine the permutations of the vertices A, B, and C and then ask
if a permutation extends to a symmetry of the triangle. Recall that a permutation of a
set S is a one-to-one and onto map 7 : S — S. The three vertices have 3! = 6 permutations,
so the triangle has at most six symmetries. To see that there are six permutations, observe
there are three different possibilities for the first vertex, and two for the second, and the
remaining vertex is determined by the placement of the first two. So we have 3-2-1=3! =6
different arrangements. To denote the permutation of the vertices of an equilateral triangle
that sends A to B, B to C, and C to A, we write the array

A B C
(3o %)
Notice that this particular permutation corresponds to the rigid motion of rotating the
triangle by 120° in a clockwise direction. In fact, every permutation gives rise to a symmetry
of the triangle. All of these symmetries are shown in Figure 3.6.

A natural question to ask is what happens if one motion of the triangle AABC is
followed by another. Which symmetry is pip1; that is, what happens when we do the
permutation p; and then the permutation p1? Remember that we are composing functions
here. Although we usually multiply left to right, we compose functions right to left. We have

=
—
=
Sy
I
=
[
s
=
Sy
I
=
a8
I
W

This is the same symmetry as ps. Suppose we do these motions in the opposite order,
p1 then py. It is easy to determine that this is the same as the symmetry ps; hence,
p1p1 # p1p1. A multiplication table for the symmetries of an equilateral triangle AABC is
given in Figure 3.7.

Notice that in the multiplication table for the symmetries of an equilateral triangle, for
every motion of the triangle « there is another motion § such that af = id; that is, for
every motion there is another motion that takes the triangle back to its original orientation.

o |id p1 p2 1 p2 p3
id|id p1 p2 w1 p2 w3
pr|pr op2 id pz opr o p2
p2 | p2 id p1 op2 pz om
pu| o g2 opg idoproope
po | p2 p3 1o op2 id p
M3 | 13 1 g2 op1 op2 id

Figure 3.7 Symmetries of an equilateral triangle

3.2 Definitions and Examples

The integers mod n and the symmetries of a triangle or a rectangle are examples of groups.
A binary operation or law of composition on a set G is a function G x G — G that
assigns to each pair (a,b) € G x G a unique element aob, or ab in G, called the composition
of a and b. A group (G, o) is a set G together with a law of composition (a,b) — aob that
satisfies the following axioms.
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e The law of composition is associative. That is,
(aob)oc=ao(boc)
for a,b,c € G.

e There exists an element ¢ € G, called the identity element, such that for any element
aedG

eoa=aoce=a.

« For each element a € G, there exists an inverse element in G, denoted by a~!, such
that

A group G with the property that a o b = boa for all a,b € G is called abelian or
commutative. Groups not satisfying this property are said to be nonabelian or non-
commutative.

Example 3.8 The integers Z = {...,—1,0,1,2,...} form a group under the operation of
addition. The binary operation on two integers m,n € Z is just their sum. Since the integers
under addition already have a well-established notation, we will use the operator + instead
of o; that is, we shall write m + n instead of m on. The identity is 0, and the inverse of
n € Z is written as —n instead of n~!. Notice that the set of integers under addition have
the additional property that m 4+ n = n + m and therefore form an abelian group. O

Most of the time we will write ab instead of a o b; however, if the group already has a
natural operation such as addition in the integers, we will use that operation. That is, if
we are adding two integers, we still write m + n, —n for the inverse, and 0 for the identity
as usual. We also write m — n instead of m + (—n).

It is often convenient to describe a group in terms of an addition or multiplication table.
Such a table is called a Cayley table.

Example 3.9 The integers mod n form a group under addition modulo n. Consider Zs,
consisting of the equivalence classes of the integers 0, 1, 2, 3, and 4. We define the group
operation on Zs by modular addition. We write the binary operation on the group additively;
that is, we write m + n. The element 0 is the identity of the group and each element in Zg
has an inverse. For instance, 24+ 3 = 3 + 2 = 0. Figure 3.10 is a Cayley table for Zs. By
Proposition 3.4, Z, = {0,1,...,n — 1} is a group under the binary operation of addition
mod n.

B~ w N O+
B ow o = oo
O B W N
— O kW NN
N O~ O R W w
W N = O

Figure 3.10 Cayley table for (Zs,+)
([

Example 3.11 Not every set with a binary operation is a group. For example, if we let
modular multiplication be the binary operation on Z,, then Z, fails to be a group. The
element 1 acts as a group identity since 1 -k = k-1 = k for any k € Z,; however, a
multiplicative inverse for 0 does not exist since 0-k = k-0 = 0 for every k in Z,. Even if
we consider the set Z,, \ {0}, we still may not have a group. For instance, let 2 € Zg. Then
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2 has no multiplicative inverse since

2=2 5-2=4.

By Proposition 3.4, every nonzero k£ does have an inverse in Z, if k is relatively prime to
n. Denote the set of all such nonzero elements in Z,, by U(n). Then U(n) is a group called
the group of units of Z,,. Figure 3.12 is a Cayley table for the group U(8).

1 3 5 7
111 3 5 7
313 1 75
55 7 1 3
7|7 5 3 1
Figure 3.12 Multiplication table for U(8)

O

Example 3.13 The symmetries of an equilateral triangle described in Section 3.1 form
a nonabelian group. As we observed, it is not necessarily true that af = fa for two
symmetries « and (. Using Figure 3.7, which is a Cayley table for this group, we can easily
check that the symmetries of an equilateral triangle are indeed a group. We will denote this
group by either S3 or Ds, for reasons that will be explained later. O

Example 3.14 We use My (R) to denote the set of all 2 x 2 matrices. Let GL2(R) be the
subset of My(R) consisting of invertible matrices; that is, a matrix

a b
A pu—
(¢ 2
is in GLy(R) if there exists a matrix A~! such that AA~! = A='A = I, where I is the 2 x 2
identity matrix. For A to have an inverse is equivalent to requiring that the determinant of

A be nonzero; that is, det A = ad — bec # 0. The set of invertible matrices forms a group
called the general linear group. The identity of the group is the identity matrix

)

ad —bc \—c a
The product of two invertible matrices is again invertible. Matrix multiplication is associa-

tive, satisfying the other group axiom. For matrices it is not true in general that AB = BA;
hence, GL2(R) is another example of a nonabelian group. O

Example 3.15 Let
1 10 j 0 1
0 1 -1 0

The inverse of A € GLy(R) is
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0 ¢ ¢ 0
J = K= )
G4 =G5
where i = —1. Then the relations I? = J? = K? = -1, IJ = K, JK = I, KI = J,

JI = —K, KJ = —I, and IK = —J hold. The set Qs = {£1,+[,+J,+K} is a group
called the quaternion group. Notice that (Jg is noncommutative. [l

Example 3.16 Let C* be the set of nonzero complex numbers. Under the operation of
multiplication C* forms a group. The identity is 1. If 2z = a + bi is a nonzero complex
number, then

. a—bi
 a? + b2
is the inverse of z. It is easy to see that the remaining group axioms hold. (]

A group is finite, or has finite order, if it contains a finite number of elements; oth-
erwise, the group is said to be infinite or to have infinite order. The order of a finite
group is the number of elements that it contains. If G is a group containing n elements,
we write |G| = n. The group Zs is a finite group of order 5; the integers Z form an infinite
group under addition, and we sometimes write |Z| = oo.

Basic Properties of Groups

Proposition 3.17 The identity element in a group G is unique; that is, there exists only
one element e € G such that eg = ge = g for all g € G.
PROOF. Suppose that e and e’ are both identities in G. Then eg = ge = gand €'g = ge’ = g
for all ¢ € G. We need to show that e = ¢’. If we think of e as the identity, then ee’ = ¢’;
but if €’ is the identity, then ee’ = e. Combining these two equations, we have e = ee’ = ¢’.
|
Inverses in a group are also unique. If ¢’ and ¢” are both inverses of an element g
in a group G, then g¢' = ¢'g = e and g¢” = ¢’g = e. We want to show that ¢’ = ¢”,
but ¢ = ¢g'e = ¢'(99") = (¢'9)g"” = eg” = ¢g’. We summarize this fact in the following
proposition.

Proposition 3.18 If g is any element in a group G, then the inverse of g, denoted by g~ !,

18 unique.

Proposition 3.19 Let G be a group. If a,b € G, then (ab)™! =b"ta"1.

PRrROOF. Let a,b € G. Then abb~la™! = aea™! = aa~! = e. Similarly, b='a"'ab = e. But
by the previous proposition, inverses are unique; hence, (ab)™' = b~1a71. |
Proposition 3.20 Let G be a group. For any a € G, (a™")™! = a.

PROOF. Observe that a=!(a=!)~! = e. Consequently, multiplying both sides of this equa-
tion by a, we have

(aHt=elaH T =aa(a ) =ae=a.

[ |

It makes sense to write equations with group elements and group operations. If a and b

are two elements in a group G, does there exist an element = € G such that ax = b? If such

an z does exist, is it unique? The following proposition answers both of these questions
positively.

Proposition 3.21 Let G be a group and a and b be any two elements in G. Then the
equations ax = b and ra = b have unique solutions in G.
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PROOF. Suppose that ax = b. We must show that such an x exists. We can multiply both
sides of ax = b by a™! to find x = ex = atax = a~'b.

To show uniqueness, suppose that x; and xo are both solutions of ax = b; then ax; =
b= axs. So x1 = a tar; = a laxs = x9. The proof for the existence and uniqueness of
the solution of xa = b is similar. |
Proposition 3.22 If G is a group and a,b,c € G, then ba = ca implies b = ¢ and ab = ac
implies b = c.

This proposition tells us that the right and left cancellation laws are true in groups.
We leave the proof as an exercise.

We can use exponential notation for groups just as we do in ordinary algebra. If G is a
group and g € G, then we define ¢° = e. For n € N, we define

9"=9-9-9

n times

and

n times

Theorem 3.23 In a group, the usual laws of exponents hold; that is, for all g,h € G,
1. g™g"™ = g™ for all m,n € Z;
2. (g™)" = g™ for all m,n € Z;

3. (gh)" = (h"tg=1)™™" for all n € Z. Furthermore, if G is abelian, then (gh)™ = g"h™.

We will leave the proof of this theorem as an exercise. Notice that (gh)™ # ¢"h"™ in
general, since the group may not be abelian. If the group is Z or Z,, we write the group
operation additively and the exponential operation multiplicatively; that is, we write ng
instead of g". The laws of exponents now become

1. mg+ng = (m+n)g for all m,n € Z;
2. m(ng) = (mn)g for all m,n € Z;
3. m(g + h) = mg + mh for all n € Z.

It is important to realize that the last statement can be made only because Z and Z,
are commutative groups.

[ | Historical Note [ |

Although the first clear axiomatic definition of a group was not given until the late 1800s,
group-theoretic methods had been employed before this time in the development of many
areas of mathematics, including geometry and the theory of algebraic equations.
Joseph-Louis Lagrange used group-theoretic methods in a 1770-1771 memoir to study meth-
ods of solving polynomial equations. Later, Evariste Galois (1811-1832) succeeded in devel-
oping the mathematics necessary to determine exactly which polynomial equations could be
solved in terms of the coefficients of the polynomial. Galois’ primary tool was group theory.
The study of geometry was revolutionized in 1872 when Felix Klein proposed that geo-
metric spaces should be studied by examining those properties that are invariant under
a transformation of the space. Sophus Lie, a contemporary of Klein, used group theory
to study solutions of partial differential equations. One of the first modern treatments of
group theory appeared in William Burnside’s The Theory of Groups of Finite Order [1],
first published in 1897.
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3.3 Subgroups

Definitions and Examples

Sometimes we wish to investigate smaller groups sitting inside a larger group. The set of
even integers 27 = {...,—2,0,2,4,...} is a group under the operation of addition. This
smaller group sits naturally inside of the group of integers under addition. We define a
subgroup H of a group G to be a subset H of GG such that when the group operation of
G is restricted to H, H is a group in its own right. Observe that every group G with at
least two elements will always have at least two subgroups, the subgroup consisting of the
identity element alone and the entire group itself. The subgroup H = {e} of a group G is
called the trivial subgroup. A subgroup that is a proper subset of G is called a proper
subgroup. In many of the examples that we have investigated up to this point, there exist
other subgroups besides the trivial and improper subgroups.

Example 3.24 Consider the set of nonzero real numbers, R*, with the group operation of
multiplication. The identity of this group is 1 and the inverse of any element a € R* is just
1/a. We will show that

Q* = {p/q : pand g are nonzero integers}

is a subgroup of R*. The identity of R* is 1; however, 1 = 1/1 is the quotient of two nonzero
integers. Hence, the identity of R* is in Q*. Given two elements in Q*, say p/q and /s,
their product pr/gs is also in Q*. The inverse of any element p/q € Q* is again in Q* since
(p/q)~! = q/p. Since multiplication in R* is associative, multiplication in Q* is associative.

O

Example 3.25 Recall that C* is the multiplicative group of nonzero complex numbers. Let
H ={1,-1,i,—i}. Then H is a subgroup of C*. It is quite easy to verify that H is a group
under multiplication and that H C C*. ([

Example 3.26 Let SL2(R) be the subset of GL2(R) consisting of matrices of determinant

one; that iS, a matrix
l <(1 b)
c d

is in SL2(R) exactly when ad — be = 1. To show that SLy(R) is a subgroup of the general
linear group, we must show that it is a group under matrix multiplication. The 2 x 2 identity
matrix is in SLy(R), as is the inverse of the matrix A:

At = d —b .
—c a
It remains to show that multiplication is closed; that is, that the product of two matrices

of determinant one also has determinant one. We will leave this task as an exercise. The
group SLy(R) is called the special linear group. [l

Example 3.27 It is important to realize that a subset H of a group G can be a group
without being a subgroup of G. For H to be a subgroup of G, it must inherit the binary
operation of G. The set of all 2 x 2 matrices, My(R), forms a group under the operation of
addition. The 2 x 2 general linear group is a subset of My(R) and is a group under matrix
multiplication, but it is not a subgroup of M (R). If we add two invertible matrices, we do
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not necessarily obtain another invertible matrix. Observe that

b0 %)=

but the zero matrix is not in GL2(R). O

Example 3.28 One way of telling whether or not two groups are the same is by examining
their subgroups. Other than the trivial subgroup and the group itself, the group Z4 has
a single subgroup consisting of the elements 0 and 2. From the group Zs, we can form
another group of four elements as follows. As a set this group is Zs X Zo. We perform the
group operation coordinatewise; that is, (a,b) + (¢,d) = (a + ¢,b + d). Figure 3.29 is an
addition table for Zs X Zso. Since there are three nontrivial proper subgroups of Zo X Zs,
H, ={(0,0),(0,1)}, H, = {(0,0),(1,0)}, and Hs = {(0,0),(1,1)}, Z4 and Zy X Zs must be
different groups.

~—~~ |

_ =0 OO
— O Rk OO

~— — — — |~ —

Figure 3.29 Addition table for Zs x Zs

Some Subgroup Theorems

Let us examine some criteria for determining exactly when a subset of a group is a subgroup.

Proposition 3.30 A subset H of G is a subgroup if and only if it satisfies the following
conditions.

1. The identity e of G is in H.
2. If hi,ho € H, then hihs € H.

3. Ifhe€ H, then h~' € H.
PRrROOF. First suppose that H is a subgroup of G. We must show that the three conditions
hold. Since H is a group, it must have an identity e. We must show that ey = e, where e is
the identity of G. We know that egey = ey and that eey = ege = ey; hence, eeg = egey.
By right-hand cancellation, e = eg. The second condition holds since a subgroup H is a
group. To prove the third condition, let h € H. Since H is a group, there is an element
h' € H such that hh/ = h'h = e. By the uniqueness of the inverse in G, b’ = h~ L.

Conversely, if the three conditions hold, we must show that H is a group under the same
operation as (G; however, these conditions plus the associativity of the binary operation are
exactly the axioms stated in the definition of a group. |

Proposition 3.31 Let H be a subset of a group G. Then H is a subgroup of G if and only
if H # (), and whenever g,h € H then gh™! is in H.
PRrROOF. First assume that H is a subgroup of G. We wish to show that gh~! € H whenever
g and h are in H. Since h is in H, its inverse h~! must also be in H. Because of the closure
of the group operation, gh~! € H.

Conversely, suppose that H C G such that H # () and gh~' € H whenever g,h € H. If
g€ H,then gg~' =eisin H. If g€ H, then eg~! = ¢! is also in H. Now let hi,hy € H.
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We must show that their product is also in H. However, hl(hQ_I)*1 = hiho € H. Hence, H
is a subgroup of G. |

3.4 Reading Questions

In the group Zg compute, (a) 6 + 7, and (b) 271

In the group U(16) compute, (a) 5- 7, and (b) 371

State the definition of a group.

Explain a single method that will decide if a subset of a group is itself a subgroup.

Explain the origin of the term “abelian” for a commutative group.

A o A A

Give an example of a group you have seen in your previous mathematical experience,
but that is not an example in this chapter.

3.5 Exercises

1. Find all z € Z satisfying each of the following equations.

(a) 3z =2 (mod 7) (d) 92 =3 (mod 5)
(b) 52+ 1 =13 (mod 23) (e) bz =1 (mod 6)
(¢) bz +1=13 (mod 26) (f) 3z =1 (mod 6)

2. Which of the following multiplication tables defined on the set G = {a, b, c,d} form a
group? Support your answer in each case.

(a) (c)

ola b ¢ d ola b ¢ d
ala ¢ d a ala b ¢ d
blb b ¢ d blb ¢ d a
cle d a b cle d a b
dld a b ¢ dld a b ¢
(b) (d)
ola b ¢ d ola b ¢ d
ala b ¢ d ala b ¢ d
blb a d c blb a ¢ d
cle d a b cle b a d
dld ¢ b a dld d b c

3. Write out Cayley tables for groups formed by the symmetries of a rectangle and for
(Z4,+). How many elements are in each group? Are the groups the same? Why or
why not?

4. Describe the symmetries of a rhombus and prove that the set of symmetries forms a
group. Give Cayley tables for both the symmetries of a rectangle and the symmetries
of a rhombus. Are the symmetries of a rectangle and those of a thombus the same?

5. Describe the symmetries of a square and prove that the set of symmetries is a group.
Give a Cayley table for the symmetries. How many ways can the vertices of a square be
permuted? Is each permutation necessarily a symmetry of the square? The symmetry
group of the square is denoted by Djy.

6. Give a multiplication table for the group U(12).
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7.

10.

11.

12.

13.
14.

15.
16.
17.

18.
19.

20.

21.

22.

23.

Let S =R\ {—1} and define a binary operation on S by a *b = a+ b+ ab. Prove that
(S, %) is an abelian group.

Give an example of two elements A and B in GL2(R) with AB # BA.

Prove that the product of two matrices in SLy(R) has determinant one.

Prove that the set of matrices of the form
1 =z y
01 =z
0 0 1

is a group under matrix multiplication. This group, known as the Heisenberg group,
is important in quantum physics. Matrix multiplication in the Heisenberg group is
defined by

1 242 y+y +az
=10 1 z+ 2
0 0 1

y/

Z/

1
Prove that det(AB) = det(A)det(B) in GLy(R). Use this result to show that the
binary operation in the group GL2(R) is closed; that is, if A and B are in GLa(R),
then AB € GL2(R).

Let Z% = {(a1, a2, ...,ay) : a; € Zo}. Define a binary operation on Z% by

1 =z 1 2
0 1 0 1
0 0 0 O

— N

(al,ag,...,an)—i—(bl,bg,...,bn) = (al—l—bl,ag—{—bg,...,an—i—bn).

Prove that Z% is a group under this operation. This group is important in algebraic
coding theory.

Show that R* =R\ {0} is a group under the operation of multiplication.

Given the groups R* and Z, let G = R* x Z. Define a binary operation o on G by
(a,m) o (b,n) = (ab,m + n). Show that G is a group under this operation.

Prove or disprove that every group containing six elements is abelian.
Give a specific example of some group G and elements g, h € G where (gh)™ # ¢g"h™.

Give an example of three different groups with eight elements. Why are the groups
different?
Show that there are n! permutations of a set containing n items.

Show that
0+a=a+0=a (modn)
for all a € Z,.

Prove that there is a multiplicative identity for the integers modulo n:

a-1=a (mod n).

For each a € Z, find an element b € Z,, such that

a+b=b+a=0 (modn).
Show that addition and multiplication mod n are well defined operations. That is,

show that the operations do not depend on the choice of the representative from the
equivalence classes mod n.

Show that addition and multiplication mod n are associative operations.
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24.

25.
26.

27.
28.

29.
30.

31.
32.

33.

34.

35.
36.

37.
38.

39.
40.

41.

42.

43.

44.
45.

Show that multiplication distributes over addition modulo n:

a(b+c) =ab+ac (mod n).
Let a and b be elements in a group G. Prove that ab"a~! = (aba=')" for n € Z.

Let U(n) be the group of units in Z,,. If n > 2, prove that there is an element k € U(n)
such that k2 =1 and k # 1.

Prove that the inverse of g1g92 - - - gy is gglggil - -gl_l.

Prove the remainder of Proposition 3.21: if GG is a group and a,b € G, then the equation
xa = b has a unique solution in G.

Prove Theorem 3.23.
Prove the right and left cancellation laws for a group Gj; that is, show that in the group
G, ba = ca implies b = ¢ and ab = ac implies b = ¢ for elements a, b, c € G.

Show that if a? = e for all elements a in a group G, then G must be abelian.

Show that if G is a finite group of even order, then there is an a € G such that a is
not the identity and a® = e.

Let G be a group and suppose that (ab)? = a?b? for all a and b in G. Prove that G is
an abelian group.

Find all the subgroups of Zs x Z3. Use this information to show that Zg x Z3 is not the
same group as Zg. (See Example 3.28 for a short description of the product of groups.)

Find all the subgroups of the symmetry group of an equilateral triangle.
Compute the subgroups of the symmetry group of a square.
Let H = {2¥ : k € Z}. Show that H is a subgroup of Q*.

Let n =0,1,2,... and nZ = {nk : k € Z}. Prove that nZ is a subgroup of Z. Show
that these subgroups are the only subgroups of Z.

Let T = {z € C* : |z|] = 1}. Prove that T is a subgroup of C*.

Let G consist of the 2 x 2 matrices of the form
cos —sinf
sinf cosf )’
where 6 € R. Prove that G is a subgroup of SLa(R).
Prove that

G ={a+bV2:a,bc Qand a and b are not both zero}

is a subgroup of R* under the group operation of multiplication.

Let G be the group of 2 x 2 matrices under addition and

m={(z 2) oo}

Prove that H is a subgroup of G.

Prove or disprove: SLa(Z), the set of 2x2 matrices with integer entries and determinant
one, is a subgroup of SLa(R).

List the subgroups of the quaternion group, @s.

Prove that the intersection of two subgroups of a group G is also a subgroup of G.
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46.

47.

48.

49.
50.
51.
52.
53.

54.

Prove or disprove: If H and K are subgroups of a group G, then H U K is a subgroup
of G.

Prove or disprove: If H and K are subgroups of a group G, then HK = {hk : h €
H and k € K} is a subgroup of G. What if G is abelian?

Let G be a group and g € G. Show that
Z(G)={r € G:gr=uxzgforall g€ G}

is a subgroup of GG. This subgroup is called the center of G.

Let a and b be elements of a group G. If a*b = ba and a® = e, prove that ab = ba.
Give an example of an infinite group in which every nontrivial subgroup is infinite.
If vy = 2~ 'y~ ! for all # and y in G, prove that G must be abelian.

Prove or disprove: Every proper subgroup of a nonabelian group is nonabelian.
Let H be a subgroup of G and

C(H)={9€ G:gh=hgforall he H}.

Prove C(H) is a subgroup of G. This subgroup is called the centralizer of H in G.

Let H be a subgroup of G. If g € G, show that gHg™! = {ghg~! : h € H} is also a
subgroup of G.

3.6 Additional Exercises: Detecting Errors

1.

UPC Symbols. Universal Product Code (UPC) symbols are found on most prod-
ucts in grocery and retail stores. The UPC symbol is a 12-digit code identifying the
manufacturer of a product and the product itself (Figure 3.32). The first 11 digits
contain information about the product; the twelfth digit is used for error detection. If
dyds - - - dyo is a valid UPC number, then

3:-di+1-do+3-dg+---+3-di1+1-di2=0 (mod 10).
(a) Show that the uPC number 0-50000-30042-6, which appears in Figure 3.32, is a
valid UPC number.
(b) Show that the number 0-50000-30043-6 is not a valid UPC number.
(c) Write a formula to calculate the check digit, dj2, in the UPC number.

(d) The uPC error detection scheme can detect most transposition errors; that is, it
can determine if two digits have been interchanged. Show that the transposition
error 0-05000-30042-6 is not detected. Find a transposition error that is detected.
Can you find a general rule for the types of transposition errors that can be
detected?

(e) Write a program that will determine whether or not a UPC number is valid.
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0 50000 " 30042 6

Figure 3.32 A UPC code

2. It is often useful to use an inner product notation for this type of error detection
scheme; hence, we will use the notion

(di,da,...,dg) (w1, wa,...,wx) =0 (mod n)

to mean
dywy + dowg + -+ - + dwy, =0 (mod n).

Suppose that (di,dg,...,dg) - (w1, wa,...,w;) = 0 (mod n) is an error detection
scheme for the k-digit identification number dids - - - di, where 0 < d; < n. Prove that
all single-digit errors are detected if and only if ged(w;,n) =1 for 1 <i < k.

3. Let (dy,da,...,dg) (w1,ws,...,wg) =0 (mod n) be an error detection scheme for the
k-digit identification number dyds - - - di, where 0 < d; < n. Prove that all transposition
errors of two digits d; and d; are detected if and only if ged(w; — w;,n) =1 for i and
j between 1 and k.

4. ISBN Codes. Every book has an International Standard Book Number (ISBN) code.
This is a 10-digit code indicating the book’s publisher and title. The tenth digit is a
check digit satisfying

(dl,dg, ce ,dlo) . (10,9,. cey 1) =0 (mod 11).

One problem is that djgp might have to be a 10 to make the inner product zero; in this
case, 11 digits would be needed to make this scheme work. Therefore, the character X
is used for the eleventh digit. So 1SBN 3-540-96035-X is a valid ISBN code.

(a) Is 1SBN 0-534-91500-0 a valid 1SBN code? What about 1SBN 0-534-91700-0 and
ISBN 0-534-19500-07

(b) Does this method detect all single-digit errors? What about all transposition
errors?

(c) How many different 1SBN codes are there?

(d) Write a computer program that will calculate the check digit for the first nine
digits of an ISBN code.

(e) A publisher has houses in Germany and the United States. Its German prefix is 3-
540. If its United States prefix will be 0-abc, find abc such that the rest of the 1ISBN
code will be the same for a book printed in Germany and in the United States.
Under the 1SBN coding method the first digit identifies the language; German is
3 and English is 0. The next group of numbers identifies the publisher, and the
last group identifies the specific book.
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3.8 Sage

Many of the groups discussed in this chapter are available for study in Sage. It is important
to understand that sets that form algebraic objects (groups in this chapter) are called
“parents” in Sage, and elements of these objects are called, well, “elements.” So every
element belongs to a parent (in other words, is contained in some set). We can ask about
properties of parents (finite? order? abelian?), and we can ask about properties of individual
elements (identity? inverse?). In the following we will show you how to create some of these
common groups and begin to explore their properties with Sage.

Integers mod n

28 = Integers(8)
Z8

Ring of integers modulo 8

z8.list ()

a = Z8.an_element(); a
0
a.parent()

Ring of integers modulo 8

We would like to work with elements of 7Z8. If you were to type a 6 into a compute cell
right now, what would you mean? The integer 6, the rational number %, the real number
6.00000, or the complex number 6.00000 + 0.00000¢? Or perhaps you really do want the
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integer 6 mod 87 Sage really has no idea what you mean or want. To make this clear, you
can “coerce” 6 into Z8 with the syntax Z8(6). Without this, Sage will treat a input number
like 6 as an integer, the simplest possible interpretation in some sense. Study the following
carefully, where we first work with “normal” integers and then with integers mod 8.

a =6

a

6
a.parent()

Integer Ring

b =7

c =a+b; c
13

d = 7Z8(6)

d

6

d.parent ()

Ring of integers modulo 8

e = Z28(7)

f = d+e; f

5

g = 7Z8(85); g
5

f==g
True

Z8 is a bit unusual as a first example, since it has two operations defined, both addition
and multiplication, with addition forming a group, and multiplication not forming a group.
Still, we can work with the additive portion, here forming the Cayley table for the addition.

78 .addition_table(names="'elements')
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2] 23456701
3] 34567012
4] 45670123
5/ 56701234
6| 6 7012345
7170123456

When n is a prime number, the multipicative structure (excluding zero), will also form
a group.

The integers mod n are very important, so Sage implements both addition and multi-
plication together. Groups of symmetries are a better example of how Sage implements
groups, since there is just one operation present.

Groups of symmetries

The symmetries of some geometric shapes are already defined in Sage, albeit with different
names. They are implemented as “permutation groups” which we will begin to study
carefully in Chapter 5.

Sage uses integers to label vertices, starting the count at 1, instead of letters. Elements
by default are printed using “cycle notation” which we will see described carefully in Chap-
ter 5. Here is an example, with both the mathematics and Sage. For the Sage part, we
create the group of symmetries and then create the symmetry po with coercion, followed
by outputting the element in cycle notation. Then we create just the bottom row of the
notation we are using for permutations.

(A B C\ (123
P2=\c 4 B) 3 1 2

triangle = SymmetricGroup (3)
rho2 = triangle([3,1,2])
rho2

(1,3,2)

[rho2(x) for x in triangle.domain()]

[3, 1, 2]

The final list comprehension deserves comment. The .domain() method gives a list
of the symbols used for the permutation group triangle and then rho2 is employed with
syntax like it is a function (it is a function) to create the images that would occupy the
bottom row.

With a double list comprehension we can list all six elements of the group in the “bottom
row” format. A good exercise would be to pair up each element with its name as given in
Figure 3.6.

[[a(x) for x in triangle.domain()] for a in triangle]

ccr, 2, 31, €3, 1, 21, C2, 3, 11, C1, 3, 21, [3, 2, 11, [2, 1, 311

Different books, different authors, different software all have different ideas about the
order in which to write multiplication of functions. This textbook builds on the idea of
composition of functions, so that fg is the composition (fg)(x) = f(g(x)) and it is natural
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to apply g first. Sage takes the opposite view and since we write fg, Sage will understand
that we want to do f first. Neither approach is wrong, and neither is necessarily superior,
they are just different and there are good arguments for either one. When you consult other
books that work with permutation groups, you want to first determine which approach it
takes. (Be aware that this discussion of Sage function composition is limited to permutations
only—“regular” functions in Sage compose in the order you might be familiar with from a
calculus course.)

The translation here between the text and Sage will be worthwhile practice. Here we
will reprise the discussion at the end of Section 3.1, but reverse the order on each product
to compute Sage-style and exactly mirror what the text does.

mul = triangle([1,3,2])
mu 2 triangle([3,2,11])
mu3 = triangle([2,1,3])
rhol = triangle([2,3,1]1)

product = rhol#*mul
product == mu2
True

[product(x) for x in triangle.domain()]

[3, 2, 11

rhol*mul == mul*rhol
False

mul*rhol == mu3

True

Now that we understand that Sage does multiplication in reverse, we can compute the
Cayley table for this group. Default behavior is to just name elements of a group as letters,
a, b, c,... in the same order that the .list() command would produce the elements of
the group. But you can also print the elements in the table as themselves (that uses cycle
notation here), or you can give the elements names. We will use u as shorthand for x and
r as shorthand for p.

triangle.cayley_table ()

triangle.cayley_table(names='elements')
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* O (2,3 (1,2) (1,2,3) (1,3,2) (1,3)
R

Ol O (2,3 0,2) (1,2,3) (1,3,2) (,3)
(2,31 (2,3) O 0,2,3) 0,2 (1,3 (1,3,2)
a,2yr .2 (1,3,2) O 0,3 (2,3 (1,2,3)
(1,2,3)] (1,2,3)  (1,3)  (2,3) (1,3,2) O (,2)
(1,3,2)] (1,3,2) (1,2) (1,3) O (1,2,3) (2,3
a,»1 a3 0,2,3) (1,3,2) (2,3 (1,2 O

id| id u3 r1 r2 ul u2
u3d| u3 id r2 r1 u2 ul
r1] r1 ul id u2 u3 r2
r2| r2 u2 u3 ul id ri
ul| ul r1 u2 id r2 us3
u2| u2 r2 ul u3 r1 id

You should verify that the table above is correct, just like Table 3.2 is correct. Remember
that the convention is to multiply a row label times a column label, in that order. However,
to do a check across the two tables, you will need to recall the difference in ordering between
your textbook and Sage.

Quaternions

Sage implements the quaternions, but the elements are not matrices, but rather are permu-
tations. Despite appearances the structure is identical. It should not matter which version
you have in mind (matrices or permutations) if you build the Cayley table and use the
default behavior of using letters to name the elements. As permutations, or as letters, can
you identify —1, I, J and K7

Q = QuaternionGroup ()
[[a(x) for x in Q.domain()] for a in Q]

cct, 2, 3, 4, 5, 6, 7, 81, [3, 4, 1, 2, 7, 8, 5, 61,
(4, 1, 2, 3, 8, 5, 6, 71, [2, 3, 4, 1, 6, 7, 8, 51,
[, 6, 5, 8, 1, 4, 3, 21, [5, 8, 7, 6, 3, 2, 1, 47,
(s, 7, 6, 5, 2, 1, 4, 31, [6, 5, 8, 7, 4, 3, 2, 1]1]

o e e
al abcdef gh
b|] bcdahefg
cl cdabghe f
dl d abcf ghe
el e fghcdahb
fl fghebocda
gl ghef abcd
hl he fgdabc
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It should be fairly obvious that a is the identity element of the group (1), either from
its behavior in the table, or from its “bottom row” representation as the first element of
the list above. And if you prefer, you can ask Sage for a list of its outputs when viewed as

a function.

id = Q.identity ()
[id(x) for x in Q.domain ()]

(v, 2, 3, 4, 5, 6, 7, 8]

Now —1 should have the property that —1-—1 = 1. We see that the identity element a
is on the diagonal of the Cayley table only when we compute cxc. We can verify this easily,
by extracting the third element of the column headings of the Cayley table. Now that we
have identified —1, once we locate I, we can easily compute —I, and so on.

minus_one = Q.cayley_table().column_keys()[2]
[minus_one(x) for x in Q.domain()]

[3, 4, 1, 2, 7, 8, 5, 6]

minus_one*minus_one == Q.identity()

True

See if you can pair up the letters with all eight elements of the quaternions. Be a bit
careful with your names, the symbol I is used by Sage for the imaginary number i = /—1
(which we will use below), but Sage will silently let you redefine it to be anything you like.
Same goes for using lower-case i in Sage. So call your elements of the quaternions something
like QI, QJ, QK to avoid confusion.

As we begin to work with groups it is instructive to work with the actual elements. But
many properties of groups are totally independent of the order we use for multiplication, or
the names or representations we use for the elements. Here are facts about the quaternions
we can compute without any knowledge of just how the elements are written or multiplied.

Q.is_finite ()

True

Q.order ()

Q.is_abelian()

False

Subgroups

The best techniques for creating subgroups will come in future chapters, but we can create
some groups that are naturally subgroups of other groups.

Elements of the quaternions were represented by certain permutations of the integers 1
through 8. We can also build the group of all permutations of these eight integers. It gets
pretty big, so do not list it unless you want a lot of output! (I dare you.)
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S8 = SymmetricGroup (8)
a = S8.random_element ()
[a(x) for x in S8.domain ()] # random

S8 .order ()

40320

The quaternions, Q, is a subgroup of the full group of all permutations, the symmetric
group Sg or S8, and Sage regards this as a property of Q.

Q.is_subgroup(S8)

True

In Sage the complex numbers are known by the name CC. We can create a list of the
elements in the subgroup described in Example 3.16. Then we can verify that this set is a
subgroup by examining the Cayley table, using multiplication as the operation.

H = [CC(1), CC(-1), CC(I), CC(-I)]
CC.multiplication_table(elements=H,
names=['1', '-1', 'i' ‘'-i'])

3.9 Sage Exercises

These exercises are about becoming comfortable working with groups in Sage. Sage work-
sheets have extensive capabilities for making new cells with carefully formatted text, include
support for IITEX syntax to express mathematics. So when a question asks for explanation
or commentary, make a new cell and communicate clearly with your audience.

1. Create the groups CyclicPermutationGroup(8) and DihedralGroup(4) and name these
groups C and D, respectively. We will understand these constructions better shortly,
but for now just understand that both objects you create are actually groups.

2. Check that C and D have the same size by using the .order() method. Determine
which group is abelian, and which is not, by using the .is_abelian() method.

3. Use the .cayley_table() method to create the Cayley table for each group.

4. Write a nicely formatted discussion identifying differences between the two groups that
are discernible in properties of their Cayley tables. In other words, what is different
about these two groups that you can “see” in the Cayley tables? (In the Sage notebook,
a Shift-click on a blue bar will bring up a mini-word-processor, and you can use use
dollar signs to embed mathematics formatted using TEX syntax.)

5. For C locate the one subgroup of order 4. The group D has three subgroups of order 4.
Select one of the three subgroups of D that has a different structure than the subgroup
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you obtained from C.

The .subgroups() method will give you a list of all of the subgroups to help you
get started. A Cayley table will help you tell the difference between the two subgroups.
What properties of these tables did you use to determine the difference in the structure
of the subgroups?

6. The .subgroup(elt_list) method of a group will create the smallest subgroup con-
taining the specified elements of the group, when given the elements as a list elt_list.
Use this command to discover the shortest list of elements necessary to recreate the
subgroups you found in the previous exercise. The equality comparison, ==, can be
used to test if two subgroups are equal.



4

Cyclic Groups

The groups Z and Z,,, which are among the most familiar and easily understood groups, are
both examples of what are called cyclic groups. In this chapter we will study the properties
of cyclic groups and cyclic subgroups, which play a fundamental part in the classification
of all abelian groups.

4.1 Cyclic Subgroups

Often a subgroup will depend entirely on a single element of the group; that is, knowing
that particular element will allow us to compute any other element in the subgroup.

Example 4.1 Suppose that we consider 3 € Z and look at all multiples (both positive and
negative) of 3. As a set, this is

3Z=1{...,-3,0,3,6,...}.

It is easy to see that 37Z is a subgroup of the integers. This subgroup is completely deter-
mined by the element 3 since we can obtain all of the other elements of the group by taking
multiples of 3. Every element in the subgroup is “generated” by 3. U

Example 4.2 If H = {2" : n € Z}, then H is a subgroup of the multiplicative group of
nonzero rational numbers, Q*. If @ = 2™ and b = 2" are in H, then ab~! = 2m2™" = 2m~"
is also in H. By Proposition 3.31, H is a subgroup of Q* determined by the element 2. [J

Theorem 4.3 Let G be a group and a be any element in G. Then the set
(a) ={d" : ke 7z}

is a subgroup of G. Furthermore, (a) is the smallest subgroup of G that contains a.

PROOF. The identity is in (a) since a” = e. If g and h are any two elements in (a), then
by the definition of (a) we can write g = a”* and h = a™ for some integers m and n. So
gh = a™a"™ = a™" is again in (a). Finally, if g = a™ in (a), then the inverse g—* ™ is
also in (a). Clearly, any subgroup H of G containing a must contain all the powers of a by

closure; hence, H contains (a). Therefore, (a) is the smallest subgroup of G containing a.
|

Remark 4.4 If we are using the “4” notation, as in the case of the integers under addition,
we write (a) = {na : n € Z}.

:ai

For a € G, we call (a) the cyclic subgroup generated by a. If G contains some element
a such that G = (a), then G is a cyclic group. In this case a is a generator of G. If a

62
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is an element of a group G, we define the order of a to be the smallest positive integer n
such that o™ = e, and we write |a| = n. If there is no such integer n, we say that the order
of a is infinite and write |a| = co to denote the order of a.

Example 4.5 Notice that a cyclic group can have more than a single generator. Both 1 and
5 generate Zg; hence, Zg is a cyclic group. Not every element in a cyclic group is necessarily
a generator of the group. The order of 2 € Zg is 3. The cyclic subgroup generated by 2 is
(2) ={0,2,4}. O
The groups Z and Z, are cyclic groups. The elements 1 and —1 are generators for Z.
We can certainly generate Z,, with 1 although there may be other generators of Z,, as in
the case of Zg.
Example 4.6 The group of units, U(9), in Zg is a cyclic group. As a set, U(9) is
{1,2,4,5,7,8}. The element 2 is a generator for U(9) since

ol =92 22 =4
23 =8 2t =7
2% =5 26 — 1.

O

Example 4.7 Not every group is a cyclic group. Consider the symmetry group of an
equilateral triangle S3. The multiplication table for this group is Figure 3.7. The subgroups
of S3 are shown in Figure 4.8. Notice that every subgroup is cyclic; however, no single
element generates the entire group.

TN

{id, p1, p2} {id, pa }  {id, p2} {id, ps}

\\{id }//

Figure 4.8 Subgroups of S3
O

Theorem 4.9 Every cyclic group is abelian.
PRrROOF. Let G be a cyclic group and a € G be a generator for G. If g and h are in G, then
they can be written as powers of a, say ¢ = a” and h = a®. Since

gh=a"a®*=a"** =a*"" =a’a" = hy,

G is abelian. [
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Subgroups of Cyclic Groups

We can ask some interesting questions about cyclic subgroups of a group and subgroups of
a cyclic group. If G is a group, which subgroups of G are cyclic? If G is a cyclic group,
what type of subgroups does G possess?

Theorem 4.10 Fvery subgroup of a cyclic group is cyclic.

PROOF. The main tools used in this proof are the division algorithm and the Principle of
Well-Ordering. Let G be a cyclic group generated by a and suppose that H is a subgroup
of G. If H = {e}, then trivially H is cyclic. Suppose that H contains some other element
g distinct from the identity. Then g can be written as a™ for some integer n. Since H is a

1 ™ must also be in H. Since either n or —n is positive, we can assume

subgroup, g7 = a~
that H contains positive powers of ¢ and n > 0. Let m be the smallest natural number
such that ¢™ € H. Such an m exists by the Principle of Well-Ordering.

We claim that h = a™ is a generator for H. We must show that every h' € H can be
written as a power of h. Since h' € H and H is a subgroup of G, b/ = a* for some integer
k. Using the division algorithm, we can find numbers ¢ and r such that k = mq + r where
0 < r < m; hence,

a¥ = @™t = (a™)%" = hia".

So a" = a*h79. Since a* and A7 are in H, a” must also be in H. However, m was the
smallest positive number such that o™ was in H; consequently, » = 0 and so k = mgq.

Therefore,
B =d* =a™ = ht

and H is generated by h. |
Corollary 4.11 The subgroups of Z are exactly nZ forn =0,1,2,....

Proposition 4.12 Let G be a cyclic group of order n and suppose that a is a generator for
G. Then a* = e if and only if n divides k.

PRrROOF. First suppose that a® = e. By the division algorithm, k = ng +r where 0 < r < n;
hence,

k aanrr

e=a" = =a"a" =ed" =d".

Since the smallest positive integer m such that a™ = e is n, r = 0.
Conversely, if n divides k, then k = ns for some integer s. Consequently,

Theorem 4.13 Let G be a cyclic group of order n and suppose that a € G is a generator
of the group. If b= a”, then the order of b is n/d, where d = ged(k,n).

PROOF. We wish to find the smallest integer m such that e = b™ = a*™. By Proposi-
tion 4.12, this is the smallest integer m such that n divides km or, equivalently, n/d divides
m(k/d). Since d is the greatest common divisor of n and k, n/d and k/d are relatively
prime. Hence, for n/d to divide m(k/d) it must divide m. The smallest such m is n/d. W

Corollary 4.14 The generators of Z,, are the integers r such that 1 <r < n and ged(r,n) =
1.

Example 4.15 Let us examine the group Zig. The numbers 1, 3, 5, 7, 9, 11, 13, and 15
are the elements of Zjg that are relatively prime to 16. Each of these elements generates
Z16. For example,

1-9=9 2:9=2 3:-9=11
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4.-9=4 5-9=13 6-9=6
7-9=15 8-9=28 9-9=1
10-9=10 11-9=3 12.9=12
13-9=5 14.9=14 15-9="17.

4.2 Multiplicative Group of Complex Numbers
The complex numbers are defined as

C={a+0bi:a,beR},

2:

where 7 —1. If z = a + bi, then a is the real part of z and b is the imaginary part of

z.
To add two complex numbers z = a + bi and w = ¢+ di, we just add the corresponding
real and imaginary parts:

z4+w=(a+bi)+ (c+di)=(a+c)+ (b+d)i.

Remembering that 2 = —1, we multiply complex numbers just like polynomials. The
product of z and w is

(a + bi)(c+ di) = ac + bdi® + adi + bei = (ac — bd) + (ad + be)i.

Every nonzero complex number z = a + bi has a multiplicative inverse; that is, there
exists a 271 € C* such that zz7! = 2712 = 1. If 2 = a + bi, then

RN

The complex conjugate of a complex number z = a + bi is defined to be Z = a — bi. The
absolute value or modulus of z = a + bi is |z| = Va? + b°.

Example 4.16 Let z =2+ 37 and w =1 — 2¢. Then

zhw=(2+30)+ (1 —2i) =3+

and
zw=(2431)(1 —2i) =8—1.
Also,
2 3
T3
2| = V13
zZ=2— 3.
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21 =243

23 = —3+ 2

02’2:1—2i

Figure 4.17 Rectangular coordinates of a complex number

There are several ways of graphically representing complex numbers. We can represent
a complex number z = a + bi as an ordered pair on the xy plane where a is the = (or real)
coordinate and b is the y (or imaginary) coordinate. This is called the rectangular or
Cartesian representation. The rectangular representations of 21 = 2+ 3¢, 290 = 1 — 24, and
z3 = —3 + 2¢ are depicted in Figure 4.17.

a -+ bi

Figure 4.18 Polar coordinates of a complex number

Nonzero complex numbers can also be represented using polar coordinates. To specify
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any nonzero point on the plane, it suffices to give an angle 8 from the positive x axis in the
counterclockwise direction and a distance r from the origin, as in Figure 4.18. We can see
that

z=a+bi=r(cosf +isinb).

Hence,
r=|z| = vVa%+ b2
and
a=rcosf
b=rsind.

We sometimes abbreviate r(cos + isin ) as rcisf. To assure that the representation of z
is well-defined, we also require that 0° < 6 < 360°. If the measurement is in radians, then
0<6<2m.

Example 4.19 Suppose that z = 2¢is60°. Then
a=2cos60° =1
and
b= 2sin60° = /3.

Hence, the rectangular representation is z = 1 + /3.
Conversely, if we are given a rectangular representation of a complex number, it is often
useful to know the number’s polar representation. If z = 3v/2 — 3v/24, then

r=+va2+b2=+36=6

and ;
0 = arctan (a) = arctan(—1) = 315°,

0 3v/2 — 3v/2i = 6 cis 315°. O

The polar representation of a complex number makes it easy to find products and powers
of complex numbers. The proof of the following proposition is straightforward and is left
as an exercise.

Proposition 4.20 Let z = rcisf and w = scis ¢ be two nonzero complexr numbers. Then

zw = rscis(f + ¢).
Example 4.21 If z = 3cis(7m/3) and w = 2cis(7/6), then zw = 6 cis(7/2) = 6i. O

Theorem 4.22 DeMoivre. Let z = rcisf be a nonzero complexr number. Then
[rcis )" = r" cis(nf)

?ggOF.l’\i;e' 'v&.z.ill use induction on n. For n = 1 the theorem is trivial. Assume that the
theorem is true for all k£ such that 1 < k < n. Then
2V =y
= r"(cosnf + isinnb)r(cosd + isinf)
= 7" [(cos nf cos § — sinnf sin O) + i(sin nd cos 6 4 cos nd sin 0)]

= " cos(nf + ) + isin(nd + 0)]
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= " cos(n + 1)0 + isin(n + 1)6).

[ |
Example 4.23 Suppose that z = 1+i and we wish to compute z'°. Rather than computing
(1 +4)'0 directly, it is much easier to switch to polar coordinates and calculate z'° using
DeMoivre’s Theorem:
210 = (1+ i)lo
10
= (\fZ cis (E>)
4
5
— (V2)Weis (2”)
T
s )
cis 5
= 32i.
O

The Circle Group and the Roots of Unity

The multiplicative group of the complex numbers, C*, possesses some interesting subgroups.
Whereas Q* and R* have no interesting subgroups of finite order, C* has many. We first

consider the circle group,
T={ze€C:|z|=1}.

The following proposition is a direct result of Proposition 4.20.

Proposition 4.24 The circle group is a subgroup of C*.

Although the circle group has infinite order, it has many interesting finite subgroups.
Suppose that H = {1,—1,4,—i}. Then H is a subgroup of the circle group. Also, 1, —1, 4,
and —i are exactly those complex numbers that satisfy the equation z* = 1. The complex
numbers satisfying the equation z" = 1 are called the nth roots of unity.

Theorem 4.25 If z" = 1, then the nth roots of unity are

. <2k:7r>
z=cis| — |,
n

where k = 0,1,...,n — 1. Furthermore, the nth roots of unity form a cyclic subgroup of T
of order n
ProoFr. By DeMoivre’s Theorem,

2k
2" = cis (nn7r> = cis(2km) = 1.

The 2’s are distinct since the numbers 2k7/n are all distinct and are greater than or equal
to 0 but less than 27. The fact that these are all of the roots of the equation z" = 1 follows
from from Corollary 17.9, which states that a polynomial of degree n can have at most n
roots. We will leave the proof that the nth roots of unity form a cyclic subgroup of T as an
exercise. |

A generator for the group of the nth roots of unity is called a primitive nth root of
unity.
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Example 4.26 The 8th roots of unity can be represented as eight equally spaced points on
the unit circle (Figure 4.27). The primitive 8th roots of unity are

Figure 4.27 8th roots of unity

4.3 The Method of Repeated Squares

Computing large powers can be very time-consuming. Just as anyone can compute 2% or

28 everyone knows how to compute
221,000,000

However, such numbers are so large that we do not want to attempt the calculations;
moreover, past a certain point the computations would not be feasible even if we had
every computer in the world at our disposal. Even writing down the decimal representation
of a very large number may not be reasonable. It could be thousands or even millions of
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digits long. However, if we could compute something like
237398332 (mod 46,389),

we could very easily write the result down since it would be a number between 0 and 46,388.
If we want to compute powers modulo n quickly and efficiently, we will have to be clever.®

The first thing to notice is that any number a can be written as the sum of distinct
powers of 2; that is, we can write

a:2k1—|—2k2+...+2k”’

where k1 < ko < -+ < ky. This is just the binary representation of a. For example, the
binary representation of 57 is 111001, since we can write 57 = 2 4 23 4+ 24 4 25,

The laws of exponents still work in Z,; that is, if b = a® (mod n) and ¢ = a¥ (mod n),
then bc = a®™¥ (mod n). We can compute a?* (mod n) in k multiplications by computing

a?’ (mod n)

a® (mod n)
21@
a®  (mod n).

Each step involves squaring the answer obtained in the previous step, dividing by n, and
taking the remainder.

Example 4.28 We will compute 27132 (mod 481). Notice that
321 =20 4+ 20 + 2%;
hence, computing 27132! (mod 481) is the same as computing
27124242 = 9712’ . 2712° . 271" (mod 481).
So it will suffice to compute 271% (mod 481) where i = 0,6, 8. It is very easy to see that
2712" = 73,441 =329 (mod 481).
We can square this result to obtain a value for 2712° (mod 481):
2717 = (2712")?  (mod 481)
= (329)? (mod 481)
= 108,241 (mod 481)
=16 (mod 481).
We are using the fact that (a?")? = a®?" = a2 (mod n). Continuing, we can calculate
271%° =419  (mod 481)

and .
271 =16 (mod 481).

Therefore,

271321 = 2712°+2°+2°  (;od 481)

The results in this section are needed only in Chapter 7
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=271 . 271%° . 271" (mod 481)
=271-419-16 (mod 481)

= 1,816,784 (mod 481)

=47 (mod 481).

O

The method of repeated squares will prove to be a very useful tool when we explore RSA

cryptography in Chapter 7. To encode and decode messages in a reasonable manner under
this scheme, it is necessary to be able to quickly compute large powers of integers mod n.

4.4 Reading Questions

What is the order of the element 3 in U(20)?
What is the order of the element 5 in U(23)?

Find three generators of Zg.

5th

Find three generators of the roots of unity.

ok Wb

Show how to compute 15%° (mod 23) efficiently by hand. Check your answer with
Sage.

4.5 Exercises

1. Prove or disprove each of the following statements.

(a) All of the generators of Zgy are prime.

(b) U(8) is cyclic.

(¢) Q is cyclic.

(d) If every proper subgroup of a group G is cyclic, then G is a cyclic group.

(e) A group with a finite number of subgroups is finite.

2. Find the order of each of the following elements.

(a) 5 € Zis (d) —1€C*
(b) V3eR () T2 € Zayo
(c) \/§ c R* (f) 312 € Zyn

3. List all of the elements in each of the following subgroups.

(a) The subgroup of Z generated by 7
(b) The subgroup of Zg4 generated by 15

(c¢) All subgroups of Zs

(e) All subgroups of Z3

)
)
)

(d) All subgroups of Zg
)

(f) All subgroups of Zyg
)

(g) The subgroup generated by 3 in U(20)
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© X x:

11.
12.

13.

14.

15.

16.

17.

(h) The subgroup generated by 5 in U(18)

(i) The subgroup of R* generated by 7

)
)
(j) The subgroup of C* generated by i where i2 = —1
(k) The subgroup of C* generated by 2i

)

(1) The subgroup of C* generated by (1 +1)/v/2

(m) The subgroup of C* generated by (1 + v/31)/2
Find the subgroups of GL2(R) generated by each of the following matrices.

@ (%) @ () @ (4 )

(b) <0 1/3> (@ <1 —1> (0) <\/§/2 1/2)
3 0 0 1 —1/2 /3/2
Find the order of every element in Z;s.
Find the order of every element in the symmetry group of the square, Dy.
What are all of the cyclic subgroups of the quaternion group, Qg?
List all of the cyclic subgroups of U(30).

List every generator of each subgroup of order 8 in Zs,.

. Find all elements of finite order in each of the following groups. Here the “x” indicates

the set with zero removed.
(a) Z (b) Q* (c) R
If a** = e in a group G, what are the possible orders of a?

Find a cyclic group with exactly one generator. Can you find cyclic groups with exactly
two generators? Four generators? How about n generators?

For n < 20, which groups U(n) are cyclic? Make a conjecture as to what is true in
general. Can you prove your conjecture?

Let
A= 01 and B = 0 -1
-1 0 1 -1
be elements in GL2(R). Show that A and B have finite orders but AB does not.

Evaluate each of the following.

(a) (3—2i)+ (5i —6) (d) (9—1)(9—1)

(b) (4 —5i) — (40 — 4) (e) i1

(c) (5b—4i)(7+ 29) (f) (1+4)+ (1+4)
Convert the following complex numbers to the form a + bi.

(a) 2cis(m/6) (c) 3cis(m)

(b) 5cis(9m/4) (d) cis(7w/4)/2
Change the following complex numbers to polar representation.

(a) 1—14 (c) 2421 (e) —3i

(b) =5 (d) V3+i (f) 2i+2V3
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18.

19.

20.

21.

22.

23.

24.
25.
26.
27.
28.
29.
30.

31.

32.

33.

34.

35.
36.
37.
38.

Calculate each of the following expressions.

(a) (1+4)7" (e) ((1—1)/2)*

(®) (- if () (—v2 = v2i)'2
(¢) (V3+14)
(d) (=i)" (g) (—2+2i)°

Prove each of the following statements.
(a) [z = 7| (d) |z +w| < [z] + [w]
(b) 2z = |2[? (e) |z —w| = |lz| = |w]|
(c) 2t =7/|2? () [zw| = |2]|w]

List and graph the 6th roots of unity. What are the generators of this group? What
are the primitive 6th roots of unity?

List and graph the 5th roots of unity. What are the generators of this group? What
are the primitive 5th roots of unity?

Calculate each of the following.
(a) 29231 (mod 582) (c) 207192 (mod 4724)

(b) 255734 (mod 5681) (d) 971%2! (mod 765)
Let a,b € G. Prove the following statements.

(a) The order of a is the same as the order of a ™!
(b) For all g € G, |a| = |g tagl|.

(¢) The order of ab is the same as the order of ba.
Let p and g be distinct primes. How many generators does Z,, have?
Let p be prime and r be a positive integer. How many generators does Z,- have?
Prove that Z, has no nontrivial subgroups if p is prime.
If g and h have orders 15 and 16 respectively in a group G, what is the order of (g)N(h)?
Let a be an element in a group G. What is a generator for the subgroup (a™) N (a")?
Prove that Z,, has an even number of generators for n > 2.
Suppose that G is a group and let a, b € G. Prove that if |a| = m and |b| = n with
ged(m,n) = 1, then (a) N (b) = {e}.
Let G be an abelian group. Show that the elements of finite order in G form a subgroup.
This subgroup is called the torsion subgroup of G.

Let G be a finite cyclic group of order n generated by z. Show that if y = x* where
ged(k,n) = 1, then y must be a generator of G.

If G is an abelian group that contains a pair of cyclic subgroups of order 2, show that
GG must contain a subgroup of order 4. Does this subgroup have to be cyclic?

Let G be an abelian group of order pg where ged(p,q) = 1. If G contains elements a
and b of order p and ¢ respectively, then show that G is cyclic.

Prove that the subgroups of Z are exactly nZ forn =0,1,2,....
Prove that the generators of Z,, are the integers r such that 1 < r < n and ged(r,n) = 1.
Prove that if G has no proper nontrivial subgroups, then G is a cyclic group.

Prove that the order of an element in a cyclic group G must divide the order of the
group.
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39. Prove that if G is a cyclic group of order m and d | m, then G must have a subgroup
of order d.
40. For what integers n is —1 an nth root of unity?

41. If z = r(cosf + isinf) and w = s(cos ¢ + isin @) are two nonzero complex numbers,
show that
zw = rs[cos(f + ¢) + isin(f + ¢)].
42. Prove that the circle group is a subgroup of C*.

43. Prove that the nth roots of unity form a cyclic subgroup of T of order n.

44. Let a € T. Prove that o™ =1 and " = 1 if and only if a? = 1 for d = ged(m,n).
45. Let z € C*. If |z| # 1, prove that the order of z is infinite.

46. Let z = cosf + isinf be in T where # € Q. Prove that the order of z is infinite.

4.6 Programming Exercises

1. Write a computer program that will write any decimal number as the sum of distinct
powers of 2. What is the largest integer that your program will handle?

2.  Write a computer program to calculate a® (mod n) by the method of repeated squares.
What are the largest values of n and x that your program will accept?

4.7 References and Suggested Readings

[1] Koblitz, N. A Course in Number Theory and Cryptography. 2nd ed. Springer, New
York, 1994.

[2] Pomerance, C. “Cryptology and Computational Number Theory—An Introduction,”
in Cryptology and Computational Number Theory, Pomerance, C., ed. Proceedings of
Symposia in Applied Mathematics, vol. 42, American Mathematical Society, Provi-
dence, RI, 1990. This book gives an excellent account of how the method of repeated
squares is used in cryptography.

4.8 Sage

Cyclic groups are very important, so it is no surprise that they appear in many different
forms in Sage. Fach is slightly different, and no one implementation is ideal for an intro-
duction, but together they can illustrate most of the important ideas. Here is a guide to
the various ways to construct, and study, a cyclic group in Sage.

Infinite Cyclic Groups

In Sage, the integers Z are constructed with ZZ. To build the infinite cyclic group such as 3Z
from Example 4.1, simply use 3*ZZ. As an infinite set, there is not a whole lot you can do
with this. You can test if integers are in this set, or not. You can also recall the generator
with the .gen() command.

G = 3%ZZ
-12 in G
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True

37 in G

False

G.gen()

Additive Cyclic Groups

The additive cyclic group Z,, can be built as a special case of a more general Sage construc-
tion. First we build Z14 and capture its generator. Throughout, pay close attention to the
use of parentheses and square brackets for when you experiment on your own.

G = AdditiveAbelianGroup ([14])
G.order ()

14

G.list ()

[cey, (1), (2, 3, 4, 5, &), (1),
(8, (9, (o), (11), (125, (13)]

a = G.gen(0)
a

M
You can compute in this group, by using the generator, or by using new elements formed
by coercing integers into the group, or by taking the result of operations on other elements.
And we can compute the order of elements in this group. Notice that we can perform
repeated additions with the shortcut of taking integer multiples of an element.

a t a

(2)

a+a+ a+ a

(4)

4xa

(4)

37*a
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(9
We can create, and then compute with, new elements of the group by coercing an integer
(in a list of length 1) into the group. You may get a DeprecationWarning the first time
you use this syntax if you are using an old version of Sage. The mysterious warning can be
safely ignored.

G([21)

(2)

b = G([21); b

(4)

Z*b == 4%3

True

7*%b

(0)

b.order ()

cC = a - 6xb; c

(3)

c +c + c + cC

(12)

c.order ()

14

It is possible to create cyclic subgroups, from an element designated to be the new
generator. Unfortunately, to do this requires the .submodule() method (which should be
renamed in Sage).

H = G.submodule([b]); H

Additive abelian group isomorphic to Z/7
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H.list()

[Ce), (2), (4, (6), (8, (10), (12)1]

H.order ()

e = H.gen(0); e

(2)

3*%e

(6)

e.order ()

The cyclic subgroup H just created has more than one generator. We can test this by
building a new subgroup and comparing the two subgroups.

f = 12xa; f

(12)

f.order ()

K = G.submodule([f]); K

Additive abelian group isomorphic to Z/7

K.order ()

K.list ()

Lce), (2), (4, (6, (8, (10), (12)]

K.gen (@)

(2)

p
1
1

=~
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True

Certainly the list of elements, and the common generator of (2) lead us to belive that
H and K are the same, but the comparison in the last line leaves no doubt.

Results in this section, especially Theorem 4.13 and Corollary 4.14, can be investigated
by creating generators of subgroups from a generator of one additive cyclic group, creating
the subgroups, and computing the orders of both elements and orders of groups.

Abstract Multiplicative Cyclic Groups

We can create an abstract cyclic group in the style of Theorem 4.3, Theorem 4.9, and
Theorem 4.10. In the syntax below a is a name for the generator, and 14 is the order of
the element. Notice that the notation is now multiplicative, so we multiply elements, and
repeated products can be written as powers.

G.<a> = AbelianGroup ([141)
G.order ()

14

G.list()

(1, a, a*2, a*3, a“4, a*5, a“6, a*7, a"8, a*9, a*1o, a*11, a*12, a*13)

a.order ()

14

Computations in the group are similar to before, only with different notation. Now
products, with repeated products written as exponentiation.

b = a*2
b.order ()

c = a7
c.order ()




CHAPTER 4. CYCLIC GROUPS 79

a’*9

b"37%c*42

a4
Subgroups can be formed with a .subgroup() command. But do not try to list the
contents of a subgroup, it’ll look strangely unfamiliar. Also, comparison of subgroups is not
implemented.

H = G.subgroup([a*2])

H.order ()

7

K = G.subgroup([a*12])
K.order ()

7

L = G.subgroup([a*4])
H ==L

False

One advantage of this implementation is the possibility to create all possible subgroups.
Here we create the list of subgroups, extract one in particular (the third), and check its
order.

allsg = G.subgroups(); allsg

[Multiplicative Abelian subgroup isomorphic to C2 x C7 generated by
{a},

Multiplicative Abelian subgroup isomorphic to C7 generated by {a*2},

Multiplicative Abelian subgroup isomorphic to C2 generated by {a*7},

Trivial Abelian subgroup]

sub = allsgl2]
sub.order ()

Cyclic Permutation Groups

We will learn more about permutation groups in the next chapter. But we will mention
here that it is easy to create cyclic groups as permutation groups, and a variety of methods
are available for working with them, even if the actual elements get a bit cumbersome to
work with. As before, notice that the notation and syntax is multiplicative.

G=CyclicPermutationGroup (14)
a = G.gen(0); a
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(1,2,3,4,5,6,7,8,9,10,11,12,13,14)

(1,3,5,7,9,11,13)(2,4,6,8,10,12,14)

b.order ()

a*axbxbxb

(1,9,3,11,5,13,7)(2,10,4,12,6,14,8)

c = a*37*b*26; c

(1,6,11,2,7,12,3,8,13,4,9,14,5,10)

c.order ()

14

We can create subgroups, check their orders, and list their elements.

H = G.subgroup([a*2])
H.order ()

H.gen(Q)

(1,3,5,7,9,11,13)(2,4,6,8,10,12,14)

H.list ()

LO,
(1,3,5,7,9,11,13)(2,4,6,8,10,12,14),
(1,5,9,13,3,7,11)(2,6,10,14,4,8,12),
(1,7,13,5,11,3,9)(2,8,14,6,12,4,10),
(1,9,3,11,5,13,7)(2,10,4,12,6,14,8),
(1,11,7,3,13,9,5)(2,12,8,4,14,10,6),
(1,13,11,9,7,5,3)(2,14,12,10,8,6,4) 1]
It could help to visualize this group, and the subgroup, as rotations of a regular 12-
gon with the vertices labeled with the integers 1 through 12. This is not the full group of
symmetries, since it does not include reflections, just the 12 rotations.

Cayley Tables

As groups, each of the examples above (groups and subgroups) have Cayley tables imple-
mented. Since the groups are cyclic, and their subgroups are therefore cyclic, the Cayley
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tables should have a similar “cyclic” pattern. Note that the letters used in the default table
are generic, and are not related to the letters used above for specific elements — they just
match up with the group elements in the order given by .1list().

G.<a> = AbelianGroup ([141])
G.cayley_table ()

* abcdefghigjk 1mn

o e e e
al abcdefghigjk1mn
bl bcdefghigjk1mna
cl cdefghijk1lmnathb
dl defghijklmnabec
el efghijk1mnahbocd
fl fghijk1mnabocde
gl ghijklmnabocdef
hf hi jklmnabocdefg
il i jklmnabocdefgh
jl jk 1 mnabcdefghi
kil k 1Tmnabocdefghi]}3j
L] Tmnabocdefghiijk
ml mnabocdefghiijk1
nl nabcdefghig3jkT 1mnm

If the real names of the elements are not too complicated, the table could be more
informative using these names.

K.<b> = AbelianGroup ([10])
K.cayley_table(names="elements ')

o o o oo
1] 1 b b*2 b*3 b*4 b*5 b*6 b*7 b*8 b"9
bl b b*2 b*3 b*4 b*5 b*6 b*7 b*8 b*9 1

b*2| b*2 b*3 b*4 b*5 b"6 b*7 b*8 b"9 1 b

b*3] b*"3 b*4 b*"5 b*6 b*7 b*8 b*9 1 b b*2

b*4| b*4 b*"5 b*"6 b*"7 b"8 b"9 1 b b*2 b*3

b*5| b*"5 b*6 b*7 b*8 b*9 1 b b*2 b*3 b*4

b*6| b"6 b*"7 b*"8 b*"9 1 b b*2 b*3 b*4 b*5

b*7] b*7 b*8 b*9 1 b b*"2 b*3 b*4 b*5 b*6

b*8| b*8 b*9 1 b b*2 b*3 b*4 b*5 b*6 b"7

b*9| b*9 1 b b*2 b*3 b*4 b*5 b"6 b"7 b"8

Complex Roots of Unity

The finite cyclic subgroups of T, generated by a primitive nth root of unity are implemented
as a more general construction in Sage, known as a cyclotomic field. If you concentrate
on just the multiplication of powers of a generator (and ignore the infinitely many other
elements) then this is a finite cyclic group. Since this is not implemented directly in Sage
as a group, per Se, it is a bit harder to construct things like subgroups, but it is an excellent
exercise to try. It is a nice example since the complex numbers are a concrete and familiar
construction. Here are a few sample calculations to provide you with some exploratory tools.
See the notes following the computations.
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G = CyclotomicField(14)
G.gen(Q); w

=
I}

zetal4

wc = CDF (w)
wc . abs ()

wc.arg()/N(2xpi/14)

b = w*2
b.multiplicative_order ()

bc = CDF(b); bc

0.62348980185... + 0.781831482468...*1

bc.abs ()

bc.arg()/N(2*xpi/14)

sg = [b*i for i in range(7)1]; sg

[1, zetal4”*2, zetald4"4,
zetal4*5 - zetald4d”4 + zetald*3 - zetald*2 + zetald - 1,
-zetal4, -zetald4*3, -zetal4*5]

c = sgl[3]; d = sgl[5]
c*d

zetal4 "2

c = sgl[3]; d = sgl[6]

cxd in sg

True

cxd == sg[2]
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True

sg[5]xsg[6] == sgl[4]

True

G.multiplication_table(elements=sg)

al abcdefg
b|] bcdef g a
cl cdef gahb
dl d e fgabc
el e f gabocd
fl fgabocde
gl gabcdef
Notes

1. zetal4 is the name of the generator used for the cyclotomic field, it is a primitive root
of unity (a 14th root of unity in this case). We have captured it as w.

2. The syntax CDF(w) will convert the complex number w into the more familiar form
with real and imaginary parts.

3. The method .abs() will return the modulus of a complex number, r as described in
the text. For elements of C* this should always equal 1.

4. The method .arg() will return the argument of a complex number, 6 as described in
the text. Every element of the cyclic group in this example should have an argument
that is an integer multiple of %—Z. The N() syntax converts the symbolic value of pi
to a numerical approximation.

5. sgis a list of elements that form a cyclic subgroup of order 7, composed of the first 7
powers of b = w*2. So, for example, the last comparison multiplies the fifth power of
b with the sixth power of b, which would be the eleventh power of b. But since b has
order 7, this reduces to the fourth power.

6. If you know a subset of an infinite group forms a subgroup, then you can produce its
Cayley table by specifying the list of elements you want to use. Here we ask for a
multiplication table, since that is the relevant operation.

4.9 Sage Exercises

This group of exercises is about the group of units mod n, U(n), which is sometimes cyclic,
sometimes not. There are some commands in Sage that will answer some of these questions

very
idea

quickly, but instead of using those now, just use the basic techniques described. The
here is to just work with elements, and lists of elements, to discern the subgroup

structure of these groups.
Sage worksheets have extensive capabilities for making new cells with carefully formatted

text,

include support for IXTEX syntax to express mathematics. So when a question asks for
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explanation or commentary, make a new cell and communicate clearly with your audience.
Continue this practice in subsequent exercise sets.

1.

Execute the statement R = Integers(40) to create the set [0,1,2,...,39]This is a
group under addition mod 40, which we will ignore. Instead we are interested in the
subset of elements which have an inverse under multiplication mod 40. Determine
how big this subgroup is by executing the command R.unit_group_order(), and then
obtain a list of these elements with R.list_of_elements_of_multiplicative_group().

You can create elements of this group by coercing regular integers into U, such as
with the statement a = U(7). (Don’t confuse this with our mathematical notation
U(40).) This will tell Sage that you want to view 7 as an element of U, subject to
the corresponding operations. Determine the elements of the cyclic subgroup of U
generated by 7 with a list comprehension as follows:

R Integers (40)
a = R(7)
[a~i for i in srange(16)]

What is the order of 7 in U(40)?

The group U(49) is cyclic. Using only the Sage commands described previously, use
Sage to find a generator for this group. Now using only theorems about the structure
of cyclic groups, describe each of the subgroups of U(49) by specifying its order and
by giving an explicit generator. Do not repeat any of the subgroups — in other words,
present each subgroup ezactly once. You can use Sage to check your work on the
subgroups, but your answer about the subgroups should rely only on theorems and be
a nicely written paragraph with a table, etc.

The group U(35) is not cyclic. Again, using only the Sage commands described previ-
ously, use computations to provide irrefutable evidence of this. How many of the 16
different subgroups of U(35) can you list?

Again, using only the Sage commands described previously, explore the structure of
U(n) for various values of n and see if you can formulate an interesting conjecture
about some basic property of this group. (Yes, this is a very open-ended question, but
this is ultimately the real power of exploring mathematics with Sage.)
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Permutation Groups

Permutation groups are central to the study of geometric symmetries and to Galois the-
ory, the study of finding solutions of polynomial equations. They also provide abundant
examples of nonabelian groups.

Let us recall for a moment the symmetries of the equilateral triangle AABC from
Chapter 3. The symmetries actually consist of permutations of the three vertices, where a
permutation of the set S = {A, B,C'} is a one-to-one and onto map 7 : S — S. The three

vertices have the following six permutations.
A B C A B C A B C
A B C C A B B C A
A B C A B C A B C
A C B C B A B A C
We have used the array
A B C
B C A

to denote the permutation that sends A to B, B to C, and C to A. That is,

A— B
B—C
C— A.

The symmetries of a triangle form a group. In this chapter we will study groups of this
type.

5.1 Definitions and Notation

In general, the permutations of a set X form a group Sx. If X is a finite set, we can assume
X =1{1,2,...,n}. In this case we write S,, instead of Sx. The following theorem says that
Sy is a group. We call this group the symmetric group on n letters.

Theorem 5.1 The symmetric group on n letters, Sy, is a group with n! elements, where
the binary operation is the composition of maps.

PRrROOF. The identity of S, is just the identity map that sends 1 to 1, 2to 2, ..., n ton. If
f:8, =S, is a permutation, then f~! exists, since f is one-to-one and onto; hence, every
permutation has an inverse. Composition of maps is associative, which makes the group

85
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operation associative. We leave the proof that |S,| = n! as an exercise. |

A subgroup of S, is called a permutation group.

Example 5.2 Consider the subgroup G of S5 consisting of the identity permutation id and
the permutations

123 45
o =

1235 4

123 45
7’:

32145
/123 45
=3 21 5 4)°

The following table tells us how to multiply elements in the permutation group G.

olid o 7 wu
id|id ¢ 7 u
oclo id pu T
|7 p id o

wlp 17 o id
O

Remark 5.3 Though it is natural to multiply elements in a group from left to right,
functions are composed from right to left. Let o and 7 be permutations on a set X. To
compose o and 7 as functions, we calculate (o07)(z) = o(7(z)). That is, we do 7 first, then
o. There are several ways to approach this inconsistency. We will adopt the convention of
multiplying permutations right to left. To compute oT, do T first and then o. That is, by
o7(x) we mean o(7(x)). (Another way of solving this problem would be to write functions
on the right; that is, instead of writing o(z), we could write (x)o. We could also multiply
permutations left to right to agree with the usual way of multiplying elements in a group.
Certainly all of these methods have been used.

Example 5.4 Permutation multiplication is not usually commutative. Let

1 2 3 4
o =
4 1 2 3
S 1 2 3 4
\2 1 4 3)°
Then
1 2 3 4
oT = ,
1 4 3 2
but
1 2 3 4
TO = .
3 2 1 4

Cycle Notation

The notation that we have used to represent permutations up to this point is cumbersome,
to say the least. To work effectively with permutation groups, we need a more streamlined
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method of writing down and manipulating permutations.

A permutation o € Sy is a cycle of length k if there exist elements a1, ao,...,a; € X
such that
o(ay) = ag
o(ag) = as
olar) = a1
and o(z) = z for all other elements z € X. We will write (a1,aq,...,ar) to denote the

cycle 0. Cycles are the building blocks of all permutations.

Example 5.5 The permutation

1 23 4567
= =(162354
7 <6 351 4 2 7> ( )
is a cycle of length 6, whereas
1 2 3 456
= = (24
T (1 4235 6> (243)

is a cycle of length 3.
Not every permutation is a cycle. Consider the permutation

123456
= (1243)(56).
<2 4136 5) ( )(56)

This permutation actually contains a cycle of length 2 and a cycle of length 4. O
Example 5.6 It is very easy to compute products of cycles. Suppose that

oc=(1352) and 7=(256).

If we think of o as
13, 35, 5 2, 21,

and 7 as
25, 5+ 6, 6 — 2,

then for o7 remembering that we apply 7 first and then o, it must be the case that

13, 3 — 9, 5 6, 6—2—1,

or o7 = (1356). If u=(1634), then o= (1652)(34). O
Two cycles in Sx, 0 = (a1,az,...,a;) and 7 = (b1, ba,...,b), are disjoint if a; # b; for
all ¢ and j.

Example 5.7 The cycles (135) and (27) are disjoint; however, the cycles (135) and (34 7)
are not. Calculating their products, we find that
(135)(27) = (135)(27)
(135)(347) = (13475).

The product of two cycles that are not disjoint may reduce to something less complicated;
the product of disjoint cycles cannot be simplified. O
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Proposition 5.8 Let o and T be two disjoint cycles in Sx. Then o7 = 70.

PROOF. Let o0 = (a1, aq,...,ax) and 7 = (b1, ba, ..., b;). We must show that o7(z) = 7o (x)
for all z € X. If x is neither in {a1, as,...,ax} nor {b1,be,..., b}, then both o and 7 fix x.
That is, o(x) = x and 7(z) = =. Hence,

Do not forget that we are multiplying permutations right to left, which is the opposite of the
order in which we usually multiply group elements. Now suppose that x € {aj,aq,...,ax}.
Then o(a;) = a(; mod k)+1; that is,

al — ag

as — as

Ap—1 > Qk

ar — aq.
However, 7(a;) = a; since o and 7 are disjoint. Therefore,

or(ai) = o(r(ai))
= o(ai)
= Q(; mod k)+1
= T(a(z‘ mod k)—H)
= 7(0(a:))

= 10(a;).

Similarly, if € {b1,ba,...,b;}, then o and 7 also commute. [ |

Theorem 5.9 Fvery permutation in S, can be written as the product of disjoint cycles.
PrROOF. We can assume that X = {1,2,...,n}. If 0 € S, and we define X; to be
{o(1),0%(1),...}, then the set X is finite since X is finite. Now let i be the first integer in
X that is not in X7 and define X5 by {o(i),0%(4),...}. Again, X5 is a finite set. Continuing
in this manner, we can define finite disjoint sets X3, X4,.... Since X is a finite set, we are
guaranteed that this process will end and there will be only a finite number of these sets,
say r. If o; is the cycle defined by

() = o(z) zeX;
O-Z()_{LL‘ .’L'¢XZ’

then ¢ = o109 ---0,. Since the sets X1, Xo,..., X, are disjoint, the cycles o1,09,...,0,
must also be disjoint. |

Example 5.10 Let

s_(1 23456
S \6 4 31 5 2
7_123456
\3 215 6 4
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Using cycle notation, we can write

= (1624)

— (13)(456)
or =(136)(245)
7o =(143)(256).

O

Remark 5.11 From this point forward we will find it convenient to use cycle notation to rep-
resent permutations. When using cycle notation, we often denote the identity permutation

by (1).

Transpositions

The simplest permutation is a cycle of length 2. Such cycles are called transpositions.
Since
(a1,az,...,a,) = (a1,an)(a1, an-1) - - - (a1, a3)(a1, a2),

any cycle can be written as the product of transpositions, leading to the following proposi-
tion.

Proposition 5.12 Any permutation of a finite set containing at least two elements can be
written as the product of transpositions.

Example 5.13 Consider the permutation
(16)(253) =(16)(23)(25) = (16)(45)(23)(45)(25).

As we can see, there is no unique way to represent permutation as the product of transposi-
tions. For instance, we can write the identity permutation as (12)(12), as (13)(24)(13)(24),
and in many other ways. However, as it turns out, no permutation can be written as the
product of both an even number of transpositions and an odd number of transpositions.
For instance, we could represent the permutation (16) by

(23)(16)(23)
or by
(35)(16)(13)(16)(13)(35)(56),
but (16) will always be the product of an odd number of transpositions. (]

Lemma 5.14 If the identity is written as the product of r transpositions,
id=mnm- 7,

then r is an even number.
PrROOF. We will employ induction on r. A transposition cannot be the identity; hence,

r > 1. If r = 2, then we are done. Suppose that » > 2. In this case the product of the last
two transpositions, 7._17;-, must be one of the following cases:

(a,b)(a,b) =1id

(b,¢)(a,b) = (a,c)(b,c)
(¢, d)(a,b) = (a,b)(c,d)
(a,c)(a,b) = (a,b)(b,c),



CHAPTER 5. PERMUTATION GROUPS 90

where a, b, ¢, and d are distinct.
The first equation simply says that a transposition is its own inverse. If this case occurs,
delete 7._17, from the product to obtain

id=m79 - Tr_3Tr_o.

By induction r — 2 is even; hence, r must be even.

In each of the other three cases, we can replace 7._17, with the right-hand side of the
corresponding equation to obtain a new product of r transpositions for the identity. In this
new product the last occurrence of a will be in the next-to-the-last transposition. We can
continue this process with 7,_o7._1 to obtain either a product of r — 2 transpositions or a
new product of r transpositions where the last occurrence of a is in 7,_o. If the identity is
the product of r — 2 transpositions, then again we are done, by our induction hypothesis;
otherwise, we will repeat the procedure with 7,_37._o.

At some point either we will have two adjacent, identical transpositions canceling each
other out or a will be shuffled so that it will appear only in the first transposition. However,
the latter case cannot occur, because the identity would not fix @ in this instance. Therefore,
the identity permutation must be the product of r — 2 transpositions and, again by our
induction hypothesis, we are done. |

Theorem 5.15 If a permutation o can be expressed as the product of an even number of
transpositions, then any other product of transpositions equaling o must also contain an even
number of transpositions. Similarly, if o can be expressed as the product of an odd number
of transpositions, then any other product of transpositions equaling o must also contain an
odd number of transpositions.
PROOF. Suppose that

0 =0102" " Om = TIT2" " Tp,

where m is even. We must show that n is also an even number. The inverse of o is oy, - - - 01.
Since
id=oopm - 01 =71 Tnom 01,

n must be even by Lemma 5.14. The proof for the case in which o can be expressed as an
odd number of transpositions is left as an exercise. |

In light of Theorem 5.15, we define a permutation to be even if it can be expressed
as an even number of transpositions and odd if it can be expressed as an odd number of
transpositions.

The Alternating Groups

One of the most important subgroups of S, is the set of all even permutations, A,. The
group A, is called the alternating group on n letters.

Theorem 5.16 The set A, is a subgroup of Sy,.
PRrROOF. Since the product of two even permutations must also be an even permutation,
A, is closed. The identity is an even permutation and therefore is in A,,. If ¢ is an even
permutation, then

0 =0102""0p,

where o; is a transposition and r is even. Since the inverse of any transposition is itself,

o= OpOp_1+°+01

is also in A,,. [ |
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Proposition 5.17 The number of even permutations in Sy, n > 2, is equal to the number
of odd permutations; hence, the order of A, isn!/2.

PROOF. Let A, be the set of even permutations in .S, and B,, be the set of odd permutations.
If we can show that there is a bijection between these sets, they must contain the same
number of elements. Fix a transposition o in .S,,. Since n > 2, such a ¢ exists. Define

Ao 1 A, — B,

by

Ao (T) =0T

Suppose that A\, (7) = A\s(p). Then o7 = o and so
r=clor = a_la,u = U.

Therefore, A, is one-to-one. We will leave the proof that A, is surjective to the reader. W

Example 5.18 The group A4 is the subgroup of Sy consisting of even permutations. There
are twelve elements in Ay:

(1) (12)(34) (13)(24) (14)(23)
(123) (132) (124) (142)
(134) (143) (234) (243).

One of the end-of-chapter exercises will be to write down all the subgroups of A4. You will
find that there is no subgroup of order 6. Does this surprise you? O

[ | Historical Note [ |

Lagrange first thought of permutations as functions from a set to itself, but it was Cauchy
who developed the basic theorems and notation for permutations. He was the first to
use cycle notation. Augustin-Louis Cauchy (1789-1857) was born in Paris at the height
of the French Revolution. His family soon left Paris for the village of Arcueil to escape
the Reign of Terror. One of the family’s neighbors there was Pierre-Simon Laplace (1749—
1827), who encouraged him to seek a career in mathematics. Cauchy began his career as
a mathematician by solving a problem in geometry given to him by Lagrange. Cauchy
wrote over 800 papers on such diverse topics as differential equations, finite groups, applied
mathematics, and complex analysis. He was one of the mathematicians responsible for
making calculus rigorous. Perhaps more theorems and concepts in mathematics have the
name Cauchy attached to them than that of any other mathematician.

5.2 Dihedral Groups

Another special type of permutation group is the dihedral group. Recall the symmetry
group of an equilateral triangle in Chapter 3. Such groups consist of the rigid motions of
a regular n-sided polygon or n-gon. For n = 3,4,..., we define the nth dihedral group
to be the group of rigid motions of a regular n-gon. We will denote this group by D,,. We
can number the vertices of a regular n-gon by 1,2,...,n (Figure 5.19). Notice that there
are exactly n choices to replace the first vertex. If we replace the first vertex by k, then the
second vertex must be replaced either by vertex k+1 or by vertex k — 1; hence, there are 2n
possible rigid motions of the n-gon. We summarize these results in the following theorem.
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Figure 5.19 A regular n-gon

Theorem 5.20 The dihedral group, Dy, is a subgroup of Sy of order 2n.

Theorem 5.21 The group D,, n > 3, consists of all products of the two elements r and s,
where r has order n and s has order 2, and these two elements satisfy the relation srs = r~!.
PROOF. The possible motions of a regular n-gon are either reflections or rotations (Fig-

ure 5.22). There are exactly n possible rotations:

i, 220 9. 39y 2
n

n n

We will denote the rotation 360° /n by r. The rotation r generates all of the other rotations.

That is,

360°
b=k .
n
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rotation

5

Figure 5.22 Rotations and reflections of a regular n-gon

Label the n reflections s1, s9, ..., S,, where s; is the reflection that leaves vertex k fixed.
There are two cases of reflections, depending on whether n is even or odd. If there are an
even number of vertices, then two vertices are left fixed by a reflection, and sy = s,,/941,52 =
Sp/242; -+ > Snj2 = Sn. If there are an odd number of vertices, then only a single vertex is left
fixed by a reflection and s, s, . .., s, are distinct (Figure 5.23). In either case, the order of
each sy, is two. Let s = s;. Then s> = 1 and ™ = 1. Since any rigid motion ¢ of the n-gon
replaces the first vertex by the vertex k, the second vertex must be replaced by either k + 1
or by k — 1. If the second vertex is replaced by k + 1, then t = r*. If the second vertex is
replaced by k — 1, then t = 7*s5.5 Hence, r and s generate D,,. That is, D,, consists of all
finite products of r and s,

D, ={1,rr% ..., " s rs, s, ..., r" s

1

We will leave the proof that srs = r~" as an exercise.
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1
6 2 2 6
_
5! 3 3 5
4

4 3 3 4

Figure 5.23 Types of reflections of a regular n-gon

Example 5.24 The group of rigid motions of a square, Dy, consists of eight elements. With
the vertices numbered 1, 2, 3, 4 (Figure 5.25), the rotations are

r=(1234)
2= (13)(24)
3 =(1432)
rt=(1)
and the reflections are
S1 =
SS9 = 13).

The order of Dy is 8. The remaining two elements are

rs1 = (12)(34)
351 = (14)(23).

5Since we are in an abstract group, we will adopt the convention that group elements are multiplied left
to right.
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Figure 5.25 The group D,
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The Motion Group of a Cube

We can investigate the groups of rigid motions of geometric objects other than a regular
n-sided polygon to obtain interesting examples of permutation groups. Let us consider the
group of rigid motions of a cube. By rigid motion, we mean a rotation with the axis of
rotation about opposing faces, edges, or vertices. One of the first questions that we can ask
about this group is “what is its order?” A cube has 6 sides. If a particular side is facing
upward, then there are four possible rotations of the cube that will preserve the upward-
facing side. Hence, the order of the group is 6 - 4 = 24. We have just proved the following
proposition.

Proposition 5.26 The group of rigid motions of a cube contains 24 elements.

Theorem 5.27 The group of rigid motions of a cube is Sy.

PRrOOF. From Proposition 5.26, we already know that the motion group of the cube has 24
elements, the same number of elements as there are in Sy. There are exactly four diagonals
in the cube. If we label these diagonals 1, 2, 3, and 4, we must show that the motion group
of the cube will give us any permutation of the diagonals (Figure 5.28). If we can obtain
all of these permutations, then S; and the group of rigid motions of the cube must be the
same. To obtain a transposition we can rotate the cube 180° about the axis joining the
midpoints of opposite edges (Figure 5.29). There are six such axes, giving all transpositions
in Sy. Since every element in Sy is the product of a finite number of transpositions, the
motion group of a cube must be Sy.
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1 2 2 1
4 5 3 4 5 3
e X B 4 -3 4
2 1 1 2

Figure 5.29 Transpositions in the motion group of a cube

5.3 Reading Questions

1.

LA ol

Express (134)(354) as a cycle, or a product of disjoint cycles. (Interpret the compo-
sition of functions in the order used by Sage, which is the reverse of the order used in
the book.)

What is a transposition?
What does it mean for a permutation to be even or odd?
Describe another group that is fundamentally the same as As.

Write the elements of the symmetry group of a pentagon using permutations in cycle
notation. Do this exercise by hand, and without the assistance of Sage.
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5.4 Exercises

1. Write the following permutations in cycle notation.

(a) (c)
1 2345 1 2345
(24153) <35142>

(b) (d)
1 2345 1 2345
(42513) (14325)

2. Compute each of the following.

(a) (1345)(234) (1) (123)(45)(1254)72

(b) (12)(1253) () (1254)"°

(c) (143)(23)(24) (k) [(1254)]

(d) (1423)(34)(56)(1324) 1) [(1254)?

(e) (1254)(13)(25) (m) (12)7!

(f) (1254)(13)(25)> (n) (12537)71

(g) (1254)7'(123)(45)(1254) (0) [(12)(34)(12)(47)]"

(h) (1254)%(123)(45) (p) [(1235)(467)]*

3. Express the following permutations as products of transpositions and identify them as
even or odd.

(a) (14356) (d) (17254)(1423)(154632)
(b) (156)(234)
(c) (1426)(142) (e) (142637)

Find (ai,az,...,a,)" .

5. List all of the subgroups of S4. Find each of the following sets:
(a) {oc€8Ss:0(1) =3}

(b) {0 €84:0(2) =2}
(¢) {o €8S4:0(1) =3 and o(2) = 2}.

Are any of these sets subgroups of S4?7
6. Find all of the subgroups in A4. What is the order of each subgroup?
7. Find all possible orders of elements in S7 and A7.
8 Show that Aig contains an element of order 15.
9. Does Ag contain an element of order 267
10. Find an element of largest order in S, for n =3,...,10.

11. What are the possible cycle structures of elements of A5?7 What about Ag?

12. Let o € S,, have order n. Show that for all integers i and j, 0* = ¢/ if and only if i = j
(mod n).

13. Let 0 =010, € S, be the product of disjoint cycles. Prove that the order of o is
the least common multiple of the lengths of the cycles o1, ..., 0m.
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14.

15.

16.

17.
18.
19.
20.

21.

22.

23.
24.
25.
26.

27.

28.
29.

30.

31.

32.

Using cycle notation, list the elements in D5. What are r and s? Write every element
as a product of r and s.

If the diagonals of a cube are labeled as Figure 5.28, to which motion of the cube
does the permutation (12)(34) correspond? What about the other permutations of the
diagonals?

Find the group of rigid motions of a tetrahedron. Show that this is the same group as
Ay.

Prove that S,, is nonabelian for n > 3.

Show that A,, is nonabelian for n > 4.

Prove that D,, is nonabelian for n > 3.

Let 0 € S, be a cycle. Prove that o can be written as the product of at most n — 1
transpositions.

Let o € S,,. If 0 is not a cycle, prove that o can be written as the product of at most
n — 2 transpositions.

If o can be expressed as an odd number of transpositions, show that any other product
of transpositions equaling ¢ must also be odd.

If o is a cycle of odd length, prove that o2 is also a cycle.
Show that a 3-cycle is an even permutation.
Prove that in A,, with n > 3, any permutation is a product of cycles of length 3.

Prove that any element in S, can be written as a finite product of the following
permutations.

(a) (12),(13),...,(1n)
(b) (12),(23),...,(n—1,n)

(¢) (12),(12...n)

Let G be a group and define a map Ay : G — G by A;(a) = ga. Prove that A4 is a
permutation of G.

Prove that there exist n! permutations of a set containing n elements.

Recall that the center of a group G is
Z(G)={g€G:gx=uxgforall x € G}.

Find the center of Dg. What about the center of D137 What is the center of D,,?
Let 7 = (a1, a2, ...,a) be a cycle of length k.

(a) Prove that if o is any permutation, then

oot = (o(a1),0(az),...,o(ax))

is a cycle of length k.
(b) Let p be a cycle of length k. Prove that there is a permutation o such that
-1
ot = L.

For a and 8 in S, define o ~ 3 if there exists an o € S,, such that cac™ = 3. Show
that ~ is an equivalence relation on 5.

Let 0 € Sx. If 0" (x) = y for some n € Z, we will say that x ~ y.

(a) Show that ~ is an equivalence relation on X.
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(b) Define the orbit of z € X under o € Sx to be the set

Om,a = {y$'\’y}

Compute the orbits of each element in {1,2,3,4,5} under each of the following
elements in Ss:

a=(1254)
B=(123)(45)
v = (13)(25).

(c) If Opo N Oy # 0, prove that Oy » = Oy . The orbits under a permutation o
are the equivalence classes corresponding to the equivalence relation ~.

(d) A subgroup H of Sx is transitive if for every z,y € X, there exists a 0 € H
such that o(x) = y. Prove that (o) is transitive if and only if O, , = X for some
reX.

33. Let a € S, forn > 3. If af = Ba for all g € S,,, prove that o must be the identity
permutation; hence, the center of S, is the trivial subgroup.

34. If a is even, prove that ! is also even. Does a corresponding result hold if a is odd?
35. If o € A, and 7 € S, show that 77 loT € A,.

36. Show that a3~ 'af is even for a, 8 € S,,.

37. Let r and s be the elements in D,, described in Theorem 5.21

(a) Show that srs =r~1.
(b) Show that 7¥s = sr=* in D,,.

(c) Prove that the order of 7¥ € D, is n/ ged(k,n).

5.5 Sage

A good portion of Sage’s support for group theory is based on routines from GAP (Groups,
Algorithms, and Programming) at www.gap-system.org’, which is included in every copy
of Sage. This is a mature open source package, dating back to 1986. (Forward reference
here to GAP console, etc.)

As we have seen, groups can be described in many different ways, such as sets of matrices,
sets of complex numbers, or sets of symbols subject to defining relations. A very concrete
way to represent groups is via permutations (one-to-one and onto functions of the integers
1 through n), using function composition as the operation in the group, as described in this
chapter. Sage has many routines designed to work with groups of this type and they are
also a good way for those learning group theory to gain experience with the basic ideas of
group theory. For both these reasons, we will concentrate on these types of groups.

Permutation Groups and Elements

The easiest way to work with permutation group elements in Sage is to write them in cycle
notation. Since these are products of disjoint cycles (which commute), we do not need to
concern ourselves with the actual order of the cycles. If we write (1,3)(2,4) we probably

“www.gap-system.org
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understand it to be a permutation (the topic of this chapter!) and we know that it could
be an element of Sy, or perhaps a symmetric group on more symbols than just 4. Sage
cannot get started that easily and needs a bit of context, so we coerce a string of characters
written with cycle notation into a symmetric group to make group elements. Here are some
examples and some sample computations. Remember that Sage and your text differ on how
to interpret the order of composing two permutations in a product.

G = SymmetricGroup(5)
sigma = G("(1,3)(2,5,4)")
sigma*sigma

(2,4,5)

rho = G("(2,4)(1,5)")
rho*3

(1,5)(2,4)

If the next three examples seem confusing, or “backwards”, then now would be an
excellent time to review the Sage discussion about the order of permutation composition in
the subsection Groups of symmetries.

sigma*rho

(1,3,5,2)

rhoxsigma

(1,4,5,3)

rho*-1xsigma*rho

(1,2,4)(3,5)

There are alternate ways to create permutation group elements, which can be useful in
some situations, but they are not quite as useful in everday use.

sigmal = G("(1,3)(2,5,4)")
sigmal

(1,3)(2,5,4)

sigma2 = G([(1,3),(2,5,4)1)
sigma2

(1,3)(2,5,4)

sigma3 = G([3,5,1,2,41)
sigma3

(1,3)(2,5,4)
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sigmal == sigma2
True
sigma2 == sigma3
True

sigma2.cycle_tuples ()

Lar, 3), (2, 5, 491

[sigma3(x) for x in G.domain()]

(3, 5, 1, 2, 4]

The second version of ¢ is a list of “tuples”, which requires a lot of commas and these
must be enclosed in a list. (A tuple of length one must be written like (4,) to distinguish it
from using parentheses for grouping, as in 5%(4).) The third version uses the “bottom-row”
of the more cumbersome two-row notation introduced at the beginning of the chapter — it
is an ordered list of the output values of the permutation when considered as a function.

So we then see that despite three different input procedures, all the versions of o print
the same way, and moreso they are actually equal to each other. (This is a subtle difference

— what an object is in Sage versus how an object displays itself.)

We can be even more careful about the nature of our elements. Notice that once we get
Sage started, it can promote the product 7o into the larger permutation group. We can
“promote” elements into larger permutation groups, but it is an error to try to shoe-horn
an element into a too-small symmetric group.

H = SymmetricGroup (4)
sigma = H("(1,2,3,4)")

G = SymmetricGroup(6)
tau = G("(1,2,3,4,5,6)")
rho = tau * sigma

rho

(1,3)(2,4,5,6)

sigma.parent ()

Symmetric group of order 4! as a permutation group

tau.parent ()

Symmetric group of order 6! as a permutation group

rho.parent ()

Symmetric group of order 6! as a permutation group
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tau.parent () == rho.parent()

True

sigmaG = G(sigma)
sigmaG.parent ()

Symmetric group of order 6! as a permutation group

It is an error to try to coerce a permutation with too many symbols into a permutation
group employing too few symbols.

tauH =

H(tau)

Traceback (most recent call last):

ValueError: invalid data to initialize a permutation

Better than working with just elements of the symmetric group, we can create a variety
of permutation groups in Sage. Here is a sampling for starters:

Table 5.30 Some Sage permutation groups

Sage Command

Description

SymmetricGroup(n)
DihedralGroup(n)
CyclicPermutationGroup(n)
AlternatingGroup(n)
KleinFourGroup()

Permutations on n symbols, n! elements
Symmetries of an n-gon, 2n elements.
Rotations of an n-gon (no flips), n elements
Alternating group on n symbols, n!/2 elements
A non-cyclic group of order 4

You can also locate Sage permutation groups with the groups catalog. In the next cell
place your cursor right after the final dot and hit the tab-key. You will get a list of methods
you can use to create permutation groups. As always, place a question-mark after a method
and hit the tab-key to get online documentation of a method.

groups.permutation.

Properties of Permutation Elements

Sometimes it is easier to grab an element out of a list of elements of a permutation group,
and then it is already attached to a parent and there is no need for any coercion. In the
following, rotate and flip are automatically elements of G because of the way we procured

them.

D = DihedralGroup(5)

elements = D.list(); elements

Lo, 1,5,4,3,2), (1,4,2,5,3), (1,3,5,2,4), (1,2,3,4,5), (2,5)(3,4),
(1,5)(2,4), (1,4)(2,3), (1,3)(4,5, (1,2)(3,5]

rotate = elements[4]

flip = elements[7]

flip*rotate == rotatex flip
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False

So we see from this final statement that the group of symmetries of a pentagon is not
abelian. But there is an easier way.

D = DihedralGroup (5)
D.is_abelian()

False

There are many more methods you can use for both permutation groups and their
individual elements. Use the blank compute cell below to create a permutation group (any
one you like) and an element of a permutation group (any one you like). Then use tab-
completion to see all the methods available for an element, or for a group (name, period,
tab-key). Some names you may recognize, some we will learn about in the coming chapters,
some are highly-specialized research tools you can use when you write your Ph.D. thesis in
group theory. For any of these methods, remember that you can type the name, followed by
a question mark, to see documentation and examples. Ezrperiment and explore — it is really
hard to break anything.Here are some selected examples of various methods available.

A4 = AlternatingGroup (4)
A4 .order ()

12

A4.is_finite ()

True

A4 .is_abelian()

False

A4.is_cyclic()

False

sigma = A4("(1,2,4)")
sigma*-1

(1,4,2)

sigma.order ()

A very useful method when studying the alternating group is the permutation group
element method .sign(). It will return 1 if a permutation is even and -1 if a permutation
is odd.

G = SymmetricGroup(3)
sigma = G("(1,2)")
tau = G("(1,3)")
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rho = sigmaxtau
sigma.sign()

-1

rho.sign()

We can create subgroups by giving the main group a list of “generators.” These elements
serve to “generate” a subgroup — imagine multiplying these elements (and their inverses)
together over and over, creating new elements that must also be in the subgroup and also
become involved in new products, until you see no new elements. Now that definition ends
with a horribly imprecise statement, but it should suffice for now. A better definition is
that the subgroup generated by the elements is the smallest subgroup of the main group
that contains all the generators — which is fine if you know what all the subgroups might
be.

With a single generator, the repeated products just become powers of the lone generator.
The subgroup generated then is cyclic. With two (or more) generators, especially in a non-
abelian group, the situation can be much, much more complicated. So let us begin with
just a single generator. But do not forget to put it in a list anyway.

A4 = AlternatingGroup (4)
sigma = A4("(1,2,4)")

sg = A4.subgroup([sigmal)
sg

Subgroup generated by [(1,2,4)]
of (Alternating group of order 4!/2 as a permutation group)

sg.order ()

sg.list ()

(O, (1,2,4), (1,4,2)]

sg.is_abelian()

True

sg.is_cyclic()

True

sg.is_subgroup (A4)

True
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We can now redo the example from the very beginning of this chapter. We translate to
elements to cycle notation, construct the subgroup from two generators (the subgroup is
not cyclic), and since the subgroup is abelian, we do not have to view Sage’s Cayley table
as a diagonal reflection of the table in the example.

G = SymmetricGroup(5)

sigma = G("(4,5)")

tau = G("(1,3)")

H = G.subgroup([sigma, taul)
H.list ()

LO, (4,5, (1,3), (1,3)(4,5)]

text_names = ['id', 'sigma', 'tau', 'mu']
H.cayley_table(names=text_names)

* id sigma tau mu

o e e o

id| id sigma tau mu
sigma| sigma id mu tau
tau| tau mu id sigma
mu | mu tau sigma id

Motion Group of a Cube

We could mimic the example in the text and create elements of Sy as permutations of the
diagonals. A more obvious, but less insightful, construction is to view the 8 corners of the
cube as the items being permuted. Then some obvious symmetries of the cube come from
running an axis through the center of a side, through to the center of the opposite side,
with quarter-turns or half-turns about these axes forming symmetries. With three such
axes and four rotations per axis, we get 12 symmetries, except we have counted the identity
permutation two extra times.

Label the four corners of the square top with 1 through 4, placing 1 in the left-front
corner, and following around clockwise when viewed from above. Use 5 through 8 for the
bottom square’s corner, so that 5 is directly below 1, 6 below 2, etc. We will use quarter-
turns, clockwise, around each axis, when viewed from above, the front, and the right.

G = SymmetricGroup(8)

above = G("(1,2,3,4)(5,6,7,8)")

front = G("(1,4,8,5)(2,3,7,6)")

right = G("(1,2,6,5)(3,7,8,4)")

cube = G.subgroup([above, front, right])
cube.order ()

24

cube.list ()

Lo, (1,3)(2,4)(5,7)(6,8), (1,6)(2,5)(3,8)(4,7), (1,8)(2,7)(3,6)(4,5),
(1,4,3,2)(5,8,7,6), (1,2,3,4)(5,6,7,8), (1,5)(2,8)(3,7)(4,6),
(1,7)(2,6)(3,5)(4,8), (2,5,4)(3,6,8), (1,3,8)(2,7,5), (1,6,3)(4,5,7),
(1,8,6)(2,4,7), (1,4)(2,8)(3,5)(6,7), (1,2,6,5)(3,7,8,4),
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(1,5,6,2)(3,4,8,7),
(1,7)(2,3)(4,6)(5,8), (2,4,5)(3,8,6), (1,3,6)(4,7,5), (1,6,8)(2,7,4),
(1,8,3)(2,5,7), (1,4,8,5)(2,3,7,6), (1,2)(3,5)(4,6)(7,8),
(1,5,8,4)(2,6,7,3),
(1,7)(2,8)(3,4)(5,6)1
Since we know from the discussion in the text that the symmetry group has 24 elements,
we see that our three quarter-turns are sufficient to create every symmetry. This prompts
several questions which you can find in Exercise 5.6.4.

5.6 Sage Exercises
These exercises are designed to help you become familiar with permutation groups in Sage.

Create the full symmetric group S1g with the command G = SymmetricGroup(10).

2. Create elements of G with the following (varying) syntax. Pay attention to commas,
quotes, brackets, parentheses. The first two use a string (characters) as input, mimic-
king the way we write permuations (but with commas). The second two use a list of

tuples.
e a=0G("(5,7,2,9,3,1,8)")
e b =06("(1,3)(4,5")
e ¢ =G([(1,2),3,HD
« d=6([(1,3),(2,5,8),(4,6,7,9,10)1)

(a) Compute a®, be, ad~1b.

(b) Compute the orders of each of these four individual elements (a through d) using
a single permutation group element method.

(c¢) Use the permutation group element method .sign() to determine if a, b, c,d are
even or odd permutations.

(d) Create two cyclic subgroups of G with the commands:

e H
e K

G.subgroup([al)
G.subgroup([d])

List, and study, the elements of each subgroup. Without using Sage, list the
order of each subgroup of K. Then use Sage to construct a subgroup of K with
order 10.

(e) More complicated subgroups can be formed by using two or more generators.
Construct a subgroup L of G with the command L = G.subgroup([b,c]). Com-
pute the order of L and list all of the elements of L.

3. Construct the group of symmetries of the tetrahedron (also the alternating group on 4
symbols, A4) with the command A=AlternatingGroup(4). Using tools such as orders
of elements, and generators of subgroups, see if you can find all of the subgroups of Ay
(each one exactly once). Do this without using the . subgroups() method to justify the
correctness of your answer (though it might be a convenient way to check your work).

Provide a nice summary as your answer—not just piles of output. So use Sage as
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a tool, as needed, but basically your answer will be a concise paragraph and/or table.
This is the one part of this assignment without clear, precise directions, so spend some
time on this portion to get it right. Hint: no subgroup of A4 requires more than two
generators.

4. The subsection The Motion Group of a Cube describes the 24 symmetries of a cube as
a subgroup of the symmetric group Sg generated by three quarter-turns. Answer the
following questions about this symmetry group.

(a)

5. Save

From the list of elements of the group, can you locate the ten rotations about
axes? (Hint: the identity is easy, the other nine never send any symbol to itself.)

Can you identify the six symmetries that are a transposition of diagonals? (Hint:
[g for g in cube if g.order() == 2] is a good preliminary filter.)

Verify that any two of the quarter-turns (above, front, right) are sufficient to
generate the whole group. How do you know each pair generates the entire group?

Can you express one of the diagonal transpositions as a product of quarter-turns?
This can be a notoriously difficult problem, especially for software. It is known
as the “word problem.”

Number the six faces of the cube with the numbers 1 through 6 (any way you
like). Now consider the same three symmetries we used before (quarter-turns
about face-to-face axes), but now view them as permutations of the six faces.
In this way, we construct each symmetry as an element of Sg. Verify that the
subgroup generated by these symmetries is the whole symmetry group of the
cube. Again, rather than using three generators, try using just two.

your work, and then see if you can crash your Sage session by building the

subgroup of Sy generated by the elements b and d of orders 2 and 30 from above. Do
not submit the list of elements of N as part of your submitted worksheet.

N =

N.list ()

G.subgroup ([b,d])

What is the order of N7



6

Cosets and Lagrange’s Theorem

Lagrange’s Theorem, one of the most important results in finite group theory, states that the
order of a subgroup must divide the order of the group. This theorem provides a powerful
tool for analyzing finite groups; it gives us an idea of exactly what type of subgroups we
might expect a finite group to possess. Central to understanding Lagranges’s Theorem is
the notion of a coset.

6.1 Cosets

Let G be a group and H a subgroup of G. Define a left coset of H with representative
g € G to be the set
gH ={gh:h e H}.

Right cosets can be defined similarly by
Hg=1{hg:he H}.

If left and right cosets coincide or if it is clear from the context to which type of coset that
we are referring, we will use the word coset without specifying left or right.

Example 6.1 Let H be the subgroup of Zg consisting of the elements 0 and 3. The cosets
are

0+H=3+H ={0,3}

1+H=4+H={1,4}

24+ H=5+H ={2,5}.
We will always write the cosets of subgroups of Z and Z,, with the additive notation we have
used for cosets here. In a commutative group, left and right cosets are always identical. [J
Example 6.2 Let H be the subgroup of S5 defined by the permutations {(1),(123),(132)}.
The left cosets of H are

()H =(123)H =(132)H ={(1),(123),(132)}
(12)H =(13)H = (23)H ={(12),(13),(23)}.

The right cosets of H are exactly the same as the left cosets:

H(1) = H(123) = H(132) = {(1),(123),(132)}
H(12) = H(13) = H(23) = {(12),(13),(23)}.

108
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It is not always the case that a left coset is the same as a right coset. Let K be the
subgroup of S defined by the permutations {(1),(12)}. Then the left cosets of K are

(WK =(12)K ={(1),(12)}
(13)K = (123)K = {(13),(123)}
(23)K = (132)K = {(23),(132)};

however, the right cosets of K are

K(1)=K(12)={(1),(12)}
K(13)=K(132) = {(13),(132)}
K(23) = K(123) = {(23),(123)}.

O
The following lemma is quite useful when dealing with cosets. (We leave its proof as an
exercise.)

Lemma 6.3 Let H be a subgroup of a group G and suppose that g1, 92 € G. The following
conditions are equivalent.

1. g1H = goH;

2. Hg;' = Hgy';
3. g1H C goH;

4. 92 € 1 H;

. gl_lgg €H.

In all of our examples the cosets of a subgroup H partition the larger group G. The
following theorem proclaims that this will always be the case.

Theorem 6.4 Let H be a subgroup of a group G. Then the left cosets of H in G partition
G. That is, the group G is the disjoint union of the left cosets of H in G.

PROOF. Let g1 H and g2 H be two cosets of H in G. We must show that either gy HNgo H = ()
or g1 H = goH. Suppose that g1 H N goH # () and a € g1 H N goH. Then by the definition
of a left coset, a = g1h1 = goho for some elements hy and ho in H. Hence, g1 = QQthl_l or
g1 € goH. By Lemma 6.3, 1 H = g2 H. |

Remark 6.5 There is nothing special in this theorem about left cosets. Right cosets also
partition G; the proof of this fact is exactly the same as the proof for left cosets except that
all group multiplications are done on the opposite side of H.

Let G be a group and H be a subgroup of GG. Define the index of H in G to be the
number of left cosets of H in G. We will denote the index by [G : H].

Example 6.6 Let G = Zg and H = {0,3}. Then [G : H] = 3. O
Example 6.7 Suppose that G = S3, H = {(1),(123),(132)}, and K = {(1),(12)}. Then
[G:H]=2and [G: K]=3. O

Theorem 6.8 Let H be a subgroup of a group G. The number of left cosets of H in G is
the same as the number of right cosets of H in G.

Proor. Let L and Ry denote the set of left and right cosets of H in G, respectively. If
we can define a bijective map ¢ : Ly — Ry, then the theorem will be proved. If gH € Ly,
let ¢(gH) = Hg~'. By Lemma 6.3, the map ¢ is well-defined; that is, if g H = g2 H, then



CHAPTER 6. COSETS AND LAGRANGE’S THEOREM 110

Hgy - H 9oy ! To show that ¢ is one-to-one, suppose that

Hg' = ¢(g1H) = ¢(g2H) = Hgy .

Again by Lemma 6.3, g1 H = goH. The map ¢ is onto since ¢(¢- H) = Hg. |

6.2 Lagrange’s Theorem

Proposition 6.9 Let H be a subgroup of G with g € G and define a map ¢ : H — gH by
¢(h) = gh. The map ¢ is bijective; hence, the number of elements in H is the same as the
number of elements in gH .

PrOOF. We first show that the map ¢ is one-to-one. Suppose that ¢(h1) = ¢(he) for
elements hy,hy € H. We must show that hy = hg, but ¢(h1) = gh; and ¢(he) = gha. So
gh1 = gho, and by left cancellation h; = he. To show that ¢ is onto is easy. By definition
every element of gH is of the form gh for some h € H and ¢(h) = gh. |

Theorem 6.10 Lagrange. Let G be a finite group and let H be a subgroup of G. Then
|G|/|H| = |G : H] is the number of distinct left cosets of H in G. In particular, the number
of elements in H must divide the number of elements in G.

PRrROOF. The group G is partitioned into [G : H| distinct left cosets. Each left coset has
|H| elements; therefore, |G| =[G : H]|H]. [ |

Corollary 6.11 Suppose that G is a finite group and g € G. Then the order of g must
divide the number of elements in G.

Corollary 6.12 Let |G| = p with p a prime number. Then G is cyclic and any g € G such
that g # e is a generator.

PRrROOF. Let g be in G such that g # e. Then by Corollary 6.11, the order of g must divide
the order of the group. Since [(g)| > 1, it must be p. Hence, g generates G. |

Corollary 6.12 suggests that groups of prime order p must somehow look like Z,,.

Corollary 6.13 Let H and K be subgroups of a finite group G such that G > H D K.
Then
[G:K|=[G: H|H:K].
PROOF. Observe that
_lGl_l6l =] _

[G:K]_|K\_\H] W—[G:HHH:K].

Remark 6.14 The converse of Lagrange’s Theorem is false. The group A4 has order
12; however, it can be shown that it does not possess a subgroup of order 6. According to
Lagrange’s Theorem, subgroups of a group of order 12 can have orders of either 1, 2, 3, 4, or
6. However, we are not guaranteed that subgroups of every possible order exist. To prove
that A4 has no subgroup of order 6, we will assume that it does have such a subgroup H
and show that a contradiction must occur. Since A4 contains eight 3-cycles, we know that
H must contain a 3-cycle. We will show that if H contains one 3-cycle, then it must contain
more than 6 elements.

Proposition 6.15 The group A4 has no subgroup of order 6.

PROOF. Since [A4 : H] = 2, there are only two cosets of H in A4. Inasmuch as one of the
cosets is H itself, right and left cosets must coincide; therefore, gH = Hg or gHg™' = H
for every g € A4. Since there are eight 3-cycles in Ay, at least one 3-cycle must be in H.
Without loss of generality, assume that (123) is in H. Then (123)~! = (132) must also
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be in H. Since ghg™' € H for all g € A4 and all h € H and

(124)(123)(124)7 1 = (124)(123)(142) = (243)
(243)(123)(243)" 1 = (243)(123)(234)

we can conclude that H must have at least seven elements
(1),(123),(132),(243),(243)7" =(234),(142),(142)"! = (124).
Therefore, A4 has no subgroup of order 6. |

In fact, we can say more about when two cycles have the same length.

Theorem 6.16 Two cycles T and p in S, have the same length if and only if there exists

ao €8S, such that p = oro~!.

PROOF. Suppose that

T = (al,ag,...,ak)
p=(b1,b2,...,b).

Define o to be the permutation

O'(CLl) = b1
o(az) = b
o(ay) = by.
Then p = oo™t
Conversely, suppose that 7 = (a1, ag,...,a) is a k-cycle and o € S,,. If o(a;) = b and

(i mod k)+1) = V', then p(b) = b'. Hence,

1= (o(ar), olaz).....o(ar)).

Since o is one-to-one and onto, p is a cycle of the same length as 7. |

6.3 Fermat’s and Euler’s Theorems

The Euler ¢-function is the map ¢ : N — N defined by ¢(n) =1 for n = 1, and, for n > 1,
¢(n) is the number of positive integers m with 1 < m < n and ged(m,n) = 1.

From Proposition 3.4, we know that the order of U(n), the group of units in Z,, is ¢(n).
For example, |U(12)| = ¢(12) = 4 since the numbers that are relatively prime to 12 are 1, 5,
7, and 11. For any prime p, ¢(p) = p — 1. We state these results in the following theorem.

Theorem 6.17 Let U(n) be the group of units in Z,,. Then |U(n)| = ¢(n).

The following theorem is an important result in number theory, due to Leonhard Euler.
Theorem 6.18 Euler’s Theorem. Leta andn be integers such thatn > 0 and ged(a,n) =
1. Then a®™ =1 (mod n).

PROOF. By Theorem 6.17 the order of U(n) is ¢(n). Consequently, a®™ = 1 for all
a € U(n); or a®?™ — 1 is divisible by n. Therefore, a®™ =1 (mod n). [ |

If we consider the special case of Euler’s Theorem in which n = p is prime and recall

that ¢(p) = p — 1, we obtain the following result, due to Pierre de Fermat.
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Theorem 6.19 Fermat’s Little Theorem. Let p be any prime number and suppose that
pta (p does not divide a). Then

a? =1 (mod p).

Furthermore, for any integer b, b* =b (mod p).

[ ] Historical Note [ ]

Joseph-Louis Lagrange (1736-1813), born in Turin, Italy, was of French and Italian descent.
His talent for mathematics became apparent at an early age. Leonhard Euler recognized
Lagrange’s abilities when Lagrange, who was only 19, communicated to Euler some work
that he had done in the calculus of variations. That year he was also named a professor at
the Royal Artillery School in Turin. At the age of 23 he joined the Berlin Academy. Frederick
the Great had written to Lagrange proclaiming that the “greatest king in Europe” should
have the “greatest mathematician in Europe” at his court. For 20 years Lagrange held the
position vacated by his mentor, Euler. His works include contributions to number theory,
group theory, physics and mechanics, the calculus of variations, the theory of equations, and
differential equations. Along with Laplace and Lavoisier, Lagrange was one of the people
responsible for designing the metric system. During his life Lagrange profoundly influenced
the development of mathematics, leaving much to the next generation of mathematicians
in the form of examples and new problems to be solved.

6.4 Reading Questions

State Lagrange’s Theorem in your own words.
2. Determine the left cosets of (3) in Zg.
The set {(),(12)(34),(13)(24),(14)(23)} is a subgroup of Ss. What is its index in
Sy?
Suppose G is a group of order 29. Describe G.

5. The number p = 137909 is prime. Explain how to compute 57379 (mod 137909)
without a calculator.

6.5 Exercises

1. Suppose that G is a finite group with an element g of order 5 and an element h of order
7. Why must |G| > 357

2. Suppose that G is a finite group with 60 elements. What are the orders of possible
subgroups of G?

3. Prove or disprove: Every subgroup of the integers has finite index.

4. Prove or disprove: Every subgroup of the integers has finite order.

5. List the left and right cosets of the subgroups in each of the following.

(a) (8) in Zos (e) A, in S,
(b) (3) in U(8) (f) Dyin Sy
(c) 3Zin Z () T in C*
(d) Agin Sy (h) H={(1),(123),(132)} in S4
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10.

11.

12.

13.
14.
15.

16.

17.
18.
19.

20.

21.
22.

23.

Describe the left cosets of SLy(R) in GL2(R). What is the index of SLy(R) in GLo(R)?
Verify Euler’s Theorem for n = 15 and a = 4.

Use Fermat’s Little Theorem to show that if p = 4n + 3 is prime, there is no solution

to the equation #2 = —1 (mod p).

Show that the integers have infinite index in the additive group of rational numbers.

Show that the additive group of real numbers has infinite index in the additive group
of the complex numbers.

Let H be a subgroup of a group G and suppose that g1,92 € G. Prove that the
following conditions are equivalent.

(a) g1 H = g2 H
(b) Hg;' = Hgy'
(c) g1 C goH

(

(e) gi'g2€ H

If ghg=! € H for all ¢ € G and h € H, show that right cosets are identical to left
cosets. That is, show that gH = Hg for all g € G.

What fails in the proof of Theorem 6.8 if ¢ : L — Ry is defined by ¢(gH) = Hg?
Suppose that g = e. Show that the order of g divides n.

¢
d) e 1 H
e

The cycle structure of a permutation o is defined as the unordered list of the

sizes of the cycles in the cycle decomposition o. For example, the permutation o =

(12)(345)(78)(9) has cycle structure (2,3,2,1) which can also be written as (1, 2,2, 3).
Show that any two permutations «, 8 € S, have the same cycle structure if and

only if there exists a permutation 7 such that 8 = yay~!. If = yay~! for some

v € Sy, then a and 8 are conjugate.

If |G| = 2n, prove that the number of elements of order 2 is odd. Use this result to

show that G must contain a subgroup of order 2.

Suppose that [G : H] = 2. If a and b are not in H, show that ab € H.

If [G: H] = 2, prove that gH = Hg.

Let H and K be subgroups of a group G. Prove that gH N gK is a coset of H N K in
G.

Let H and K be subgroups of a group G. Define a relation ~ on G by a ~ b if
there exists an h € H and a k € K such that hak = b. Show that this relation is an
equivalence relation. The corresponding equivalence classes are called double cosets.
Compute the double cosets of H = {(1),(123),(132)} in Ay.

Let G be a cyclic group of order n. Show that there are exactly ¢(n) generators for G.

Let n = p{'ps* - - ~pz’“, where p1,po,...,p; are distinct primes. Prove that

¢<n>=n(1—pll> <1—;2)"‘<1‘z;>‘

Show that

for all positive integers n.
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6.6 Sage

Sage can create all of the cosets of a subgroup, and all of the subgroups of a group. While
these methods can be somewhat slow, they are in many, many ways much better than ex-
perimenting with pencil and paper, and can greatly assist us in understanding the structure
of finite groups.

Cosets

Sage will create all the right (or left) cosets of a subgroup. Written mathematically, cosets
are sets, and the order of the elements within the set is irrelevant. With Sage, lists are more
natural, and here it is to our advantage.

Sage creates the cosets of a subgroup as a list of lists. Each inner list is a single coset.
The first coset is always the coset that is the subgroup itself, and the first element of this
coset is the identity. Each of the other cosets can be construed to have their first element
as their representative, and if you use this element as the representative, the elements of
the coset are in the same order they would be created by multiplying this representative by
the elements of the first coset (the subgroup).

The keyword side can be 'right' or 'left', and if not given, then the default is right
cosets. The options refer to which side of the product has the representative. Notice
that now Sage’s results will be “backwards” compared with the text. Here is Example 6.2
reprised, but in a slightly different order.

G = SymmetricGroup(3)
a=G6("(1,2)"
H = G.subgroup([Lal)

rc = G.cosets(H, side='right'); rc

(eo, ,2)1, 02,3, (1,3,2)1, 0(1,2,3), (1,3)1]

lc = G.cosets(H, side='left'); lc

Lo, ,2)1, 02,3), (1,2,3)1, [(1,3,2), (1,3)1]
So if we work our way through the brackets carefully we can see the difference between

the right cosets and the left cosets. Compare these cosets with the ones in the text and see
that left and right are reversed. Shouldn’t be a problem — just keep it in mind.

SymmetricGroup (3)

= 6("(1,2,3)")

G.subgroup([bl)

rc = G.cosets(H, side='right'); rc

I T o

tro, ,2,3, (1,3,2)1, 0(2,3), (1,3), (1,2)1]

lc = G.cosets(H, side='left'); lc

(Lo, ,2,3), (1,3,21, [(2,3), (1,2), (1,3)1]
If we study the bracketing, we can see that the left and right cosets are equal. Let’s see
what Sage thinks:

rc == lc
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False

Mathematically, we need sets, but Sage is working with ordered lists, and the order
matters. However, if we know our lists do not have duplicates (the .cosets() method will
never produce duplicates) then we can sort the lists and a test for equality will perform as
expected. The elements of a permutation group have an ordering defined for them — it is
not so important what this is, just that some ordering is defined. The sorted() function
will take any list and return a sorted version. So for each list of cosets, we will sort the
individual cosets and then sort the list of sorted cosets. This is a typical maneuver, though
a bit complicated with the nested lists.

rc_sorted = sorted([sorted(coset) for coset in rcl)
rc_sorted

tro, ,2,3, (1,3,2)1, 0(2,3), (1,2), (1,3)1]

lc_sorted = sorted([sorted(coset) for coset in lc])
lc_sorted

tro, ,2,3, (1,3,2)1, 0(2,3), (1,2), (1,3)1]

rc_sorted == lc_sorted

True

The list of all cosets can be quite long (it will include every element of the group) and
can take a few seconds to complete, even for small groups. There are more sophisticated,
and faster, ways to study cosets (such as just using their representatives), but to understand
these techniques you also need to understand more theory.

Subgroups

Sage can compute all of the subgroups of a group. This can produce even more output
than the coset method and can sometimes take much longer, depending on the structure
of the group. The list is in order of the size of the subgroups, with smallest first. As a
demonstration we will first compute and list all of the subgroups of a small group, and then
extract just one of these subgroups from the list for some futher study.

G = SymmetricGroup(3)
sg = G.subgroups(); sg

[Subgroup generated by [()] of (Symmetric group of order 3! as a
permutation group),
Subgroup generated by [(2,3)] of (Symmetric group of order 3! as a
permutation group),
Subgroup generated by [(1,2)] of (Symmetric group of order 3! as a
permutation group),
Subgroup generated by [(1,3)] of (Symmetric group of order 3! as a
permutation group),
Subgroup generated by [(1,2,3)] of (Symmetric group of order 3! as a
permutation group),
Subgroup generated by [(2,3), (1,2,3)] of (Symmetric group of order
3! as a permutation group)]
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H = sgl4]; H

Subgroup generated by [(1,2,3)] of (Symmetric group of order 3! as a
permutation group)

H.order ()

H.list ()

Lo, (1,2,3), (1,3,2)1

H.is_cyclic()

True

The output of the .subgroups() method can be voluminous, so sometimes we are inter-
ested in properties of specific subgroups (as in the previous example) or broader questions
of the group’s “subgroup structure.” Here we expand on Proposition 6.15. Notice that just
because Sage does not compute a subgroup of order 6 in A4, this is no substitute whatsoever
for a proof such as given for the corollary. But the computational result emboldens us to
search for the theoretical result with confidence.

G = AlternatingGroup (4)
sg = G.subgroups ()
[H.order () for H in sg]

(v, 2, 2, 2, 3, 3, 3, 3, 4, 12]

So we see no subgroup of order 6 in the list of subgroups of A4. Notice how Lagrange’s
Theorem (Theorem 6.10) is in evidence — all the subgroup orders divide 12, the order of
A,4. Be patient, the next subgroup computation may take a while.

G = SymmetricGroup (4)
sg = G.subgroups ()
[H.order () for H in sg]

[1, 2, 2, 2, 2, 2, 2, 2,2, 2,3, 3,3, 3,4, 4, 4, 4, 4, 4, 4,
6, 6, 6, 6, 8, 8, 8, 12, 24]

Again, note Lagrange’s Theorem in action. But more interestingly, S4 has a subgroup
of order 6. Four of them, to be precise. These four subgroups of order 6 are similar to each
other, can you describe them simply (before digging into the sg list for more information)?
If you were curious how many subgroups S has, you could simply count the number of
subgroups in the sg list. The len() function does this for any list and is often an easy way
to count things.

len(sg)

30
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Subgroups of Cyclic Groups

Now that we are more familiar with permutation groups, and know about the . subgroups()
method, we can revisit an idea from Chapter 4. The subgroups of a cyclic group are always
cyclic, but how many are there and what are their orders?

G = CyclicPermutationGroup (20)
[H.order () for H in G.subgroups()]

(1, 2, 4, 5, 10, 20]

G = CyclicPermutationGroup (19)
[H.order () for H in G.subgroups()]

[1, 19]

We could do this all day, but you have Sage at your disposal, so vary the order of G by
changing n and study the output across many runs. Maybe try a cyclic group of order 24
and compare with the symmetric group Sy (above) which also has order 24. Do you feel a
conjecture coming on?

n =38
G = CyclicPermutationGroup(n)
[H.order () for H in G.subgroups()]

1, 2, 4, 8]

Euler Phi Function

To add to our number-theoretic functions from Chapter 2, we note that Sage makes the
Euler ¢-function available as the function euler_phi().

euler_phi (345)

176

Here’s an interesting experiment that you can try running several times.

random_prime (10000)
n random_prime (10000)
m, n, euler_phi(mxn) == euler_phi(m)*euler_phi(n)

(5881, 1277, True)

Feel another conjecture coming on? Can you generalize this result?

6.7 Sage Exercises

The following exercises are less about cosets and subgroups, and more about using Sage
as an experimental tool. They are designed to help you become both more efficient, and
more expressive, as you write commands in Sage. We will have many opportunities to work
with cosets and subgroups in the coming chapters. These exercises do not contain much
guidance, and get more challenging as they go. They are designed to explore, or confirm,
results presented in this chapter or earlier chapters.
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Important: You should answer each of the last three problems with a single (com-
plicated) line of Sage that concludes by outputting True. A “single line” means you will
have several Sage commands packaged up together in complicated ways. It does not mean
several Sage commands seperated by semi-colons and typed in on a single line. Be sure
include some intermediate steps used in building up your solution, but using smaller ranges
of values so as to not overwhelm the reader with lots of output. This will help you, and the
grader of your work, have some confidence that the final version is correct.

When you check integers below for divisibility, remember that range() produces plain
integers, which are quite simple in their functionality. The srange() command produces
Sage integers, which have many more capabilities. (See the last exercise for an example.)
And remember that a list comprehension is a very compact way to examine many possibil-
ities at once.

1. Use .subgroups() to find an example of a group G and an integer m, so that (a) m
divides the order of G, and (b) G has no subgroup of order m. (Do not use the group
Ay for G, since this is in the text.) Provide a single line of Sage code that has all
the logic to produce the desired m as its output. (You can give your group a simple
name on a prior line and then just reference the group by name.) Here is a very simple
example that might help you structure your answer.

a =>5
b = 10
c = 6
d = 13
a.divides(b)

True

not (b in [c,d])

True

a.divides(b) and not (b in [c,d])

True

2. Verify the truth of Fermat’s Little Theorem (either variant) using the composite num-
ber 391 = 17- 23 as the choice of the base (either a or b), and for p assuming the value
of every prime number between 100 and 1000.

Build up a solution slowly — make a list of powers (start with just a few primes),
then make a list of powers reduced by modular arithmetic, then a list of comparisons
with the predicted value, then a check on all these logical values resulting from the
comparisons. This is a useful strategy for many similar problems. Eventually you will
write a single line that performs the verification by eventually printing out True. Here
are some more hints about useful functions.

a = 20
b =6
a.mod(b)
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prime_range (50, 100)

[53, 59, 61, 67, 71, 73, 79, 83, 89, 97]

all([True, True, True, Truel)

True

all([True, True, False, Truel)

False

3. Verify that the group of units mod n has order n — 1 when n is prime, again for all
primes between 100 and 1000. As before, your output should be simply True, just
once, indicating that the statement about the order is true for all the primes examined.
As before, build up your solution slowly, and with a smaller range of primes in the
beginning. Express your answer as a single line of Sage code.

4. Verify Euler’s Theorem for all values of 0 < n < 100 and for 1 < a < n. This will
require nested for statements with a conditional. Again, here is a small example that
might be helpful for constructing your one line of Sage code. Note the use of srange()
in this example.

[a/b for a in srange(9) for b in srange(1,a) if gcd(a,b)==1]

L2, 3, 3/2, 4, 4/3, 5, 5/2, 5/3, 5/4, 6, 6/5,
7, 7/2, 7/3, 1/4, 7/5, 7/6, 8, 8/3, 8/5, 8/7]

5.  The symmetric group on 7 symbols, S7, has 7! = 5040 elements. Consider the following
questions without employing Sage, based on what we know about orders of elements
of permutation groups (Exercise 5.4.13).

e What is the maximum possible order?

¢ How many elements are there of order 107
e How many elements are there of order 17
o How many elements are there of order 27

e What is the smallest positive integer for which there is no element with that
order?

These questions will be easier if you are familiar with using binomial coefficients
for counting in similarly complex situations. But either way, give some serious thought
to each question (and maybe a few of your own) before firing up Sage.

Now, compute how many elements there are of each order using the .order()
method, and then embed this into a list comprehension which creates a single list of
these counts. You can check your work (or check Sage) by wrapping this list in sum()
and hopefully getting 5040.

Comment on the process of studying these questions first without any computa-
tional aid, and then again with Sage. For which values of n do you think Sage would
be too slow and your mind quicker?
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Introduction to Cryptography

Cryptography is the study of sending and receiving secret messages. The aim of cryptogra-
phy is to send messages across a channel so that only the intended recipient of the message
can read it. In addition, when a message is received, the recipient usually requires some
assurance that the message is authentic; that is, that it has not been sent by someone who
is trying to deceive the recipient. Modern cryptography is heavily dependent on abstract
algebra and number theory.

The message to be sent is called the plaintext message. The disguised message is called
the ciphertext. The plaintext and the ciphertext are both written in an alphabet, con-
sisting of letters or characters. Characters can include not only the familiar alphabetic
characters A, ..., Z and a, ..., z but also digits, punctuation marks, and blanks. A ecryp-
tosystem, or cipher, has two parts: encryption, the process of transforming a plaintext
message to a ciphertext message, and decryption, the reverse transformation of changing
a ciphertext message into a plaintext message.

There are many different families of cryptosystems, each distinguished by a particular
encryption algorithm. Cryptosystems in a specified cryptographic family are distinguished
from one another by a parameter to the encryption function called a key. A classical
cryptosystem has a single key, which must be kept secret, known only to the sender and
the receiver of the message. If person A wishes to send secret messages to two different
people B and C, and does not wish to have B understand C’s messages or vice versa, A
must use two separate keys, so one cryptosystem is used for exchanging messages with B,
and another is used for exchanging messages with C.

Systems that use two separate keys, one for encoding and another for decoding, are
called public key cryptosystems. Since knowledge of the encoding key does not allow
anyone to guess at the decoding key, the encoding key can be made public. A public key
cryptosystem allows A and B to send messages to C' using the same encoding key. Anyone
is capable of encoding a message to be sent to C, but only C' knows how to decode such a
message.

7.1 Private Key Cryptography

In single or private key cryptosystems the same key is used for both encrypting and
decrypting messages. To encrypt a plaintext message, we apply to the message some func-
tion which is kept secret, say f. This function will yield an encrypted message. Given the
encrypted form of the message, we can recover the original message by applying the inverse
transformation f~!. The transformation f must be relatively easy to compute, as must f~';
however, f must be extremely difficult to guess from available examples of coded messages.

120
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Example 7.1 One of the first and most famous private key cryptosystems was the shift code
used by Julius Caesar. We first digitize the alphabet by letting A = 00,B =01,...,7Z = 25.
The encoding function will be

f(p) = p+ 3 mod 26;

that is, A— D,B— E,...,Z — C. The decoding function is then
£ (p) = p— 3 mod 26 = p + 23 mod 26.

Suppose we receive the encoded message DOJHEUD. To decode this message, we first
digitize it:
3,14,9,7,4,20, 3.

Next we apply the inverse transformation to get
0,11,6,4,1,17,0,

or ALGEBRA. Notice here that there is nothing special about either of the numbers 3 or
26. We could have used a larger alphabet or a different shift. O

Cryptanalysis is concerned with deciphering a received or intercepted message. Meth-
ods from probability and statistics are great aids in deciphering an intercepted message;
for example, the frequency analysis of the characters appearing in the intercepted message
often makes its decryption possible.

Example 7.2 Suppose we receive a message that we know was encrypted by using a shift
transformation on single letters of the 26-letter alphabet. To find out exactly what the shift
transformation was, we must compute b in the equation f(p) = p + b mod 26. We can do
this using frequency analysis. The letter E = 04 is the most commonly occurring letter
in the English language. Suppose that S = 18 is the most commonly occurring letter in
the ciphertext. Then we have good reason to suspect that 18 = 4 + b mod 26, or b = 14.
Therefore, the most likely encrypting function is

f(p) = p+ 14 mod 26.
The corresponding decrypting function is
f~Yp) = p+ 12 mod 26.

It is now easy to determine whether or not our guess is correct. ([

Simple shift codes are examples of monoalphabetic cryptosystems. In these ciphers a
character in the enciphered message represents exactly one character in the original message.
Such cryptosystems are not very sophisticated and are quite easy to break. In fact, in a
simple shift as described in Example 7.1, there are only 26 possible keys. It would be quite
easy to try them all rather than to use frequency analysis.

Let us investigate a slightly more sophisticated cryptosystem. Suppose that the encoding
function is given by

f(p) = ap + b mod 26.

We first need to find out when a decoding function f~! exists. Such a decoding function
exists when we can solve the equation

¢ = ap + b mod 26

for p. By Proposition 3.4, this is possible exactly when a has an inverse or, equivalently,
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when ged(a,26) = 1. In this case
fYp)=a"tp—a'bmod 26.

Such a cryptosystem is called an affine cryptosystem.

Example 7.3 Let us consider the affine cryptosystem f(p) = ap + b mod 26. For this
cryptosystem to work we must choose an a € Zyg that is invertible. This is only possible if
ged(a, 26) = 1. Recognizing this fact, we will let a = 5 since ged(5,26) = 1. It is easy to see
that a~! = 21. Therefore, we can take our encryption function to be f(p) = 5p + 3 mod 26.
Thus, ALGEBRA is encoded as 3,6,7,23,8,10,3, or DGHXIKD. The decryption function
will be

f~Y(p) = 21p — 21 - 3 mod 26 = 21p + 15 mod 26.

O

A cryptosystem would be more secure if a ciphertext letter could represent more than one

plaintext letter. To give an example of this type of cryptosystem, called a polyalphabetic

cryptosystem, we will generalize affine codes by using matrices. The idea works roughly

the same as before; however, instead of encrypting one letter at a time we will encrypt pairs
of letters. We can store a pair of letters p; and ps in a vector

n
p - ( > ‘
b2
Let A be a 2 x 2 invertible matrix with entries in Zsg. We can define an encoding function

by
f(p) = Ap + b,

where b is a fixed column vector and matrix operations are performed in Zog. The decoding
function must be

fHp)=A""p—A"b.
Example 7.4 Suppose that we wish to encode the word HELP. The corresponding digit

string is 7,4,11,15. If
| <3 5) ’
1 2

A_1_221
- \25 3)°

If b = (2,2)%, then our message is encrypted as RRGR. The encrypted letter R represents
more than one plaintext letter. [l

then

Frequency analysis can still be performed on a polyalphabetic cryptosystem, because we
have a good understanding of how pairs of letters appear in the English language. The pair
th appears quite often; the pair ¢z never appears. To avoid decryption by a third party, we
must use a larger matrix than the one we used in Example 7.4.

7.2 Public Key Cryptography

If traditional cryptosystems are used, anyone who knows enough to encode a message will
also know enough to decode an intercepted message. In 1976, W. Diffie and M. Hellman
proposed public key cryptography, which is based on the observation that the encryption and
decryption procedures need not have the same key. This removes the requirement that the
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encoding key be kept secret. The encoding function f must be relatively easy to compute,
but f~! must be extremely difficult to compute without some additional information, so
that someone who knows only the encrypting key cannot find the decrypting key without
prohibitive computation. It is interesting to note that to date, no system has been proposed
that has been proven to be “one-way;” that is, for any existing public key cryptosystem,
it has never been shown to be computationally prohibitive to decode messages with only
knowledge of the encoding key.

The RSA Cryptosystem

The RSA cryptosystem introduced by R. Rivest, A. Shamir, and L. Adleman in 1978, is
based on the difficulty of factoring large numbers. Though it is not a difficult task to find
two large random primes and multiply them together, factoring a 150-digit number that is
the product of two large primes would take 100 million computers operating at 10 million
instructions per second about 50 million years under the fastest algorithms available in the
early 1990s. Although the algorithms have improved, factoring a number that is a product
of two large primes is still computationally prohibitive.

The RSA cryptosystem works as follows. Suppose that we choose two random 150-
digit prime numbers p and ¢q. Next, we compute the product n = pq and also compute
d(n) =m = (p—1)(¢—1), where ¢ is the Euler ¢-function. Now we start choosing random
integers F until we find one that is relatively prime to m; that is, we choose E such that
ged(E,m) = 1. Using the Euclidean algorithm, we can find a number D such that DE =1
(mod m). The numbers n and E are now made public.

Suppose now that person B (Bob) wishes to send person A (Alice) a message over a
public line. Since E and n are known to everyone, anyone can encode messages. Bob
first digitizes the message according to some scheme, say A = 00,B = 02,...,Z = 25. If
necessary, he will break the message into pieces such that each piece is a positive integer
less than n. Suppose x is one of the pieces. Bob forms the number y = ¥
sends y to Alice. For Alice to recover z, she need only compute z = y” mod n. Only Alice
knows D.

mod n and

Example 7.5 Before exploring the theory behind the RSA cryptosystem or attempting to
use large integers, we will use some small integers just to see that the system does indeed
work. Suppose that we wish to send some message, which when digitized is 25. Let p = 23
and ¢ = 29. Then

n = pq = 667

and
¢(n) =m=(p—1)(¢—1) =616.
We can let E = 487, since ged(616,487) = 1. The encoded message is computed to be

2547 mod 667 = 169.

This computation can be reasonably done by using the method of repeated squares as
described in Chapter 4. Using the Euclidean algorithm, we determine that 191F = 1+151m;
therefore, the decrypting key is (n, D) = (667,191). We can recover the original message
by calculating

169! mod 667 = 25.

O
Now let us examine why the RSA cryptosystem works. We know that DE =1 (mod m);



CHAPTER 7. INTRODUCTION TO CRYPTOGRAPHY 124

hence, there exists a k such that
DE =km+1=ko(n)+ 1.

There are two cases to consider. In the first case assume that ged(z,n) = 1. Then by
Theorem 6.18,

yP = ()P = PP = ghmHl = (22M)ky = (1)%2 = 2 mod n.

So we see that Alice recovers the original message & when she computes y” mod n.

For the other case, assume that ged(xz,n) # 1. Since n = pq and = < n, we know x is
a multiple of p or a multiple of ¢, but not both. We will describe the first possibility only,
since the second is entirely similar. There is then an integer r, with » < ¢ and x = rp. Note
that we have ged(x,q) = 1 and that m = ¢(n) = (p — 1)(¢ — 1) = ¢(p)¢(q). Then, using
Theorem 6.18, but now mod g,

ghm = gke(P)6(@) = (p#(@))ké®) = (1)k¢() = 1 mod q.

So there is an integer ¢ such that 2*™ = 1 + tq. Thus, Alice also recovers the message in
this case,
D _ :L,km—l—l — .k

Yy 2"r = (1 +tq)x =z + tq(rp) = z + trn = £ mod n.

We can now ask how one would go about breaking the RSA cryptosystem. To find D
given n and F, we simply need to factor n and solve for D by using the Euclidean algorithm.
If we had known that 667 = 23 - 29 in Example 7.5, we could have recovered D.

Message Verification

There is a problem of message verification in public key cryptosystems. Since the encoding
key is public knowledge, anyone has the ability to send an encoded message. If Alice
receives a message from Bob, she would like to be able to verify that it was Bob who
actually sent the message. Suppose that Bob’s encrypting key is (n’, E) and his decrypting
key is (n’, D). Also, suppose that Alice’s encrypting key is (n, F') and her decrypting key is
(n, D). Since encryption keys are public information, they can exchange coded messages at
their convenience. Bob wishes to assure Alice that the message he is sending is authentic.
Before Bob sends the message x to Alice, he decrypts x with his own key:

2’ = 2P mod n'.
Anyone can change z’ back to x just by encryption, but only Bob has the ability to form
z'. Now Bob encrypts x’ with Alice’s encryption key to form

y = 2% mod n,
a message that only Alice can decode. Alice decodes the message and then encodes the
result with Bob’s key to read the original message, a message that could have only been
sent by Bob.

[ | Historical Note [ |

Encrypting secret messages goes as far back as ancient Greece and Rome. As we know,
Julius Caesar used a simple shift code to send and receive messages. However, the formal
study of encoding and decoding messages probably began with the Arabs in the 1400s. In
the fifteenth and sixteenth centuries mathematicians such as Alberti and Viete discovered
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that monoalphabetic cryptosystems offered no real security. In the 1800s, F. W. Kasiski
established methods for breaking ciphers in which a ciphertext letter can represent more
than one plaintext letter, if the same key was used several times. This discovery led to the
use of cryptosystems with keys that were used only a single time. Cryptography was placed
on firm mathematical foundations by such people as W. Friedman and L. Hill in the early
part of the twentieth century.

The period after World War I saw the development of special-purpose machines for encrypt-
ing and decrypting messages, and mathematicians were very active in cryptography during
World War II. Efforts to penetrate the cryptosystems of the Axis nations were organized
in England and in the United States by such notable mathematicians as Alan Turing and
A. A. Albert. The Allies gained a tremendous advantage in World War II by breaking the
ciphers produced by the German Enigma machine and the Japanese Purple ciphers.

By the 1970s, interest in commercial cryptography had begun to take hold. There was
a growing need to protect banking transactions, computer data, and electronic mail. In
the early 1970s, 1BM developed and implemented LUZIFER, the forerunner of the National
Bureau of Standards’ Data Encryption Standard (DES).

The concept of a public key cryptosystem, due to Diffie and Hellman, is very recent (1976). It
was further developed by Rivest, Shamir, and Adleman with the RSA cryptosystem (1978).
It is not known how secure any of these systems are. The trapdoor knapsack cryptosys-
tem, developed by Merkle and Hellman, has been broken. It is still an open question
whether or not the RSA system can be broken. In 1991, rRSA Laboratories published a list
of semiprimes (numbers with exactly two prime factors) with a cash prize for whoever was
able to provide a factorization (http://www.emc.com/emc-plus/rsa-labs/historical /the-rsa-
challenge-numbers.htm®). Although the challenge ended in 2007, many of these numbers
have not yet been factored.

There been a great deal of controversy about research in cryptography and cryptography
itself. In 1929, when Henry Stimson, Secretary of State under Herbert Hoover, dismissed the
Black Chamber (the State Department’s cryptography division) on the ethical grounds that
“gentlemen do not read each other’s mail” During the last two decades of the twentieth
century, the National Security Agency wanted to keep information about cryptography
secret, whereas the academic community fought for the right to publish basic research.
Currently, research in mathematical cryptography and computational number theory is
very active, and mathematicians are free to publish their results in these areas.

“www . emc.com/emc-plus/rsa-labs/historical/the-rsa-challenge-numbers.htm

7.3 Reading Questions

Use the euler_phi()function in Sage to compute ¢ (893456 123).
2. Use the power_mod()function in Sage to compute 7324 (mod 895).

Explain the mathematical basis for saying: encrypting a message using an RSA public
key is very simple computationally, while decrypting a communication without the
private key is very hard computationally.

4. Explain how in RSA message encoding differs from message verification.

5. Explain how one could be justified in saying that Diffie and Hellman’s proposal in 1976
was “revolutionary.”


http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-challenge-numbers.htm
http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-challenge-numbers.htm
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7.4 Exercises

1. Encode IXLOVEXMATH using the cryptosystem in Example 7.1.

Decode ZLOOA WKLVA EHARQ WKHA ILQDO, which was encoded using the cryptosystem
in Example 7.1.

3. Assuming that monoalphabetic code was used to encode the following secret message,
what was the original message?
APHUO EGEHP PEXOV FKEUH CKVUE CHKVE APHUO
EGEHU EXOVL EXDKT VGEFT EHFKE UHCKF TZEXO
VEZDT TVKUE XOVKV ENOHK ZFTEH TEHKQ LEROF
PVEHP PEXOV ERYKP GERYT GVKEG XDRTE RGAGA

What is the significance of this message in the history of cryptography?

4. What is the total number of possible monoalphabetic cryptosystems? How secure are
such cryptosystems?

5. Prove that a 2x2 matrix A with entries in Zyg is invertible if and only if gcd(det(A), 26) =

1.
| <3 4) ,
2 3

6. Given the matrix
use the encryption function f(p) = Ap + b to encode the message CRYPTOLOGY, where
b = (2,5)". What is the decoding function?

7. Encrypt each of the following RSA messages x so that z is divided into blocks of integers
of length 2; that is, if x = 142528, encode 14, 25, and 28 separately.

(a) n=3551, F =629,z = 31
(b) n = 2257, E = 47,z = 23
(c) n=120979, E = 13251, 2 = 142371

(d) n=45629, F = 781,z = 231561
8. Compute the decoding key D for each of the encoding keys in Exercise 7.4.7.
9. Decrypt each of the following RSA messages .

(a) n = 3551, D = 1997,y = 2791
(b) n=5893,D =81,y =34
(¢) m=120979, D = 27331,y = 112135

(d) mn=179403,D = 671,y = 129381
10. For each of the following encryption keys (n, E') in the RSA cryptosystem, compute D.
(a) (n,E)=(451,231)

(b) (n, E) =
(¢) (n, E) =
(d) (n, E) =

(

(3053,1921)
(37986733,12371)
(

n, 16394854313, 34578451)
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11.

12.

13.

Encrypted messages are often divided into blocks of n letters. A message such as THE
WORLD WONDERS WHY might be encrypted as JIW OCFRJ LPOEVYQ IOC but sent as JIW
OCF RJL POE VYQ IOC. What are the advantages of using blocks of n letters?

Find integers n, E, and X such that
XP =X (modn).

Is this a potential problem in the RSA cryptosystem?

Every person in the class should construct an RSA cryptosystem using primes that are
10 to 15 digits long. Hand in (n, E) and an encoded message. Keep D secret. See if
you can break one another’s codes.

7.5 Additional Exercises: Primality and Factoring

In the RSA cryptosystem it is important to be able to find large prime numbers easily. Also,
this cryptosystem is not secure if we can factor a composite number that is the product
of two large primes. The solutions to both of these problems are quite easy. To find out
if a number n is prime or to factor n, we can use trial division. We simply divide n by
d =2,3,...,y/n. Either a factorization will be obtained, or n is prime if no d divides n.
The problem is that such a computation is prohibitively time-consuming if n is very large.

1.

A better algorithm for factoring odd positive integers is Fermat’s factorization
algorithm.

(a) Let n = ab be an odd composite number. Prove that n can be written as the
difference of two perfect squares:

n=a" -y’ = (z—y)(x+y)

Consequently, a positive odd integer can be factored exactly when we can find
2_ .2

integers x and y such that n = z* — y~.

(b) Write a program to implement the following factorization algorithm based on the
observation in part (a). The expression ceiling(sqrt(n)) means the smallest
integer greater than or equal to the square root of n. Write another program to
do factorization using trial division and compare the speed of the two algorithms.
Which algorithm is faster and why?

= ceiling(sqrt(n))
1

< X
|

1 : while x*2 - y*2 > n do

y =y + 1
if x*2 - y*2 < n then
X = x + 1
y =1
goto 1
else if x*2 - y*2 = 0 then
a := x -y
b := x +y
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2.

Primality Testing. Recall Fermat’s Little Theorem from Chapter 6. Let p be prime
with ged(a,p) = 1. Then a?~! =1 (mod p). We can use Fermat’s Little Theorem as a
screening test for primes. For example, 15 cannot be prime since

21571 =2l =4 (mod 15).
However, 17 is a potential prime since
21771 =216 =1 (mod 17).
We say that an odd composite number n is a pseudoprime if
2" =1 (mod n).

Which of the following numbers are primes and which are pseudoprimes?
(a) 342 (c) 601 (e) 771

(b) 811 (d) 561 (f) 631
Let n be an odd composite number and b be a positive integer such that ged(b,n) = 1.
If "1 =1 (mod n), then n is a pseudoprime base b. Show that 341 is a pseudoprime
base 2 but not a pseudoprime base 3.

Write a program to determine all primes less than 2000 using trial division. Write a
second program that will determine all numbers less than 2000 that are either primes
or pseudoprimes. Compare the speed of the two programs. How many pseudoprimes
are there below 20007

There exist composite numbers that are pseudoprimes for all bases to which they
are relatively prime. These numbers are called Carmichael numbers. The first
Carmichael number is 561 = 3-11-17. In 1992, Alford, Granville, and Pomerance proved
that there are an infinite number of Carmichael numbers [4]. However, Carmichael
numbers are very rare. There are only 2163 Carmichael numbers less than 25 x 10°.
For more sophisticated primality tests, see [1], [6], or [7].
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7.7 Sage

Since Sage began as software to support research in number theory, we can quickly and easily
demonstrate the internal workings of the RSA algorithm. Recognize that, in practice, many
other details such as encoding between letters and integers, or protecting one’s private key,
are equally important for the security of communications. So RSA itself is just the theoretical
foundation.

Constructing Keys

We will suppose that Alice wants to send a secret message to Bob, along with message
verification (also known as a message with a digital signature). So we begin with the
construction of key pairs (private and public) for both Alice and Bob. We first need two
large primes for both individuals, and their product. In practice, values of n would have
hundreds of digits, rather than just 21 as we have done here.

a = next_prime(10710)

a = next_prime(p_a)

b = next_prime((3/2)*10*10)
b = next_prime(p_b)

a = p_a * g_a

b = p_b x g_b

a

(100000000520000000627, 225000000300000000091)

Computationally, the value of the Euler ¢-function for a product of primes pq can be
obtained from (p — 1)(¢ — 1), but we could use Sage’s built-in function just as well.

euler_phi(n_a)
euler_phi(n_b)
, m_b

m_a
m_b
m_a

(100000000500000000576, 225000000270000000072)

Now we can create the encryption and decryption exponents. We choose the encryption
exponent as a (small) number relatively prime to the value of m. With Sage we can factor m
quickly to help us choose this value. In practice we would not want to do this computation
for large values of m, so we might more easily choose “random” values and check for the first
value which is relatively prime to m. The decryption exponent is the multiplicative inverse,
mod m, of the encryption exponent. If you construct an improper encryption exponent (not
relatively prime to m), the computation of the multiplicative inverse will fail (and Sage will
tell you so). We do this twice — for both Alice and Bob.

factor(m_a)

2*6 *x 3 x 11 %= 17 % 131 x 521 % 73259 x 557041

5%23
inverse_mod(E_a, m_a)

O m
[
1l
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20869565321739130555

factor (m_b)

2*3 *x 34 *x 107 * 1298027 * 2500000001

7%29
= inverse_mod(E_b, m_b)

O O m
T T T
|

24384236482463054195

At this stage, each individual would publish their values of n and F, while keeping D
very private and secure. In practice D should be protected on the user’s hard disk by a
password only the owner knows. For even greater security a person might only have two
copies of their private key, one on a USB memory stick they always carry with them, and a
backup in their sage deposit box. Every time the person uses D they would need to provide
the password. The value of m can be discarded. For the record, here are all the keys:

print("Alice's_public_key,_.n:", n_a, "E:", E_a)

Alice's_public_key,_.n:_.100000000520000000627 _E:_115

print("Alice's_private_key,._.D:", D_a)

Alice's_private_key,._.D:_.20869565321739130555

print ("Bob's_public_key,.n:", n_b, "E:", E_b)

Bob 's_public_key,.n:_.225000000300000000091 _E:_203

print("Bob's_private_key,_.D:", D_b)

Bob 's_.private_key,.D:.24384236482463054195

Signing and Encoding a Message

Alice is going to construct a message as an English word with four letters. From these four
letters we will construct a single number to represent the message in a form we can use in
the RsA algorithm. The function ord() will convert a single letter to its ASCII code value,
a number between 0 and 127. If we use these numbers as “digits” mod 128, we can be sure
that Alice’s four-letter word will encode to an integer less than 128% = 268, 435,456. The
particular maximum value is not important, so long as it is smaller than our value of n since
all of our subsequent arithmetic is mod n. We choose a popular four-letter word, convert
to Ascir “digits” with a list comprehension, and then construct the integer from the digits
with the right base. Notice how we can treat the word as a list and that the first digit in
the list is in the “ones” place (we say the list is in “little-endian” order).
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word = 'Sage'
digits = [ord(letter) for letter in word]
digits

[83, 97, 103, 101]

message = ZZ(digits, 128)
message

213512403

First, Alice will sign her message to provide message verification. She uses her private
key for this, since this is an act that only she should be able to perform.

signed = power_mod(message, D_a, n_a)
signed

47838774644892618423

Then Alice encrypts her message so that only Bob can read it. To do this, she uses
Bob’s public key. Notice how she does not have to even know Bob — for example, she could
have obtained Bob’s public key off his web site or maybe Bob announced his public key in
an advertisement in the New York Times.

encrypted = power_mod(signed, E_b, n_b)
encrypted

111866209291209840488

Alice’s communication is now ready to travel on any communications network, no matter
how insecure the network may be, and no matter how many snoops may be monitoring the
network.

Decoding and Verifying a Message

Now assume that the value of encrypted has reached Bob. Realize that Bob may not
know Alice, and realize that Bob does not even necessarily believe what he has received has
genuinely originated from Alice. An adversary could be trying to confuse Bob by sending
messages that claim to be from Alice. First, Bob must unwrap the encyption Alice has
provided. This is an act only Bob, as the intended recipient, should be able to do. And he
does it by using his private key, which only he knows, and which he has kept secure.

decrypted = power_mod(encrypted, D_b, n_b)
decrypted

47838774644892618423

Right now, this means very little to Bob. Anybody could have sent him an encoded
message. However, this was a message Alice signed. Lets unwrap the message signing.
Notice that this uses Alice’s public key. Bob does not need to know Alice — for example,
he could obtain Alice’s key off her web site or maybe Alice announced her public key in an
advertisement in the New York Times.

received = power_mod(decrypted, E_a, n_a)
received
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213512403

Bob needs to transform this integer representation back to a word with letters. The
chr() function converts ASCII code values to letters, and we use a list comprehension to do
this repeatedly.

digits = received.digits(base=128)
letters = [chr(ascii) for ascii in digits]
letters

I: ! S ! ! a 1 ! g ! ! e ! :I
If we would like a slightly more recognizable result, we can combine the letters into a
string.

"' join(letters)

'Sage'

Bob is pleased to obtain such an informative message from Alice. What would have
happened if an imposter had sent a message ostensibly from Alice, or what if an adversary
had intercepted Alice’s original message and replaced it with a tampered message? (The
latter is known as a “man in the middle” attack.)

In either case, the rogue party would not be able to duplicate Alice’s first action —
signing her message. If an adversary somehow signs the message, or tampers with it, the
step where Bob unwraps the signing will lead to total garbage. (Try it!) Because Bob
received a legitimate word, properly capitalized, he has confidence that the message he
unsigned is the same as the message Alice signed. In practice, if Alice sent several hundred
words as her message, the odds that it will unsign as cohrent text are astronomically small.

What have we demonstrated?

1. Alice can send messages that only Bob can read.
2. Bob can receive secret messages from anybody.

3. Alice can sign messages, so that then Bob (or anybody else)knows they are genuinely
from Alice.

Of course, without making new keys, you can reverse the roles of Alice and Bob. And if
Carol makes a key pair, she can communicate with both Alice and Bob in the same fashion.

If you want to use RSA public-key encryption seriously, investigate the open source
software GNU Privacy Guard, aka GPG, which is freely available at www.gnupg.org/®. Notice
that it only makes sense to use encryption programs that allow you to look at the source
code.

7.8 Sage Exercises

1. Construct a keypair for Alice using the first two primes greater than 10'2. For your
choice of F, use a single prime number and use the smallest possible choice.
Output the values of n, £, and D for Alice. Then use Sage commands to verify
that Alice’s encryption and decryption keys are multiplicative inverses.

Swww. gnupg.org


https://www.gnupg.org/
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2.

Construct a keypair for Bob using the first two primes greater than 2 - 10'2. For your
choice of E, use a single prime number and use the smallest possible choice. Output
the values of n, E, and D for Alice.

Encode the word Math using ASCII values in the same manner as described in this
section (keep the capitalization as shown). Create a signed message of this word for
communication from Alice to Bob. Output the three integers: the message, the signed
message and the signed, encrypted message.

Demonstrate how Bob converts the message received from Alice back into the word
Math. Output the value of the intermediate computations and the final human-readable
message.

Create a new signed message from Alice to Bob. Simulate the message being tampered
with by adding 1 to the integer Bob receives, before he decrypts it. What result does
Bob get for the letters of the message when he decrypts and unsigns the tampered
message?

Classroom Exercise. Organize a class into several small groups. Have each group
construct key pairs with some minimum size (digits in n). Each group should keep
their private key to themselves, but make their public key available to everybody in
the room. It could be written on the board (error-prone) or maybe pasted in a public
site like pastebin.com’. Then each group can send a signed message to another group,
where the groups could be arranged logically in a circular fashion for this purpose. Of
course, messages should be posted publicly as well. Expect a success rate somewhere
between 50% and 100%.

If you do not do this in class, grab a study buddy and send each other messages in
the same manner. Expect a success rate of 0%, 50% or 100%.

POpastebin.com


http://pastebin.com/

8

Algebraic Coding Theory

Coding theory is an application of algebra that has become increasingly important over the
last several decades. When we transmit data, we are concerned about sending a message over
a channel that could be affected by “noise.” We wish to be able to encode and decode the
information in a manner that will allow the detection, and possibly the correction, of errors
caused by noise. This situation arises in many areas of communications, including radio,
telephone, television, computer communications, and digital media technology. Probability,
combinatorics, group theory, linear algebra, and polynomial rings over finite fields all play
important roles in coding theory.

8.1 Error-Detecting and Correcting Codes

Let us examine a simple model of a communications system for transmitting and receiving
coded messages (Figure 8.1).

134
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m-digit message

Encoder

n-digit code word

Transmitter

Noise

Receiver

n-digit received word

|

Decoder

m-digit recetved message or error

Figure 8.1 Encoding and decoding messages

Uncoded messages may be composed of letters or characters, but typically they consist
of binary m-tuples. These messages are encoded into codewords, consisting of binary n-
tuples, by a device called an encoder. The message is transmitted and then decoded. We
will consider the occurrence of errors during transmission. An error occurs if there is a
change in one or more bits in the codeword. A decoding scheme is a method that either
converts an arbitrarily received n-tuple into a meaningful decoded message or gives an error
message for that n-tuple. If the received message is a codeword (one of the special n-tuples
allowed to be transmitted), then the decoded message must be the unique message that
was encoded into the codeword. For received non-codewords, the decoding scheme will give
an error indication, or, if we are more clever, will actually try to correct the error and
reconstruct the original message. Our goal is to transmit error-free messages as cheaply
and quickly as possible.

Example 8.2 One possible coding scheme would be to send a message several times and to
compare the received copies with one another. Suppose that the message to be encoded is
a binary n-tuple (z1,z2,...,x,). The message is encoded into a binary 3n-tuple by simply
repeating the message three times:

(1,22, Tp) — (T1, T2, .o Ty T1, T2, « oy Ty T1, T2y« + - 5 Ty

To decode the message, we choose as the ¢th digit the one that appears in the ith place
in at least two of the three transmissions. For example, if the original message is (0110),
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then the transmitted message will be (0110 0110 0110). If there is a transmission error in
the fifth digit, then the received codeword will be (0110 1110 0110), which will be correctly
decoded as (0110).10 This triple-repetition method will automatically detect and correct all
single errors, but it is slow and inefficient: to send a message consisting of n bits, 2n extra
bits are required, and we can only detect and correct single errors. We will see that it is
possible to find an encoding scheme that will encode a message of n bits into m bits with
m much smaller than 3n. (]

Example 8.3 Fven parity, a commonly used coding scheme, is much more efficient than
the simple repetition scheme. The Ascil (American Standard Code for Information Inter-
change) coding system uses binary 8-tuples, yielding 28 = 256 possible 8-tuples. However,
only seven bits are needed since there are only 27 = 128 Ascil characters. What can or
should be done with the extra bit? Using the full eight bits, we can detect single transmission
errors. For example, the ASCII codes for A, B, and C are

A = 6519 = 010000012,
B = 6610 = 010000102,
C = 6710 = 010000115,.

Notice that the leftmost bit is always set to 0; that is, the 128 AscII characters have codes

000000002 = 010,

011111115 = 1274.

The bit can be used for error checking on the other seven bits. It is set to either 0 or 1
so that the total number of 1 bits in the representation of a character is even. Using even
parity, the codes for A, B, and C now become

A = 010000012,
B = 010000102,
C = 110000115.

Suppose an A is sent and a transmission error in the sixth bit is caused by noise over the
communication channel so that (0100 0101) is received. We know an error has occurred since
the received word has an odd number of 1s, and we can now request that the codeword be
transmitted again. When used for error checking, the leftmost bit is called a parity check
bit.

By far the most common error-detecting codes used in computers are based on the
addition of a parity bit. Typically, a computer stores information in m-tuples called words.
Common word lengths are 8, 16, and 32 bits. One bit in the word is set aside as the parity
check bit, and is not used to store information. This bit is set to either 0 or 1, depending
on the number of 1s in the word.

Adding a parity check bit allows the detection of all single errors because changing a
single bit either increases or decreases the number of 1s by one, and in either case the parity
has been changed from even to odd, so the new word is not a codeword. (We could also
construct an error detection scheme based on odd parity; that is, we could set the parity
check bit so that a codeword always has an odd number of 1s.) |

The even parity system is easy to implement, but has two drawbacks. First, multiple

"We will adopt the convention that bits are numbered left to right in binary n-tuples.
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errors are not detectable. Suppose an A is sent and the first and seventh bits are changed
from 0 to 1. The received word is a codeword, but will be decoded into a C instead of an A.
Second, we do not have the ability to correct errors. If the 8-tuple (1001 1000) is received,
we know that an error has occurred, but we have no idea which bit has been changed. We
will now investigate a coding scheme that will not only allow us to detect transmission errors
but will actually correct the errors.

Example 8.4 Suppose that our original message is either a 0 or a 1, and that 0 encodes
to (000) and 1 encodes to (111). If only a single error occurs during transmission, we can
detect and correct the error. For example, if a (101) is received, then the second bit must
have been changed from a 1 to a 0. The originally transmitted codeword must have been
(111). This method will detect and correct all single errors.

Table 8.5 A repetition code

Transmitted Received Word
Codeword 000 001 010 011 100 101 110 111
000 0 1 1 2 1 2 2 3
111 3 2 2 1 2 1 1 0

In Table 8.5, we present all possible words that might be received for the transmitted
codewords (000) and (111). Table 8.5 also shows the number of bits by which each received
3-tuple differs from each original codeword. O

Maximum-Likelihood Decoding

The coding scheme presented in Example 8.4 is not a complete solution to the problem
because it does not account for the possibility of multiple errors. For example, either a
(000) or a (111) could be sent and a (001) received. We have no means of deciding from the
received word whether there was a single error in the third bit or two errors, one in the first
bit and one in the second. No matter what coding scheme is used, an incorrect message
could be received. We could transmit a (000), have errors in all three bits, and receive
the codeword (111). It is important to make explicit assumptions about the likelihood and
distribution of transmission errors so that, in a particular application, it will be known
whether a given error detection scheme is appropriate. We will assume that transmission
errors are rare, and, that when they do occur, they occur independently in each bit; that is,
if p is the probability of an error in one bit and ¢ is the probability of an error in a different
bit, then the probability of errors occurring in both of these bits at the same time is pq.
We will also assume that a received n-tuple is decoded into a codeword that is closest to it;
that is, we assume that the receiver uses mazimums-likelihood decoding.'!

This section requires a knowledge of probability, but can be skipped without loss of continuity.
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p

Figure 8.6 Binary symmetric channel

A binary symmetric channel is a model that consists of a transmitter capable of
sending a binary signal, either a 0 or a 1, together with a receiver. Let p be the probability
that the signal is correctly received. Then ¢ = 1 — p is the probability of an incorrect
reception. If a 1 is sent, then the probability that a 1 is received is p and the probability
that a 0 is received is ¢ (Figure 8.6). The probability that no errors occur during the
transmission of a binary codeword of length n is p™. For example, if p = 0.999 and a
message consisting of 10,000 bits is sent, then the probability of a perfect transmission is

(0.999)1%:990 =~ 0.00005.

Theorem 8.7 If a binary n-tuple (x1,...,x,) is transmitted across a binary symmetric
channel with probability p that no error will occur in each coordinate, then the probability
that there are errors in exactly k coordinates is

N\ k n—k
(k)qp |

Proor. Fix k different coordinates. We first compute the probability that an error has
occurred in this fixed set of coordinates. The probability of an error occurring in a particular
one of these k coordinates is g; the probability that an error will not occur in any of the
remaining n — k coordinates is p. The probability of each of these n independent events is
¢*p"*. The number of possible error patterns with exactly k errors occurring is equal to

(1) = o

the number of combinations of n things taken k at a time. Each of these error patterns has
probability ¢*p™~* of occurring; hence, the probability of all of these error patterns is

Y\ &k n—k
(k)qp |
[ ]

Example 8.8 Suppose that p = 0.995 and a 500-bit message is sent. The probability that
the message was sent error-free is

P = (0.995)°% ~ 0.082.

The probability of exactly one error occurring is

(?) qp™ 1 = 500(0.005)(0.995)%° ~ 0.204.
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The probability of exactly two errors is

500 - 499
(Z) ¢p = T(0.005)2(0.995)498 ~ 0.257.

The probability of more than two errors is approximately

1—0.082 —0.204 — 0.257 = 0.457.

Block Codes

If we are to develop efficient error-detecting and error-correcting codes, we will need more
sophisticated mathematical tools. Group theory will allow faster methods of encoding and
decoding messages. A code is an (n,m)-block code if the information that is to be coded
can be divided into blocks of m binary digits, each of which can be encoded into n binary
digits. More specifically, an (n, m)-block code consists of an encoding function

E:Zp — 78

and a decoding function
D7y — 7y
A codeword is any element in the image of E. We also require that E be one-to-one so

that two information blocks will not be encoded into the same codeword. If our code is to
be error-correcting, then D must be onto.

Example 8.9 The even-parity coding system developed to detect single errors in ASCII
characters is an (8, 7)-block code. The encoding function is

E(x7,x6,...,21) = (x8,27,...,21),

where xg = 27 + 26 + - - - + 1 with addition in Zs. O

Let x = (z1,...,2,) and y = (Y1, .. .,Yn) be binary n-tuples. The Hamming distance
or distance, d(x,y), between x and y is the number of bits in which x and y differ. The
distance between two codewords is the minimum number of transmission errors required
to change one codeword into the other. The minimum distance for a code, dunin, is
the minimum of all distances d(x,y), where x and y are distinct codewords. The weight,
w(x), of a binary codeword x is the number of 1s in x. Clearly, w(x) = d(x,0), where
0=(00---0).

Example 8.10 Let x = (10101), y = (11010), and z = (00011) be all of the codewords in
some code C'. Then we have the following Hamming distances:

d(x,y) =4, d(x,z) =3, d(y,z) = 3.

The minimum distance for this code is 3. We also have the following weights:

O
The following proposition lists some basic properties about the weight of a codeword
and the distance between two codewords. The proof is left as an exercise.
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Proposition 8.11 Let x, y, and z be binary n-tuples. Then
1. w(x) = d(x,0);

X? Z 07.

2. d(x,y)
3. d(x,y) = 0 ezxactly when x =y;
4. d(x,y) = d(y,x);

5. d(x,y) <d(x,z) +d(z,y).

The weights in a particular code are usually much easier to compute than the Hamming
distances between all codewords in the code. If a code is set up carefully, we can use this
fact to our advantage.

Suppose that x = (1101) and y = (1100) are codewords in some code. If we transmit
(1101) and an error occurs in the rightmost bit, then (1100) will be received. Since (1100) is
a codeword, the decoder will decode (1100) as the transmitted message. This code is clearly
not very appropriate for error detection. The problem is that d(x,y) = 1. If x = (1100) and
y = (1010) are codewords, then d(x,y) = 2. If x is transmitted and a single error occurs,
then y can never be received. Table 8.12 gives the distances between all 4-bit codewords
in which the first three bits carry information and the fourth is an even parity check bit.
We can see that the minimum distance here is 2; hence, the code is suitable as a single
error-detecting code.

Table 8.12 Distances between 4-bit codewords

X,

0000 | 0011 | 0101 | 0110 | 1001 | 1010 | 1100 | 1111
0000 0 2 2 2 2 2 2 4
0011 2 0 2 2 2 2 4 2
0101 2 2 0 2 2 4 2 2
0110 2 2 2 0 4 2 2 2
1001 2 2 2 4 0 2 2 2
1010 2 2 4 2 2 0 2 2
1100 2 4 2 2 2 2 0 2
1111 4 2 2 2 2 2 2 0

To determine exactly what the error-detecting and error-correcting capabilities for a
code are, we need to analyze the minimum distance for the code. Let x and y be codewords.
If d(x,y) = 1 and an error occurs where x and y differ, then x is changed to y. The received
codeword is y and no error message is given. Now suppose d(x,y) = 2. Then a single error
cannot change x to y. Therefore, if dyi, = 2, we have the ability to detect single errors.
However, suppose that d(x,y) = 2, y is sent, and a noncodeword z is received such that

d(x,z) =d(y,z) = 1.

Then the decoder cannot decide between x and y. Even though we are aware that an error
has occurred, we do not know what the error is.

Suppose dmin > 3. Then the maximum-likelihood decoding scheme corrects all single
errors. Starting with a codeword x, an error in the transmission of a single bit gives y
with d(x,y) = 1, but d(z,y) > 2 for any other codeword z # x. If we do not require the
correction of errors, then we can detect multiple errors when a code has a minimum distance
that is greater than or equal to 3.

Theorem 8.13 Let C be a code with dyi, = 2n+ 1. Then C can correct any n or fewer
errors. Furthermore, any 2n or fewer errors can be detected in C.
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PROOF. Suppose that a codeword x is sent and the word y is received with at most n errors.
Then d(x,y) < n. If z is any codeword other than x, then

2n+1 <d(x,z) < d(x,y)+d(y,z) <n+d(y,z).

Hence, d(y,z) > n + 1 and y will be correctly decoded as x. Now suppose that x is
transmitted and y is received and that at least one error has occurred, but not more than
2n errors. Then 1 < d(x,y) < 2n. Since the minimum distance between codewords is 2n+1,
y cannot be a codeword. Consequently, the code can detect between 1 and 2n errors. W

Example 8.14 In Table 8.15, the codewords ¢; = (00000), co = (00111), ¢35 = (11100),
and ¢4 = (11011) determine a single error-correcting code.

Table 8.15 Hamming distances for an error-correcting code

00000 | 00111 | 11100 | 11011
00000 0 3 3 4
00111 3 0 4 3
11100 3 4 0 3
11011 4 3 3 0

O

[ | Historical Note [ |

Modern coding theory began in 1948 with C. Shannon’s paper, “A Mathematical Theory
of Information” [7]. This paper offered an example of an algebraic code, and Shannon’s
Theorem proclaimed exactly how good codes could be expected to be. Richard Hamming
began working with linear codes at Bell Labs in the late 1940s and early 1950s after becoming
frustrated because the programs that he was running could not recover from simple errors
generated by noise. Coding theory has grown tremendously in the past several decades.
The Theory of Error-Correcting Codes, by MacWilliams and Sloane [5], published in 1977,
already contained over 1500 references. Linear codes (Reed-Muller (32, 6)-block codes) were
used on NASA’s Mariner space probes. More recent space probes such as Voyager have used
what are called convolution codes. Currently, very active research is being done with Goppa
codes, which are heavily dependent on algebraic geometry.

8.2 Linear Codes

To gain more knowledge of a particular code and develop more efficient techniques of encod-
ing, decoding, and error detection, we need to add additional structure to our codes. One
way to accomplish this is to require that the code also be a group. A group code is a code
that is also a subgroup of Zj.

To check that a code is a group code, we need only verify one thing. If we add any
two elements in the code, the result must be an n-tuple that is again in the code. It is not
necessary to check that the inverse of the n-tuple is in the code, since every codeword is its
own inverse, nor is it necessary to check that 0 is a codeword. For instance,

(11000101) + (11000101) = (00000000).

Example 8.16 Suppose that we have a code that consists of the following 7-tuples:

(0000000) (0001111) (0010101) (0011010)
(0100110) (0101001) (0110011) (0111100)
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(1000011) (1001100) (1010110) (1011001)
(1100101) (1101010) (1110000) (1111111).

It is a straightforward though tedious task to verify that this code is also a subgroup of Z;
and, therefore, a group code. This code is a single error-detecting and single error-correcting
code, but it is a long and tedious process to compute all of the distances between pairs of
codewords to determine that dp;, = 3. It is much easier to see that the minimum weight
of all the nonzero codewords is 3. As we will soon see, this is no coincidence. However, the
relationship between weights and distances in a particular code is heavily dependent on the
fact that the code is a group. O

Lemma 8.17 Let x and 'y be binary n-tuples. Then w(x +y) = d(X,y).

PRrROOF. Suppose that x and y are binary n-tuples. Then the distance between x and y
is exactly the number of places in which x and y differ. But x and y differ in a particular
coordinate exactly when the sum in the coordinate is 1, since

1+1=0
0+0=0
1+40=1
0+1=1.

Consequently, the weight of the sum must be the distance between the two codewords. W

Theorem 8.18 Let dyin be the minimum distance for a group code C'. Then duyin s the
minimum weight of all the nonzero codewords in C. That is,

dmin = min{w(x) : x # 0}.
PROOF. Observe that

dmin = min{d(x,y) : x #y}
= min{d(x,y) : x+y # 0}
=min{fw(x+y):x+y # 0}
= min{w(z) : z # 0}.

Linear Codes

From Example 8.16, it is now easy to check that the minimum nonzero weight is 3; hence,
the code does indeed detect and correct all single errors. We have now reduced the problem
of finding “good” codes to that of generating group codes. One easy way to generate group
codes is to employ a bit of matrix theory.

Define the inner product of two binary n-tuples to be

Xy =Tiy1+ -+ TnYn,

where x = (71, 22,...,7,)  and y = (y1,¥2,...,¥n)" are column vectors.!? For example, if
x = (011001)" and y = (110101)%, then x - y = 0. We can also look at an inner product as
the product of a row matrix with a column matrix; that is,

x y=x'y

12Since we will be working with matrices, we will write binary n-tuples as column vectors for the remainder
of this chapter.
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n
Y
pr— (:171 1‘2 ... xn) .2

Yn
=T1Yy1 +x2Y2 + -+ TpYn-

Example 8.19 Suppose that the words to be encoded consist of all binary 3-tuples and that
our encoding scheme is even-parity. To encode an arbitrary 3-tuple, we add a fourth bit to
obtain an even number of 1s. Notice that an arbitrary n-tuple x = (x1, 2, ..., 2,)" has an
even number of 1s exactly when x1 +x9 + - - +z, = 0; hence, a 4-tuple x = (21, x2, T3, 74)"
has an even number of 1s if x1 +xz9 + 3+ x4 =0, or

x-lzxtlz(xl To I3 x4)

—_ = = =
Il
ja]

This example leads us to hope that there is a connection between matrices and coding
theory. O

Let M, xn(Z32) denote the set of all m x n matrices with entries in Zs. We do matrix
operations as usual except that all our addition and multiplication operations occur in Zs.
Define the null space of a matrix H € M,,,x,(Z2) to be the set of all binary n-tuples x
such that Hx = 0. We denote the null space of a matrix H by Null(H).

Example 8.20 Suppose that

T
Il
O = O
O~

010
1 10
1 11

For a 5-tuple x = (w1, %2, 23, 24, 25)" to be in the null space of H, Hx = 0. Equivalently,
the following system of equations must be satisfied:

To+ x4 =0
1+ x2+ w3+ 14 =0
r3+ x4+ x5 = 0.

The set of binary 5-tuples satisfying these equations is
(00000) (11110) (10101) (01011).

This code is easily determined to be a group code. O

Theorem 8.21 Let H be in My, xn(Za). Then the null space of H is a group code.
PROOF. Since each element of Z7 is its own inverse, the only thing that really needs to be
checked here is closure. Let x,y € Null(H) for some matrix H in M, x,(Z2). Then Hx =0
and Hy = 0. So

Hx+y)=Hx+Hy=0+0=0.

Hence, x + y is in the null space of H and therefore must be a codeword. |

A code is a linear code if it is determined by the null space of some matrix H €
men(ZQ)-
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Example 8.22 Let C be the code given by the matrix
000111

H=10 11011

101001

Suppose that the 6-tuple x = (010011)* is received. It is a simple matter of matrix multi-
plication to determine whether or not x is a codeword. Since

0
Hx=1|1],
1

the received word is not a codeword. We must either attempt to correct the word or request
that it be transmitted again. (|

8.3 Parity-Check and Generator Matrices

We need to find a systematic way of generating linear codes as well as fast methods of
decoding. By examining the properties of a matrix H and by carefully choosing H, it is
possible to develop very efficient methods of encoding and decoding messages. To this end,
we will introduce standard generator and canonical parity-check matrices.

Suppose that H is an m X nm matrix with entries in Zo and n > m. If the last m
columns of the matrix form the m x m identity matrix, I,,,, then the matrix is a canonical
parity-check matrixz. More specifically, H = (A | I,,,), where A is the m x (n —m) matrix

aixl a2 - Alp-m
as1 a22 - A2 n—m
aml AAm2 - Omn—m

and I,,, is the m x m identity matrix

10 - 0
01 - 0
00 - 1

With each canonical parity-check matrix we can associate an n x (n —m) standard gen-

erator matrix /
G= =",
(%)

Our goal will be to show that an x satisfying Gx = y exists if and only if Hy = 0. Given a
message block x to be encoded, the matrix G will allow us to quickly encode it into a linear
codeword y.

Example 8.23 Suppose that we have the following eight words to be encoded:

(000), (001), (010), ..., (111).
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For
011
A=111 0},
1 0 1

the associated standard generator and canonical parity-check matrices are

1 00
010
G = 0 01
011
110
1 01
and
011100
H={111001 0],
101 001
respectively.

Observe that the rows in H represent the parity checks on certain bit positions in a
6-tuple. The 1s in the identity matrix serve as parity checks for the 1s in the same row. If
X = (l‘lu T2,T3,T4,T5, LUG), then

T2 + T3+ X4
O=Hx=|x1+xz0+z5],
r1+ x3 + xg

which yields a system of equations:

To+x3+x4=0
T1+x9+x25=0
1+ 23+ 26 = 0.

Here x4 serves as a check bit for x5 and x3; x5 is a check bit for 21 and x9; and x4 is a check
bit for ;1 and x3. The identity matrix keeps x4, x5, and xg from having to check on each
other. Hence, x1, x2, and x3 can be arbitrary but x4, x5, and g must be chosen to ensure
parity. The null space of H is easily computed to be

(000000) (001101) (010110) (011011)
(100011) (101110) (110101) (111000).

An even easier way to compute the null space is with the generator matrix G (Table 8.24).
O
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Table 8.24 A matrix-generated code

Message Word x Codeword Gx

000 000000
001 001101
010 010110
011 011011
100 100011
101 101110
110 110101
111 111000

Theorem 8.25 If H € M, «n(Z2) is a canonical parity-check matriz, then Null(H) consists
of all x € Zy whose first n —m bits are arbitrary but whose last m bits are determined by
Hx = 0. Each of the last m bits serves as an even parity check bit for some of the first
n —m bits. Hence, H gives rise to an (n,n —m)-block code.

We leave the proof of this theorem as an exercise. In light of the theorem, the first
n —m bits in x are called information bits and the last m bits are called check bits. In
Example 8.23, the first three bits are the information bits and the last three are the check
bits.

Theorem 8.26 Suppose that G is an n x k standard generator matriz. Then C =
{y :Gx =y forx e Zg} is an (n, k)-block code. More specifically, C is a group code.
PROOF. Let Gx1 = y1 and Gx9 = y2 be two codewords. Then y1 + y2 is in C since

G(x1 +x2) = Gx1 + Gxa =y + y2.

We must also show that two message blocks cannot be encoded into the same codeword.
That is, we must show that if Gx = Gy, then x = y. Suppose that Gx = Gy. Then

Gx—Gy=G(x—-y)=0.

However, the first k& coordinates in G(x —y) are exactly 1 — y1, ..., 2 — Yk, since they are
determined by the identity matrix, Iy, part of G. Hence, G(x —y) = 0 exactly when x =y.
[ |

Before we can prove the relationship between canonical parity-check matrices and stan-
dard generating matrices, we need to prove a lemma.

Lemma 8.27 Let H = (A | I,;,) be an m X n canonical parity-check matriz and G = (I"f’">

be the corresponding n X (n —m) standard generator matriz. Then HG = 0.
ProOF. Let C = HG. The ijth entry in C' is

n
Cij = Z hikgr;
n

k=1
n—m

= hikgri+ Y hikgks

k k=n—m+1

n

— n

Wikbkj + D Oi (o) ks
1 k=n—m-+1

ij T i

Il
i

3

I
(]

I
S Q9 -~
Il

9
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1 i
=4 '
0 i#7j
is the Kronecker delta. |

Theorem 8.28 Let H = (A | I,) be an m X n canonical parity-check matriz and let

where

G = (I"fm> be the n x (n —m) standard generator matrixz associated with H. Let C be the

code generated by G. Then 'y is in C if and only if Hy = 0. In particular, C is a linear
code with canonical parity-check matriz H.
Proor. First suppose that y € C. Then Gx = y for some x € Z3'. By Lemma 8.27,
Hy =HGx =0.

Conversely, suppose that y = (y1,...,%)" is in the null space of H. We need to find
an x in Z§~™ such that Gx* = y. Since Hy = 0, the following set of equations must be
satisfied:

a1y +ay2 + -+ Al p—mYn—m + Yn—m+1 =0
a21y1 + ay2 + -+ a2 n—mYn—m + Yn—m42 =0

Am1Y1 + am2y2 + - - + Ampn—mYn—m + Yn—m+m = 0.

Equivalently, ¥n—m+1,--.,Yn are determined by y1, ..., Yn—m:

Yn—m+1 = 611Y1 + a12y2 + - + AL n—mYn—m
Yn—m+2 = a21Y1 + a22y2 + - + A2 n—mYn—m

Yn = Gm1Y1 T Gm2Y2 + *** + Omn—mYn—m-

Consequently, we can let x; =y; fori=1,...,n—m. [ |

It would be helpful if we could compute the minimum distance of a linear code directly
from its matrix H in order to determine the error-detecting and error-correcting capabilities
of the code. Suppose that

e; = (100---00)"
ey = (010---00)"

e, = (000---01)*

are the n-tuples in Z3 of weight 1. For an m x n binary matrix H, He; is exactly the ith
column of the matrix H.

Example 8.29 Observe that

0
11100 1 1
10010 01=10
11 001 0 1
0
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We state this result in the following proposition and leave the proof as an exercise.

Proposition 8.30 Let e; be the binary n-tuple with a 1 in the ith coordinate and 0’s
elsewhere and suppose that H € My, wn(Z2). Then He; is the ith column of the matriz H.

Theorem 8.31 Let H be an m X n binary matriz. Then the null space of H is a single
error-detecting code if and only if no column of H consists entirely of zeros.
PROOF. Suppose that Null(H) is a single error-detecting code. Then the minimum distance
of the code must be at least 2. Since the null space is a group code, it is sufficient to require
that the code contain no codewords of less than weight 2 other than the zero codeword.
That is, e; must not be a codeword for i = 1,...,n. Since He; is the ith column of H, the
only way in which e; could be in the null space of H would be if the ith column were all
zeros, which is impossible; hence, the code must have the capability to detect at least single
errors.

Conversely, suppose that no column of H is the zero column. By Proposition 8.30,
H e; 75 0. |

Example 8.32 If we consider the matrices

11100
Hi=({1 00 10
110 0 1
and
11100
Hy=11 0 0 0 0],
110 0 1
then the null space of H; is a single error-detecting code and the null space of Hs is not.

O

We can even do better than Theorem 8.31. This theorem gives us conditions on a matrix

H that tell us when the minimum weight of the code formed by the null space of H is 2.

We can also determine when the minimum distance of a linear code is 3 by examining the
corresponding matrix.

Example 8.33 If we let

11
H=1|10
11

S O =

0
1
0

and want to determine whether or not H is the canonical parity-check matrix for an error-
correcting code, it is necessary to make certain that Null(H) does not contain any 4-tuples
of weight 2. That is, (1100), (1010), (1001), (0110), (0101), and (0011) must not be in
Null(H). The next theorem states that we can indeed determine that the code generated
by H is error-correcting by examining the columns of H. Notice in this example that not
only does H have no zero columns, but also that no two columns are the same. [l

Theorem 8.34 Let H be a binary matriz. The null space of H is a single error-correcting
code if and only if H does not contain any zero columns and no two columns of H are

identical.
Proor. The n-tuple e; + e; has 1s in the i¢th and jth entries and Os elsewhere, and

w(e; +e;) =2 for i # j. Since
0:H(ei+ej) :He,-+Hej

can only occur if the ith and jth columns are identical, the null space of H is a single
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error-correcting code. n

Suppose now that we have a canonical parity-check matrix H with three rows. Then
we might ask how many more columns we can add to the matrix and still have a null space
that is a single error-detecting and single error-correcting code. Since each column has three
entries, there are 23 = 8 possible distinct columns. We cannot add the columns

0 1 0 0

So we can add as many as four columns and still maintain a minimum distance of 3.

In general, if H is an m x n canonical parity-check matrix, then there are n —m informa-
tion positions in each codeword. Each column has m bits, so there are 2™ possible distinct
columns. It is necessary that the columns 0, e, ..., e, be excluded, leaving 2™ — (1 4+ m)
remaining columns for information if we are still to maintain the ability not only to detect
but also to correct single errors.

8.4 Efficient Decoding

We are now at the stage where we are able to generate linear codes that detect and correct
errors fairly easily, but it is still a time-consuming process to decode a received n-tuple and
determine which is the closest codeword, because the received n-tuple must be compared to
each possible codeword to determine the proper decoding. This can be a serious impediment
if the code is very large.

Example 8.35 Given the binary matrix
11100
H=|0 1010
1 00 01
and the 5-tuples x = (11011)" and y = (01011)*, we can compute
0 1
Hx=1{0 and Hy=10
0 1

Hence, x is a codeword and y is not, since x is in the null space and y is not. Notice that
Hy is identical to the first column of H. In fact, this is where the error occurred. If we flip
the first bit in y from 0 to 1, then we obtain x. (]

If H is an m x n matrix and x € Z3, then we say that the syndrome of x is Hx. The
following proposition allows the quick detection and correction of errors.

Proposition 8.36 Let the m x n binary matrix H determine a linear code and let x be the
recetved n-tuple. Write x as x = ¢ + e, where ¢ is the transmitted codeword and e is the
transmission error. Then the syndrome Hx of the received codeword x is also the syndrome
of the error e.

PROOF. The proof follows from the fact that

Hx=H(c+e)=Hc+ He=0+ He = He.
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This proposition tells us that the syndrome of a received word depends solely on the
error and not on the transmitted codeword. The proof of the following theorem follows
immediately from Proposition 8.36 and from the fact that He is the ith column of the
matrix H.

Theorem 8.37 Let H € My,xn(Z2) and suppose that the linear code corresponding to H
is single error-correcting. Let r be a received n-tuple that was transmitted with at most one
error. If the syndrome of r is 0, then no error has occurred; otherwise, if the syndrome of r
s equal to some column of H, say the ith column, then the error has occurred in the ith bit.

Example 8.38 Consider the matrix
101100
H=|0 11010
1110 01

and suppose that the 6-tuples x = (111110)t, y = (111111)%, and z = (010111)* have been
received. Then

1 1 1
Hx=|1|,Hy=1|1]|,Hz= |0
1 0 0

Hence, x has an error in the third bit and z has an error in the fourth bit. The transmitted
codewords for x and z must have been (110110) and (010011), respectively. The syndrome
of y does not occur in any of the columns of the matrix H, so multiple errors must have
occurred to produce y. O

Coset Decoding

We can use group theory to obtain another way of decoding messages. A linear code C is
a subgroup of Zy. Coset or standard decoding uses the cosets of C' in Zi to implement
maximum-likelihood decoding. Suppose that C is an (n,m)-linear code. A coset of C' in
Z% is written in the form x + C, where x € Z§. By Lagrange’s Theorem (Theorem 6.10),
there are 2"~ distinct cosets of C' in Z5.

Example 8.39 Let C be the (5, 3)-linear code given by the parity-check matrix
01 1 00
H=1|1 0010
1 1 0 01
The code consists of the codewords

(00000) (01101) (10011) (11110).

There are 252 = 23 cosets of C in Z3, each with order 22 = 4. These cosets are listed in
Table 8.40. u
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Table 8.40 Cosets of C

Coset Coset
Representative

C (00000)(01101)(10011)(11110)
(10000) +C  (10000)(11101)(00011)(01110)
(01000) + C' (01000)(00101)(11011)(10110)
(00100) +C  (00100)(01001)(10111)(11010)
(00010) +C (00010)(01111)(10001)(11100)
(00001) +C' (00001)(01100)(10010)(11111)
(10100) +C (00111)(01010)(10100)(11001)
(00110) +C  (00110)(01011)(10101)(11000)

Our task is to find out how knowing the cosets might help us to decode a message.
Suppose that x was the original codeword sent and that r is the n-tuple received. If e is
the transmission error, then r = e + x or, equivalently, x = e + r. However, this is exactly
the statement that r is an element in the coset e + C. In maximum-likelihood decoding
we expect the error e to be as small as possible; that is, e will have the least weight. An
n-tuple of least weight in a coset is called a coset leader. Once we have determined a coset
leader for each coset, the decoding process becomes a task of calculating r + e to obtain x.

Example 8.41 In Table 8.40, notice that we have chosen a representative of the least
possible weight for each coset. These representatives are coset leaders. Now suppose that
r = (01111) is the received word. To decode r, we find that it is in the coset (00010) + C;
hence, the originally transmitted codeword must have been (01101) = (01111) 4 (00010).
O
A potential problem with this method of decoding is that we might have to examine every
coset for the received codeword. The following proposition gives a method of implementing
coset decoding. It states that we can associate a syndrome with each coset; hence, we can
make a table that designates a coset leader corresponding to each syndrome. Such a list is
called a decoding table.

Table 8.42 Syndromes for each coset

Syndrome Coset Leader

(000) (00000)
(001) (00001)
(010) (00010)
(011) (10000)
(100) (00100)
(101) (01000)
(110) (00110)
(111) (10100)

Proposition 8.43 Let C' be an (n, k)-linear code given by the matriz H and suppose that x
and 'y are in Zy. Then x and 'y are in the same coset of C' if and only if Hx = Hy. That
is, two n-tuples are in the same coset if and only if their syndromes are the same.

PRrROOF. Two n-tuples x and y are in the same coset of C' exactly when x —y € C; however,
this is equivalent to H(x —y) =0 or Hx = Hy. |

Example 8.44 Table 8.42 is a decoding table for the code C' given in Example 8.39. If
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x = (01111) is received, then its syndrome can be computed to be

0
Hx= |1
0

Examining the decoding table, we determine that the coset leader is (00010). It is now easy
to decode the received codeword. O

Given an (n, k)-block code, the question arises of whether or not coset decoding is a
manageable scheme. A decoding table requires a list of cosets and syndromes, one for each
of the 2"7% cosets of C. Suppose that we have a (32,24)-block code. We have a huge
number of codewords, 224, yet there are only 232724 = 28 = 256 cosets.

8.5 Reading Questions

1. Suppose a binary code has minimum distance d = 6. How many errors can be detected?
How many errors can be corrected?

2. Explain why it is impossible for the 8-bit string with decimal value 5619 to be an
AscII code for a character. Assume the leftmost bit of the string is being used as a
parity-check bit.

3. Suppose we receive the 8-bit string with decimal value 5619 when we are expecting
ASCII characters with a parity-check bit in the first bit (leftmost). We know an error
has occurred in transmission. Give one of the probable guesses for the character which
was actually sent (other than ‘8’), under the assumption that any individual bit is
rarely sent in error. Explain the logic of your answer. (You may need to consult a
table of AscII values online.)

4. Suppose a linear code C is created as the null space of the parity-check matrix
01010
H=(1 1110
0 01 11

Then z = 11100 is not a codeword. Describe a computation, and give the result of
that computation, which verifies that = is not a codeword of the code C.

5. For H and z as in the previous question, suppose that z is received as a message. Give
a maximum likelihood decoding of the received message.

8.6 Exercises

1. Why is the following encoding scheme not acceptable?
Information 0 1 2 3 4 5 6 7 8
Codeword 000 001 010 011 101 110 111 000 001

2. Without doing any addition, explain why the following set of 4-tuples in Z3 cannot be
a group code.
(0110) (1001) (1010) (1100)

3. Compute the Hamming distances between the following pairs of n-tuples.
(a) (011010),(011100) (c) (00110),(01111)

(b) (11110101), (01010100) (d) (1001), (0111)
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4. Compute the weights of the following n-tuples.
(a) (011010) (c) (01111)

(b) (11110101) (d) (1011)
5. Suppose that a linear code C has a minimum weight of 7. What are the error-detection
and error-correction capabilities of C'?

6. In each of the following codes, what is the minimum distance for the code? What
is the best situation we might hope for in connection with error detection and error
correction?

(a) (011010) (011100) (110111) (110000)

( ) (
(b) (011100) (011011) (111011) (100011)
(000000) (010101) (110100) (110011)

(¢) (000000) (011100) (110101) (110001)
(

(d) (0110110) (0111100) (1110000) (1111111)

(1001001) (1000011) (0001111) (0000000)

7. Compute the null space of each of the following matrices. What type of (n, k)-block
codes are the null spaces? Can you find a matrix (not necessarily a standard generator
matrix) that generates each code? Are your generator matrices unique?

(a) (c)
01 0 00 100 1 1
1 01 01 <01011>
1 0 010

(b) (d)
1 01 0 00 0001 111
1101 00 0110011
01 0 01O 1 01 0101
1100 01 0110011

8. Construct a (5,2)-block code. Discuss both the error-detection and error-correction
capabilities of your code.

9. Let C be the code obtained from the null space of the matrix
01 001
H=11 01 01
0 01 11

Decode the message
01111 10101 01110 00011

if possible.

10. Suppose that a 1000-bit binary message is transmitted. Assume that the probability of
a single error is p and that the errors occurring in different bits are independent of one
another. If p = 0.01, what is the probability of more than one error occurring? What
is the probability of exactly two errors occurring? Repeat this problem for p = 0.0001.

11. Which matrices are canonical parity-check matrices? For those matrices that are canon-
ical parity-check matrices, what are the corresponding standard generator matrices?
What are the error-detection and error-correction capabilities of the code generated by



CHAPTER 8. ALGEBRAIC CODING THEORY 154

12.

13.

14.

15.

16.

17.

each of these matrices?

(a) ()
110 00 1110
00100 <1 0 0 1>
00010
100 01
(b) (d)
01 1 00O 000 10O0O0
110100 0110100
010010 1010010
1 1.0 0 01 01 10001
List all possible syndromes for the codes generated by each of the matrices in Exer-
cise 8.6.11.
Let
01 111
H=1|0 00 11
101 01
Compute the syndrome caused by each of the following transmission errors.

(a) An error in the first bit.

(b) An error in the third bit.

(¢) An error in the last bit.

(d) Errors in the third and fourth bits.
Let C be the group code in Z3 defined by the codewords (000) and (111). Compute
the cosets of C in Z3. Why was there no need to specify right or left cosets? Give the
single transmission error, if any, to which each coset corresponds.

For each of the following matrices, find the cosets of the corresponding code C. Give
a decoding table for each code if possible.

(a) ()
01000 100 11
1 101 (01011>
10010

(b) (d)
00100 1001111
11010 1110011
01010 1010101
1100 1 1110010

Let x, y, and z be binary n-tuples. Prove each of the following statements.
(a) w(x) = d(x,0)
(b) d(x,y) =d(x+ 2,y +2)
(c) d(x,y) = w(x—y)
A metric on a set X is a map d: X x X — R satisfying the following conditions.
(a) d(x,y) >0 for all x,y € X
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18.

19.

20.
21.

22.

23.

24.

25.

26.

(b) d(x,y) = 0 exactly when x = y;
(¢) d(x,y) = d(y,x);
(d) d(x,y) < d(x,2) + d(z,y).

In other words, a metric is simply a generalization of the notion of distance. Prove
that Hamming distance is a metric on Z3j. Decoding a message actually reduces to
deciding which is the closest codeword in terms of distance.

Let C be a linear code. Show that either the ith coordinates in the codewords of C
are all zeros or exactly half of them are zeros.

Let C be a linear code. Show that either every codeword has even weight or exactly
half of the codewords have even weight.

Show that the codewords of even weight in a linear code C are also a linear code.

If we are to use an error-correcting linear code to transmit the 128 AScCII characters,
what size matrix must be used? What size matrix must be used to transmit the
extended ASCII character set of 256 characters? What if we require only error detection
in both cases?

Find the canonical parity-check matrix that gives the even parity check bit code with
three information positions. What is the matrix for seven information positions? What
are the corresponding standard generator matrices?

How many check positions are needed for a single error-correcting code with 20 infor-
mation positions? With 32 information positions?

Let e; be the binary n-tuple with a 1 in the ith coordinate and 0’s elsewhere and
suppose that H € M, x,(Z2). Show that He; is the ith column of the matrix H.

Let C be an (n, k)-linear code. Define the dual or orthogonal code of C' to be

Ct={xeZ}:x-y=0foralyeC}

(a) Find the dual code of the linear code C' where C' is given by the matrix

1110
0010
1 0 01

o = O

(b) Show that C* is an (n,n — k)-linear code.

(c) Find the standard generator and parity-check matrices of C' and C*+. What
happens in general? Prove your conjecture.

Let H be an m X n matrix over Zs, where the ¢th column is the number ¢ written in
binary with m bits. The null space of such a matrix is called a Hamming code.

(a) Show that the matrix
000111
H=(10110 01
101 010

generates a Hamming code. What are the error-correcting properties of a Ham-
ming code?

(b) The column corresponding to the syndrome also marks the bit that was in error;
that is, the ¢th column of the matrix is ¢ written as a binary number, and the
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syndrome immediately tells us which bit is in error. If the received word is
(101011), compute the syndrome. In which bit did the error occur in this case,
and what codeword was originally transmitted?

(c) Give a binary matrix H for the Hamming code with six information positions and
four check positions. What are the check positions and what are the information
positions? Encode the messages (101101) and (001001). Decode the received
words (0010000101) and (0000101100). What are the possible syndromes for this
code?

(d) What is the number of check bits and the number of information bits in an (m, n)-
block Hamming code? Give both an upper and a lower bound on the number of
information bits in terms of the number of check bits. Hamming codes having
the maximum possible number of information bits with & check bits are called
perfect. Every possible syndrome except 0 occurs as a column. If the number of
information bits is less than the maximum, then the code is called shortened. In
this case, give an example showing that some syndromes can represent multiple
errors.

8.7 Programming Exercises

1.

Write a program to implement a (16, 12)-linear code. Your program should be able to
encode and decode messages using coset decoding. Once your program is written, write
a program to simulate a binary symmetric channel with transmission noise. Compare
the results of your simulation with the theoretically predicted error probability.
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8.9 Sage

Sage has a full suite of linear codes and a variety of methods that may be used to investigate
them.
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Constructing Linear Codes

The codes object can be used to get a concise listing of the available implemented codes.
Type codes. and press the Tab key and most interfaces to Sage will give you a list. You
can then use a question mark at the end of a method name to learn about the various
parameters.

codes.

We will use the classic binary Hamming (7,4) code as an illustration. “Binary” means
we have vectors with just 0’s and 1’s, the 7 is the length and means the vectors have 7
coordinates, and the 4 is the dimension, meaning this code has 2* = 16 vectors comprising
the code. The documentation assumes we know a few things from later in the course. We
use GF (2) to specify that our code is binary — this will make more sense at the end of the
course. A second parameter is r and we can see from the formulas in the documenation
that setting r=3 will give length 7.

H = codes.HammingCode (GF(2), 3); H

[7, 4] Hamming Code over GF(2)

Properties of Linear Codes

We can examine the Hamming code we just built. First the dimension.

H.dimension ()

4

The code is small enough that we can list all the codewords.
H.list ()
((¢e, o0, @, 0, 0, 0, @), (1, 0, 0, 0, @0, 1, 1), (0, 1, 0, 0, 1, @, 1),
(a, 1, e, 0, 1,1, 0, (0, 0, 1, 0, 1, 1, 0, (1, 0, 1,0, 1,0, 1),
(¢, 1, 1, 0, 0, 1, 1), (1, 1, 1, 0, 0, 0, 0), (0, 0, 0, 1, 1, 1, 1),
(1, o, o, 1, 1, 0, @), (0, 1, @, 1, 0, 1, 0), (1, 1, @, 1, 0, 0, 1),
(¢, o, 1, 1, 0, 0, 1), (1, 0, 1, 1, 0, 1, 0), (0, 1, 1, 1, 1, 0, @),
a, 1, 1,1, 1,1, Dl

The minimum distance is perhaps one of the most important properties. Hamming
codes always have minimum distance d = 3, so they are always single error-correcting.

H.minimum_distance ()

We know that the parity-check matrix and the generator matrix are useful for the
construction, description and analysis of linear codes. The Sage method names are just a
bit cryptic. Sage has extensive routines for analyzing matrices with elements from different
fields, so we perform much of the subsequent analysis of these matrices within Sage.

C = H.parity_check_matrix(); C

[1 01

010
(e 110 01

1]
1]
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(e 00111 1]

The generator matrix here in the text has columns that are codewords, and linear
combinations of the columns (the column space of the matrix) are codewords. In Sage the
generator matrix has rows that are codewords and the row space of the matrix is the code.
So here is another place where we need to mentally translate between a choice made in the
text and a choice made by the Sage developers.

G = H.generator_matrix(); G

[1 0000 1 1]
(e 1001 0 1]
[e 0101 1 0]
(e 00111 1]

Here is a partial test that these two matrices are correct, exercising Lemma 8.27. Notice
that we need to use the transpose of the generator matrix, for reasons described above.

CxG.transpose() == zero_matrix (3, 4)

True

Note that the parity-check may not be canonical and the generator matrix may not
be standard. Sage can produce a generator matrix that has a set of columns that forms
an identity matrix, though no guarantee is made that these columns are the first columns.
(Columns, not rows.) Such a matrix is said to be systematic, and the Sage method is
.systematic_generator_matrix().

H.systematic_generator_matrix()

[T 00001 1]
[e 1001 0 1]
[e 01 01 1 0]
(e 00111 1]

Decoding with a Linear Code

We can decode received messages originating from a linear code. Suppose we receive the
length 7 binary vector r.

r = vector(GF(2), [1, 1, 1, 1, @, 0, 11); r

a, 1, 1,1, 0,0, 1)

We can recognize that one or more errors has occured, since r is not in the code, as the
next computation does not yield the zero vector.

C*r

a, 1, 9)
A linear code has a .decode method. You may choose from several different algorithms,
while the Hamming codes have their own custom algorithm. The default algorithm is
syndrome decoding.

H.decode_to_code(r)
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a, 1,9, 1,090,090, 1)

So if we are willing to assume that only one error occured (which we might, if the
probability of an indivual entry of the vector being in error is very low), then we see that
an error occured in the third position.

Remember that it could happen that there was more than just one error. For example,
suppose the message was the same as before and errors occurred in the third, fifth and sixth
locations.

message = vector(GF(2), [1, 1, o, 1, @, @0, 11)
errors = vector(GF(2), [0, @, 1, o, 1, 1, @1)
received = message + errors

received

a, 1,1, 0,1,1, 1

It then appears that we have received a codeword, so we assume no errors at all, and
decode incorrectly.

H.decode_to_code(received) == message
False

H.decode_to_code(received) == received
True

8.10 Sage Exercises

1. Create the (binary) Golay code with the codes.GolayCode() constructor. Read the
documentation to be sure you build the binary version (not ternary), and do not build
the extended version (which is the default).

(a) Use Sage methods to compute the length, dimension and minimum distance of
the code.

(b) How many errors can this code detect? How many can it correct?

(¢) Find a nonzero codeword and introduce three errors by adding a vector with
three 1’s (your choice) to create a received message. Show that the message is
decoded properly.

(d) Recycle your choices from the previous part, but now add one more error. Does
the new received message get decoded properly?

2. One technique for improving the characteristics of a code is to add an overall parity-
check bit, much like the lone parity-check bit of the ASCII code described in Example 8.3.
Such codes are referred to as the extended version of the original.

(a) Construct the (binary) Golay code and obtain the parity-check matrix. Use
Sage commands to enlarge this matrix to create a new parity check matrix that
has an additional overall parity-check bit. You may find the matrix methods
.augment() and .stack() useful, as well as the constructors zero_vector() and
ones_matrix () (remembering that we specify the binary entries as being from the
field GF(2).)
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Create the extended code by supplying your enlarged parity-check matrix to the
codes. from_parity_check_matrix() constructor and compute the length, dimen-
sion and minimum distance of the extended code.

(b) How are the properties of this new code better? At what cost?

(c) Now create the extended (binary) Golay code with the Sage constructor codes.GolayCode ()
and the correct keyword to obtain the extended version. With luck, the sorted
lists of your codewords and Sage’s codewords will be equal. If not, the linear code
method .is_permutation_equivalent() should return True to indicate that your
code and Sage’s are just rearrangements of each other.

3. Note: This problem is on holiday (as of Sage 6.7), while some buggy Sage code for
the minimum distance of a Hamming code gets sorted out. The r = 2 case produces
an error message and for r > 5 the computation of the minimum distance has become
intolerably slow. So it is a bit harder to make a reasonable conjecture from just 3 cases.

The dual of an (n, k) block code is formed as all the set of all binary vectors which
are orthogonal to every vector of the original code. Exercise 8.6.25 describes this
construction and asks about some of its properties.

You can construct the dual of a code in Sage with the .dual_code() method. Con-
struct the binary Hamming codes, and their duals, with the parameter r ranging from
2 to 5, inclusive. Build a table with six columns (perhaps employing the html.table()
function) that lists r, the length of the codes, the dimensions of the original and the
dual, and the minimum distances of the orginal and the dual.

Conjecture formulas for the dimension and minimum distance of the dual of the
Hamming code as expressions in the parameter r.

4. A code with minimum distance d is called perfect if every possible vector is within
Hamming distance (d — 1)/2 of some codeword. If we expand our notion of geometry
to account for the Hamming distance as the metric, then we can speak of a sphere
of radius r around a vector (or codeword. For a code of length n, such a sphere will

contain
L+ (") + (D) +
1 2 T

vectors within in it. For a perfect code, the spheres of radius d centered at the code-

words of the code will exactly partition the entire set of all possible vectors. (This is

the connection that means that coding theory meshes with sphere packing problems.)
A consequence of a code of dimension k being perfect is that

(660 ()=

Conversely, if a code has minimum distance d and the condition above is true, then
the code is perfect.

Write a Python function, named is_perfect() which accepts a linear code as input
and returns True or False. Demonstrate your function by checking that the (binary)
Golay code is perfect, and then use a loop to verify that the (binary) Hamming codes
are perfect for all lengths below 32.



9

Isomorphisms

Many groups may appear to be different at first glance, but can be shown to be the same
by a simple renaming of the group elements. For example, Z4 and the subgroup of the
circle group T generated by i can be shown to be the same by demonstrating a one-to-one
correspondence between the elements of the two groups and between the group operations.
In such a case we say that the groups are isomorphic.

9.1 Definition and Examples

Two groups (G, -) and (H,o) are isomorphic if there exists a one-to-one and onto map
¢ : G — H such that the group operation is preserved; that is,

¢(a-b) = ¢(a) o ¢(b)

for all ¢ and b in G. If GG is isomorphic to H, we write G =2 H. The map ¢ is called an
tsomorphism.

Example 9.1 To show that Z4 = (i), define a map ¢ : Zy — (i) by ¢(n) = i". We must
show that ¢ is bijective and preserves the group operation. The map ¢ is one-to-one and
onto because

¢(0) =1
o(1) =i
$(2) = -1
6(3) = —i.
Since
¢(m +n) =" =" = G(m)g(n),
the group operation is preserved. O

Example 9.2 We can define an isomorphism ¢ from the additive group of real numbers
(R, +) to the multiplicative group of positive real numbers (R*, ) with the exponential map;
that is,

$x +y) =" = e’ = o(x)d(y).

Of course, we must still show that ¢ is one-to-one and onto, but this can be determined
using calculus. O

161
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Example 9.3 The integers are isomorphic to the subgroup of Q* consisting of elements of
the form 2". Define a map ¢ : Z — Q* by ¢(n) = 2". Then

¢(m +n) = 271" = 272" = ¢(m)¢(n).

By definition the map ¢ is onto the subset {2" : n € Z} of Q*. To show that the map is
injective, assume that m # n. If we can show that ¢(m) # ¢(n), then we are done. Suppose
that m > n and assume that ¢(m) = ¢(n). Then 2™ = 2™ or 2™~" = 1, which is impossible
since m —n > 0. U

Example 9.4 The groups Zg and Zi5 cannot be isomorphic since they have different orders;
however, it is true that U(8) = U(12). We know that

UB)=1{1,3,57}
U(12) = {1,5,7,11}.

An isomorphism ¢ : U(8) — U(12) is then given by

1—1
3—5
57
7+ 11.

The map ¢ is not the only possible isomorphism between these two groups. We could define
another isomorphism ¢ by ¥(1) = 1, ¥(3) = 11, ¥(5) = 5, ¥(7) = 7. In fact, both of these
groups are isomorphic to Zy X Zs (see Example 3.28 in Chapter 3). O

Example 9.5 Even though S; and Zg possess the same number of elements, we would
suspect that they are not isomorphic, because Zg is abelian and Ss is nonabelian. To
demonstrate that this is indeed the case, suppose that ¢ : Zg — S3 is an isomorphism. Let
a,b € S3 be two elements such that ab # ba. Since ¢ is an isomorphism, there exist elements
m and n in Zg such that

¢(m)=a and ¢(n)="h.

However,
ab = ¢(m)p(n) = p(m +n) = ¢(n +m) = ¢p(n)p(m) = ba,
which contradicts the fact that ¢ and b do not commute. O

Theorem 9.6 Let ¢ : G — H be an isomorphism of two groups. Then the following
statements are true.

1. ¢~ 1 H — G is an isomorphism.
2. |G| = |H]|.

3. If G is abelian, then H is abelian.
4. If G is cyclic, then H is cyclic.

5. If G has a subgroup of order n, then H has a subgroup of order n.
PROOF. Assertions (1) and (2) follow from the fact that ¢ is a bijection. We will prove (3)
here and leave the remainder of the theorem to be proved in the exercises.

(3) Suppose that h; and hg are elements of H. Since ¢ is onto, there exist elements
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91,92 € G such that ¢(g1) = hy and ¢(g2) = ho. Therefore,

hiha = ¢(g1)#(92) = ¢(g192) = H#(g9291) = ¢(g2)P(g1) = hahi.

We are now in a position to characterize all cyclic groups.

Theorem 9.7 All cyclic groups of infinite order are isomorphic to Z.
PRrOOF. Let G be a cyclic group with infinite order and suppose that a is a generator of G.
Define a map ¢ : Z — G by ¢ : n+— a™. Then

d(m+n) =a™™ = a"a" = ¢(m)p(n).

To show that ¢ is injective, suppose that m and n are two elements in Z, where m #% n. We
can assume that m > n. We must show that a™ # a™. Let us suppose the contrary; that

is, a™ = a™. In this case ™™ = e, where m — n > 0, which contradicts the fact that a
has infinite order. Our map is onto since any element in G can be written as a™ for some
integer n and ¢(n) = a". [ |

Theorem 9.8 If G is a cyclic group of order n, then G is isomorphic to Z,.

PRroOOF. Let G be a cyclic group of order n generated by a and define a map ¢ : Z, — G
by ¢ : k — a*, where 0 < k < n. The proof that ¢ is an isomorphism is one of the
end-of-chapter exercises. |

Corollary 9.9 If G is a group of order p, where p is a prime number, then G is isomorphic

to Zp.

PROOF. The proof is a direct result of Corollary 6.12. |
The main goal in group theory is to classify all groups; however, it makes sense to

consider two groups to be the same if they are isomorphic. We state this result in the

following theorem, whose proof is left as an exercise.

Theorem 9.10 The isomorphism of groups determines an equivalence relation on the class
of all groups.

Hence, we can modify our goal of classifying all groups to classifying all groups up to
tsomorphism; that is, we will consider two groups to be the same if they are isomorphic.

Cayley’s Theorem

Cayley proved that if G is a group, it is isomorphic to a group of permutations on some set;
hence, every group is a permutation group. Cayley’s Theorem is what we call a represen-
tation theorem. The aim of representation theory is to find an isomorphism of some group
G that we wish to study into a group that we know a great deal about, such as a group of
permutations or matrices.

Example 9.11 Consider the group Zs. The Cayley table for Zs is as follows.

The addition table of Z3 suggests that it is the same as the permutation group G =
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{(0), (012), (021)}. The isomorphism here is

0'—)(8 i ;>:(0)
1%<(1) ; (2)>:(012)
2!—)(2 (1) i)—(om).

O

Theorem 9.12 Cayley. Every group is isomorphic to a group of permutations.

PRrROOF. Let G be a group. We must find a group of permutations G that is isomorphic
to G. For any g € G, define a function A\, : G — G by A\gj(a) = ga. We claim that A, is a
permutation of G. To show that )4 is one-to-one, suppose that Ag(a) = A\y(b). Then

ga = Ag(a) = A\g(b) = gb.

Hence, a = b. To show that )4 is onto, we must prove that for each a € G, there is a b such
that A\g(b) = a. Let b= g 'a.
Now we are ready to define our group G. Let

G={)\:9€G}

We must show that G is a group under composition of functions and find an isomorphism
between G and G. We have closure under composition of functions since

(Ag o An)(a) = Ag(ha) = gha = Agp(a).

Also,
Ae(a) =ea=a
and
(Ag-10Ag)(a) = A\;-1(ga) = g tga =a = \(a).

We can define an isomorphism from G to G by ¢ : g — A,. The group operation is
preserved since

¢(gh) = Agh = AgAn = ¢(9)¢(h).
It is also one-to-one, because if ¢(g)(a) = ¢(h)(a), then

ga = Aga = \pa = ha.

Hence, g = h. That ¢ is onto follows from the fact that ¢(g) = )\, for any A, € G. |

The isomorphism g — A, is known as the left regular representation of G.

[ | Historical Note [ |

Arthur Cayley was born in England in 1821, though he spent much of the first part of his
life in Russia, where his father was a merchant. Cayley was educated at Cambridge, where
he took the first Smith’s Prize in mathematics. A lawyer for much of his adult life, he
wrote several papers in his early twenties before entering the legal profession at the age of
25. While practicing law he continued his mathematical research, writing more than 300
papers during this period of his life. These included some of his best work. In 1863 he left
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law to become a professor at Cambridge. Cayley wrote more than 900 papers in fields such
as group theory, geometry, and linear algebra. His legal knowledge was very valuable to
Cambridge; he participated in the writing of many of the university’s statutes. Cayley was
also one of the people responsible for the admission of women to Cambridge.

9.2 Direct Products

Given two groups G and H, it is possible to construct a new group from the Cartesian
product of G and H, G x H. Conversely, given a large group, it is sometimes possible to
decompose the group; that is, a group is sometimes isomorphic to the direct product of
two smaller groups. Rather than studying a large group G, it is often easier to study the
component groups of G.

External Direct Products

If (G,-) and (H,o) are groups, then we can make the Cartesian product of G and H into a
new group. As a set, our group is just the ordered pairs (g,h) € G x H where g € G and
h € H. We can define a binary operation on G x H by

(g1, h1)(92, h2) = (91 - g2, h1 © ha);

that is, we just multiply elements in the first coordinate as we do in GG and elements in the
second coordinate as we do in H. We have specified the particular operations - and o in
each group here for the sake of clarity; we usually just write (g1, 1) (g2, ho) = (9192, h1h2).

Proposition 9.13 Let G and H be groups. The set G X H is a group under the operation
(91, h1)(g2, h2) = (9192, hih2) where g1,92 € G and hy,hy € H.

PRrOOF. Clearly the binary operation defined above is closed. If eq and ey are the identities
of the groups G and H respectively, then (eg, ep) is the identity of G x H. The inverse of
(g9,h) € G x His (g1, h~1). The fact that the operation is associative follows directly from
the associativity of G and H. [ |

Example 9.14 Let R be the group of real numbers under addition. The Cartesian product
of R with itself, R x R = R? is also a group, in which the group operation is just addition in
each coordinate; that is, (a,b) + (¢,d) = (a4 ¢,b+ d). The identity is (0,0) and the inverse
of (a,b) is (—a, —b). O

Example 9.15 Consider
Zo x Zs = {(0,0),(0,1),(1,0),(1,1)}.

Although Zy x Zs and Z4 both contain four elements, they are not isomorphic. Every
element (a,b) in Zy x Zs other than the identity has order 2, since (a,b) + (a,b) = (0,0);
however, Z, is cyclic. O

The group G x H is called the external direct product of G and H. Notice that there
is nothing special about the fact that we have used only two groups to build a new group.
The direct product

n

[[Gi=GixGyx---xG,

i=1
of the groups G1,Go,...,G, is defined in exactly the same manner. If G = G; = Gy =
-+« = G, we often write G" instead of G X Gg X -+ X Gj,.
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Example 9.16 The group Z3, considered as a set, is just the set of all binary n-tuples.
The group operation is the “exclusive or” of two binary n-tuples. For example,

(01011101) + (01001011) = (00010110).

This group is important in coding theory, in cryptography, and in many areas of computer
science. [l

Theorem 9.17 Let (g,h) € G x H. If g and h have finite orders r and s respectively, then
the order of (g,h) in G x H is the least common multiple of r and s.
PROOF. Suppose that m is the least common multiple of r and s and let n = |(g, h)|. Then

(g, )™ = (g™, h"™) = (ec,en)
(gnvhn) - (gv h)n - (€G,€H)-

Hence, n must divide m, and n < m. However, by the second equation, both r and s must
divide n; therefore, n is a common multiple of r and s. Since m is the least common multiple

of r and s, m < n. Consequently, m must be equal to n. |
Corollary 9.18 Let (g1,...,9n) € [[Gi. If gi has finite order r; in G;, then the order of
(g1,---,9n) in [[ G is the least common multiple of r1,...,Ty.

Example 9.19 Let (8,56) € Zj2 X Zgp. Since ged(8,12) = 4, the order of 8 is 12/4 = 3 in
Z1o. Similarly, the order of 56 in Zgy is 15. The least common multiple of 3 and 15 is 15;
hence, (8,56) has order 15 in Zj2 X Zg. O

Example 9.20 The group Zy X Zs consists of the pairs

(0,0), (0,1), (0,2), (1,0), (1,1), (1,2).

In this case, unlike that of Zo X Zo and Zy, it is true that Zs X Zs = Zg. We need only show
that Zy x Z3 is cyclic. It is easy to see that (1,1) is a generator for Zg X Zs. O

The next theorem tells us exactly when the direct product of two cyclic groups is cyclic.
Theorem 9.21 The group Zy, X Zy, is isomorphic to Ly if and only if ged(m,n) = 1.
Proor. We will first show that if Z,, X Z,, = Zy, then ged(m,n) = 1. We will prove the

contrapositive; that is, we will show that if ged(m,n) = d > 1, then Z,, X Z,, cannot be cyclic.
Notice that mn/d is divisible by both m and n; hence, for any element (a,b) € Z,, X Zy,

(a,b) + (a,b) + -+ (a,b) = (0,0).

mn/d times

Therefore, no (a,b) can generate all of Z, X Zj,.
The converse follows directly from Theorem 9.17 since lem(m,n) = mn if and only if
ged(m,n) = 1. [ |

Corollary 9.22 Let ny,...,ng be positive integers. Then

k
112
i=1

if and only if ged(ni,nj) =1 for i # j.
Corollary 9.23 If

12

v/

— €k
m=pi' -,
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where the p;s are distinct primes, then

Loy, gzpil X oo X szk.
PROOF. Since the greatest common divisor of p;* and pjj is 1 for ¢ # j, the proof follows
from Corollary 9.22. |

In Chapter 13, we will prove that all finite abelian groups are isomorphic to direct
products of the form
Zpil X+ X Zka

where p1,...,pr are (not necessarily distinct) primes.

Internal Direct Products

The external direct product of two groups builds a large group out of two smaller groups.
We would like to be able to reverse this process and conveniently break down a group into
its direct product components; that is, we would like to be able to say when a group is
isomorphic to the direct product of two of its subgroups.

Let G be a group with subgroups H and K satisfying the following conditions.

e G=HK ={hk:he H ke K};
e« HNK = {e};
e hk=khforallke K and h € H.

Then G is the internal direct product of H and K.
Example 9.24 The group U(8) is the internal direct product of

H={1,3} and K ={1,5}.

O
Example 9.25 The dihedral group Dg is an internal direct product of its two subgroups

H={id,7*} and K = {id,r*r* s,r%s,r*s}.

It can easily be shown that K = S3; consequently, Dg = Zo X Ss. [l

Example 9.26 Not every group can be written as the internal direct product of two of its
proper subgroups. If the group S3 were an internal direct product of its proper subgroups
H and K, then one of the subgroups, say H, would have to have order 3. In this case H is
the subgroup {(1), (123), (132)}. The subgroup K must have order 2, but no matter which
subgroup we choose for K, the condition that hk = kh will never be satisfied for h € H and
ke K. O

Theorem 9.27 Let G be the internal direct product of subgroups H and K. Then G is
isomorphic to H x K.

PROOF. Since G is an internal direct product, we can write any element g € G as g = hk
for some h € H and some k € K. Define a map ¢ : G — H x K by ¢(g) = (h, k).

The first problem that we must face is to show that ¢ is a well-defined map; that is, we
must show that h and k are uniquely determined by g. Suppose that g = hk = h'k’. Then
h='h' = k(K')~! is in both H and K, so it must be the identity. Therefore, h = h’ and
k = K/, which proves that ¢ is, indeed, well-defined.

To show that ¢ preserves the group operation, let g1 = h1k; and go = hoko and observe
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that

?(9192) = d(hakihaks)
= ¢(h1hokiks)
= (h1ha, k1k2)
= (h1, k1) (ho, k2)
= ¢(91)9(g2)-

We will leave the proof that ¢ is one-to-one and onto as an exercise. |

Example 9.28 The group Zg is an internal direct product isomorphic to {0,2,4} x {0, 3}.

O

We can extend the definition of an internal direct product of G to a collection of sub-
groups Hi, Ho, ..., H, of G, by requiring that

o« G=HHy---Hy,={htha---hy: h; € H;};
o Hin(Ujzil;) = {e};
o hihj = hjh; for all h; € H; and h; € H;.
We will leave the proof of the following theorem as an exercise.

Theorem 9.29 Let G be the internal direct product of subgroups H;, where i =1,2,...,n.
Then G is isomorphic to | [, H;.

9.3 Reading Questions

Determine the order of (1,2) in Z4 X Zg.
2. List three properties of a group that are preserved by an isomorphism.

3. Find a group isomorphic to Zi5 that is an external direct product of two non-trivial
groups.

4. Explain why we can now say “the infinite cyclic group”?

5. Compare and contrast external direct products and internal direct products.

9.4 Exercises

Prove that Z = nZ for n # 0.
2.  Prove that C* is isomorphic to the subgroup of GL2(R) consisting of matrices of the

form
a b
-b a)’
3. Prove or disprove: U(8) = Zj.

4. Prove that U(8) is isomorphic to the group of matrices

10 1 0 -1 0 -1 0

0 1)’\0 -1/’\0 1)°\0 -1/
5. Show that U(5) is isomorphic to U(10), but U(12) is not.
6. Show that the nth roots of unity are isomorphic to Z,.
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10.

11.
12.
13.

14.

15.
16.

17.
18.

19.

20.

Show that any cyclic group of order n is isomorphic to Z,.
Prove that Q is not isomorphic to Z.
Let G =R\ {—1} and define a binary operation on G by

axb=a+ b+ ab.

Prove that G is a group under this operation. Show that (G, ) is isomorphic to the
multiplicative group of nonzero real numbers.

Show that the matrices

1 00 1 00 010
010 0 01 100
0 0 1 010 0 01
0 01 0 01 010
1 00 010 0 01
010 1 00 1 00

form a group. Find an isomorphism of G with a more familiar group of order 6.
Find five non-isomorphic groups of order 8.
Prove Sy is not isomorphic to Dqo.

Let w = cis(27/n) be a primitive nth root of unity. Prove that the matrices

A:<w 91> and B:<0 1)
0 w 1 0

generate a multiplicative group isomorphic to D,,.

Show that the set of all matrices of the form

+1 k
0o 1)’
is a group isomorphic to D,,, where all entries in the matrix are in Z,.

List all of the elements of Zy4 X Zs.

Find the order of each of the following elements.
(a) (3,4) in Z4 X ZG

(b) (
(C) (5, 10, 15) in Z25 X Z25 X 225
(

(d) 8, 8, 8) in Zm X ZQ4 X ZSO

Prove that D4 cannot be the internal direct product of two of its proper subgroups.

6, 15,4) in Zg(] X Z45 X Z24

Prove that the subgroup of Q* consisting of elements of the form 23" for m,n € Z is
an internal direct product isomorphic to Z x Z.

Prove that S5 X Zs is isomorphic to Dg. Can you make a conjecture about Do,? Prove
your conjecture.

Prove or disprove: Every abelian group of order divisible by 3 contains a subgroup of
order 3.
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21.

22.

23.

24.
25.
26.

27.
28.
29.
30.
31.

32.
33.

34.

35.
36.
37.

38.
39.
40.
41.

42.
43.

44.

45.

46.

Prove or disprove: Every nonabelian group of order divisible by 6 contains a subgroup
of order 6.

Let G be a group of order 20. If G has subgroups H and K of orders 4 and 5 respectively
such that hk = kh for all h € H and k € K, prove that G is the internal direct product
of H and K.

Prove or disprove the following assertion. Let G, H, and K be groups. If G x K =
H x K, then G = H.

Prove or disprove: There is a noncyclic abelian group of order 51.

Prove or disprove: There is a noncyclic abelian group of order 52.

Let ¢ : G — H be a group isomorphism. Show that ¢(z) = ey if and only if z = eg,
where eg and ey are the identities of G and H, respectively.

Let G = H. Show that if GG is cyclic, then so is H.

Prove that any group G of order p, p prime, must be isomorphic to Z,.

Show that S, is isomorphic to a subgroup of A, 2.

Prove that D,, is isomorphic to a subgroup of S,,.

Let ¢ : G1 — Go and ¥ : G35 — G3 be isomorphisms. Show that ¢! and 1o ¢ are both

isomorphisms. Using these results, show that the isomorphism of groups determines
an equivalence relation on the class of all groups.

Prove U(5) = Z4. Can you generalize this result for U(p), where p is prime?

Write out the permutations associated with each element of S3 in the proof of Cayley’s
Theorem.

An automorphism of a group G is an isomorphism with itself. Prove that complex

conjugation is an automorphism of the additive group of complex numbers; that is,
show that the map ¢(a + bi) = a — bi is an isomorphism from C to C.

Prove that a + ib — a — b is an automorphism of C*.
Prove that A + B~'AB is an automorphism of SLs(R) for all B in GLy(R).

We will denote the set of all automorphisms of G by Aut(G). Prove that Aut(G) is a
subgroup of S¢g, the group of permutations of G.

Find Aut(Zg).
Find Aut(Z).
Find two nonisomorphic groups G and H such that Aut(G) = Aut(H).

Let G be a group and g € G. Define a map iy, : G — G by iy(x) = gzg~!. Prove

that i, defines an automorphism of G. Such an automorphism is called an inner
automorphism. The set of all inner automorphisms is denoted by Inn(G).

Prove that Inn(G) is a subgroup of Aut(G).

What are the inner automorphisms of the quaternion group Qg? Is Inn(G) = Aut(G)
in this case?

Let G be a group and g € G. Define maps A\, : G — G and p, : G — G by \j(z) = gz
and py(z) = zg~!. Show that i, = py 0 A, is an automorphism of G. The isomorphism
g+ pg is called the right regular representation of G.

Let G be the internal direct product of subgroups H and K. Show that the map
¢ : G — H x K defined by ¢(g9) = (h,k) for g = hk, where h € H and k € K, is
one-to-one and onto.

Let G and H be isomorphic groups. If G has a subgroup of order n, prove that H must
also have a subgroup of order n.
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47.
48.
49.

50.
51.

52.

53.
54.
55.

If G =G and H = H, show that G x H 2 G x H.
Prove that G x H is isomorphic to H x G.

Let nq, ..., ng be positive integers. Show that

k
1.
=1

if and only if ged(ni, nj) =1 for i # j.

1%

v/

Prove that A x B is abelian if and only if A and B are abelian.

If G is the internal direct product of Hy, Ho, ..., H,, prove that G is isomorphic to
Let H; and Hy be subgroups of G; and Go, respectively. Prove that Hy x Hs is a
subgroup of G1 x Ga.

Let m,n € Z. Prove that (m,n) = (d) if and only if d = ged(m, n).
Let m,n € Z. Prove that (m) N (n) = (I) if and only if I = lem(m, n).

Groups of order 2p. In this series of exercises we will classify all groups of order 2p,
where p is an odd prime.

(a) Assume G is a group of order 2p, where p is an odd prime. If a € G, show that
a must have order 1, 2, p, or 2p.

(b) Suppose that G has an element of order 2p. Prove that G is isomorphic to Zgy,.
Hence, G is cyclic.

(c) Suppose that G does not contain an element of order 2p. Show that G must
contain an element of order p. Hint: Assume that G does not contain an element
of order p.

(d) Suppose that G does not contain an element of order 2p. Show that G must
contain an element of order 2.

(e) Let P be a subgroup of G with order p and y € G have order 2. Show that
yP = Py.

(f) Suppose that G does not contain an element of order 2p and P = (%) is a subgroup
of order p generated by z. If y is an element of order 2, then yz = z*y for some
2<k<p.

(g) Suppose that G does not contain an element of order 2p. Prove that G is not
abelian.

(h) Suppose that G does not contain an element of order 2p and P = (z) is a subgroup
of order p generated by z and y is an element of order 2. Show that we can list
the elements of G as {z%y/ | 0 <i < p,0<j < 2}.

(i) Suppose that G does not contain an element of order 2p and P = (z) is a
subgroup of order p generated by z and y is an element of order 2. Prove that
the product (z°y7)(2"y*) can be expressed as a uniquely as z™y™ for some non
negative integers m,n. Thus, conclude that there is only one possibility for a
non-abelian group of order 2p, it must therefore be the one we have seen already,
the dihedral group.
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9.5 Sage

Sage has limited support for actually creating isomorphisms, though it is possible. However,
there is excellent support for determining if two permutation groups are isomorphic. This
will allow us to begin a little project to locate all of the groups of order less than 16 in
Sage’s permutation groups.

Isomorphism Testing

If G and H are two permutation groups, then the command G.is_isomorphic(H) will return
True or False as the two groups are, or are not, isomorphic. Since “isomorpic to” is an
equivalence relation by Theorem 9.10, it does not matter which group plays the role of G
and which plays the role of H.

So we have a few more examples to work with, let us introduce the Sage command
that creates an external direct product. If G and H are two permutation groups, then the
command direct_product_permgroups([G,H]) will return the external direct product as a
new permutation group. Notice that this is a function (not a method) and the input is a list.
Rather than just combining two groups in the list, any number of groups can be supplied.
We illustrate isomorphism testing and direct products in the context of Theorem 9.21,
which is an equivalence, so tells us exactly when we have isomorphic groups. We use cyclic
permutation groups as stand-ins for Z, by Theorem 9.8.

First, two isomorphic groups.

m= 12
n =17
gcd(m, n)

G = CyclicPermutationGroup(m)

H = CyclicPermutationGroup(n)

dp = direct_product_permgroups([G, HI)
K = CyclicPermutationGroup (m#*n)
K.is_isomorphic (dp)

True

Now, two non-isomorphic groups.

m = 15

n = 21
gcd(m, n)
3

= CyclicPermutationGroup(m)
CyclicPermutationGroup(n)

p = direct_product_permgroups ([G, HI)
= CyclicPermutationGroup (m#*n)
.is_isomorphic (dp)

AXXNaoa ITo®

False
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Notice how the simple computation of a greatest common divisor predicts the incredibly
complicated computation of determining if two groups are isomorphic. This is a nice illus-
tration of the power of mathematics, replacing a difficult problem (group isomorphism) by
a simple one (factoring and divisibility of integers). Let us build one more direct product
of cyclic groups, but with three groups, each with orders that are pairwise relatively prime.

If you try the following with larger parameters you may get an error (database_gap).

=6

=5

=7

CyclicPermutationGroup (m)
CyclicPermutationGroup(n)
CyclicPermutationGroup(r)

p = direct_product_permgroups([G, H, L1)
= CyclicPermutationGroup (mxn*r)
.is_isomorphic(dp)

A XAXaorrTITo >SS
1

True

Classifying Finite Groups

Once we understand isomorphic groups as being the “same”, or “fundamentally no different,”
or “structurally identical,” then it is natural to ask how many “really different” finite groups
there are. Corollary 9.9 gives a partial answer: for each prime there is just one finite group,
with Z, as a concrete manifestation.

Let us embark on a quest to find all the groups of order less than 16 in Sage as permuta-
tion groups. For prime orders 1,2,3,5,7,11 and 13 we know there is really just one group
each, and we can realize them all:

[CyclicPermutationGroup(p) for p in [1, 2, 3, 5, 7, 11, 13]]

[Cyclic group of order 1 as a permutation group,
Cyclic group of order 2 as a permutation group,
Cyclic group of order 3 as a permutation group,
Cyclic group of order 5 as a permutation group,
Cyclic group of order 7 as a permutation group,

Cyclic group of order 11 as a permutation group,

Cyclic group of order 13 as a permutation group]

So now our smallest unknown case is order 4. Sage knows at least three such groups,
and we can use Sage to check if any pair is isomorphic. Notice that since “isomorphic to” is
an equivalence relation, and hence a transitive relation, the two tests below are sufficient.

G = CyclicPermutationGroup (4)

H = KleinFourGroup ()
T1 = CyclicPermutationGroup(2)
T2 = CyclicPermutationGroup(2)

K = direct_product_permgroups([T1, T21)
G.is_isomorphic (H)

False

H.is_isomorphic (K)
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True

So we have at least two different groups: Z4 and Zo X Zo, with the latter also known
as the Klein 4-group. Sage will not be able to tell us if we have a complete list — this will
always require theoretical results like Theorem 9.10. We will shortly have a more general
result that handles the case of order 4, but right now, a careful analysis (by hand) of the
possibilities for the Cayley table of a group of order 4 should lead you to the two possibilities
above as the only possibilities. Try to deduce what the Cayley table of an order 4 group
should look like, since you know about identity elements, inverses and cancellation.

We have seen at least two groups of order 6 (next on our list of non-prime orders). One
is abelian and one is not, so we do not need Sage to tell us they are structurally different.
But let us do it anyway.

G = CyclicPermutationGroup (6)
H = SymmetricGroup(3)
G.is_isomorphic (H)

False

Is that all? There is Z3 X Zs, but that is just Zg since 2 and 3 are relatively prime.
The dihedral group, Ds, all symmetries of a triangle, is just Ss, the symmetric group on 3
symbols.

DihedralGroup (3)
SymmetricGroup (3)
is_isomorphic (H)

G
H
G.

True

Exercise 9.4.55 from this section classifies all groups of order 2p, where p is a prime.
Such a group is either cyclic or a dihedral group. So the two groups above, Zg and D3, are
the complete list of groups of order 6.

By this general result, in addition to order 6, we also know the complete lists of groups
of orders 10 and 14. To Be Continued.

Internal Direct Products

An internal direct product is a statement about subgroups of a single group, together with
a theorem that links them to an external direct product. We will work an example here
that will illustrate the nature of an internal direct product.

Given an integer n, the set of positive integers less than n, and relatively prime to n
forms a group under multiplication mod n. We will work in the set Integers(n) where we
can add and multiply, but we want to stay strictly with multiplication only.

First we build the subgroup itself. Notice how we must convert x into an integer (an
element of ZZ) so that the greatest common divisor computation performs correctly.

236 = Integers(36)
U= [x for x in 736 if gcd(ZZ(x), 36) == 1]
V]

[1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35]

So we have a group of order 12. We are going to try to find a subgroup of order 6 and
a subgroup of order 2 to form the internal direct product, and we will restrict our search
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initially to cyclic subgroups of order 6. Sage has a method that will give the order of each
of these elements, relative to multiplication, so let us examine those next.

[x.multiplicative_order () for x in U]

(1, 6, 6, 6, 3, 2, 2, 6, 3, 6, 6, 2]

We have many choices for generators of a cyclic subgroup of order 6 and for a cyclic
subgroup of order 2. Of course, some of the choices for a generator of the subgroup of order
6 will generate the same subgroup. Can you tell, just by counting, how many subgroups of
order 6 there are? We are going to pick the first element of order 6, and the last element
of order 2, for no particular reason. After your work through this once, we encourage you
to try other choices to understand why some choices lead to an internal direct product and
some do not. Notice that we choose the elements from the list U so that they are sure to be
elements of Z36 and behave properly when multiplied.

a = U[1]
A = [a*i for i in srange(6)]
A

[1, 5, 25, 17, 13, 29]

b = U[11]

B = [b*i for i in srange(2)]
B

[1, 35]

So A and B are two cyclic subgroups. Notice that their intersection is the identity element,
one of our requirements for an internal direct product. So this is a good start.

[x for x in A if x in B]

[1]

Z36 is an abelian group, thus the condition on all products commuting will hold, but we
illustrate the Sage commands that will check this in a non-abelian situation.

all([xxy == y*xx for x in A for y in B])

True

Finally, we need to check that by forming products with elements from A and B we create
the entire group. Sorting the resulting list will make a check easier for us visually, and is
required if we want Sage to do the check.

T = sorted([x*y for x in A for y in B])
T

t1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35]
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That’s it. We now condense all this information into the statement that “U is the internal
direct product of A and B.” By Theorem 9.27, we see that U is isomorphic to a product of a
cyclic group of order 6 and a cyclic group of order 2. So in a very real sense, U is no more or
less complicated than Zg x Zo, which is in turn isomorphic to Zg X Zo X Zso. So we totally
understand the “structure” of U. For example, we can see that U is not cyclic, since when
written as a product of cyclic groups, the two orders are not relatively prime. The final
expression of U suggests you could find three cyclic subgroups of U, with orders 3, 2 and 2,
so that U is an internal direct product of the three subgroups.

9.6 Sage Exercises

1. This exercise is about putting Cayley’s Theorem into practice. First, read and study
the theorem. Realize that this result by itself is primarily of theoretical interest, but
with some more theory we could get into some subtler aspects of this (a subject known
as “representation theory”).

You should create these representations mostly with pencil-and-paper work, using
Sage as a fancy calculator and assistant. You do not need to include all these compu-
tations in your worksheet. Build the requested group representations and then include
enough verifications in Sage to prove that that your representation correctly represents
the group.

Begin by building a permutation representation of the quaternions, ). There are
eight elements in @ (£1,+1,+J,+K), so you will be constructing a subgroup of Sg.
For each g € @ form the function T}, defined as Ty(x) = xg. Notice that this definition
is the “reverse” of that given in the text. This is because Sage composes permutations
left-to-right, while your text composes right-to-left. To create the permutations Ty, the
two-line version of writing permutations could be very useful as an intermediate step.
You will probably want to “code” each element of @ with an integer in {1,2,...,8}.

One such representation is included in Sage as QuaternionGroup() — your answer
should look very similar, but perhaps not identical. Do not submit your answer for a
representation of the quaternions, but I strongly suggest working this particular group
representation until you are sure you have it right — the problems below might be
very difficult otherwise. You can use Sage’s .is_isomorphic() method to check if your
representations are correct. However, do not use this as a substitute for the part of
each question that asks you to investigate properties of your representation towards
this end.

(a) Build the permutation representation of Zg x Z4 described in Cayley’s Theorem.
(Remember that this group is additive, while the theorem uses multiplicative no-
tation.) Include the representation of each of the 8 elements in your submitted
work. Then construct the permutation group as a subgroup of a full symmetric
group that is generated by exactly two of the eight elements you have already
constructed. Hint: which two elements of Za x Z4 might you use to generate all of
Zo x 747 Use commands in Sage to investigate various properties of your permu-
tation group, other than just .list(), to provide evidence that your subgroup is
correct — include these in your submitted worksheet.

(b) Build a permutation representation of U(24), the group of units mod 24. Again,
list a representation of each element in your submitted work. Then construct the
group as a subgroup of a full symmetric group created with three generators. To
determine these three generators, you will likely need to understand U(24) as an
internal direct product. Use commands in Sage to investigate various properties
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of your group, other than just .list(), to provide evidence that your subgroup
is correct — include these in your submitted worksheet.

2.  Consider the symmetries of a 10-gon, Djg in your text, DihedralGroup(10) in Sage.
Presume that the vertices of the 10-gon have been labeled 1 through 10 in order.
Identify the permutation that is a 180 degree rotation and use it to generate a subgroup
R of order 2. Then identify the permutation that is a 72 degree rotation, and any one
of the ten permutations that are a reflection of the 10-gon about a line. Use these latter
two permutations to generate a subgroup S of order 10. Use Sage to verify that the
full dihedral group is the internal direct product of the subgroups R and S by checking
the conditions in the definition of an internal direct product.

We have a theorem which says that if a group is an internal direct product, then it is
isomorphic to some external direct product. Understand that this does not mean that
you can use the converse in this problem. In other words, establishing an isomorphism
of G with an external direct product does not prove that G is an internal direct product.
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Normal Subgroups and Factor Groups

If H is a subgroup of a group G, then right cosets are not always the same as left cosets;
that is, it is not always the case that gH = Hg for all g € G. The subgroups for which this
property holds play a critical role in group theory—they allow for the construction of a new
class of groups, called factor or quotient groups. Factor groups may be studied directly or
by using homomorphisms, a generalization of isomorphisms. We will study homomorphisms
in Chapter 11.

10.1 Factor Groups and Normal Subgroups

Normal Subgroups

A subgroup H of a group G is normal in G if gH = Hg for all g € G. That is, a normal
subgroup of a group G is one in which the right and left cosets are precisely the same.

Example 10.1 Let G be an abelian group. Every subgroup H of G is a normal subgroup.
Since gh = hg for all g € G and h € H, it will always be the case that gH = Hyg. O

Example 10.2 Let H be the subgroup of S3 consisting of elements (1) and (12). Since
(123)H ={(123),(13)} and H(123)={(123),(23)},

H cannot be a normal subgroup of S3. However, the subgroup NV, consisting of the permu-
tations (1), (123), and (132), is normal since the cosets of N are

N ={(1),(123),(132)}
(12)N = N(12) = {(12),(13),(23)}.

O
The following theorem is fundamental to our understanding of normal subgroups.

Theorem 10.3 Let G be a group and N be a subgroup of G. Then the following statements
are equivalent.

1. The subgroup N is normal in G.
2. Forallge G, gNg~' C N.

3. Forallge G, gNg~* = N.

178
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PrOOF. (1) = (2). Since N is normal in G, gN = Ng for all g € G. Hence, for a given
g € G and n € N, there exists an n/ in N such that gn = n’g. Therefore, gng~' =n' € N
or gNg~' C N.
(2) = (3). Let g € G. Since gNg~! € N, we need only show N C gNg~!. For n € N,
g 'ng =g 'n(g7!)~! € N. Hence, g 'ng = n’ for some n’ € N. Therefore, n = gn’g~! is
in gNg~ 1.
(3) = (1). Suppose that gNg~—! = N for all g € G. Then for any n € N there exists an
n’ € N such that gng=! = n’/. Consequently, gn = n'g or gN C Ng. Similarly, Ng C gN.
|

Factor Groups

If N is a normal subgroup of a group G, then the cosets of N in G form a group G/ N under
the operation (aN)(bN) = abN. This group is called the factor or quotient group of G
and N. Our first task is to prove that G/N is indeed a group.

Theorem 10.4 Let N be a normal subgroup of a group G. The cosets of N in G form a
group G/N of order [G : N].
PROOF. The group operation on G/N is (aN)(bN) = abN. This operation must be shown

to be well-defined; that is, group multiplication must be independent of the choice of coset
representative. Let alN = bN and ¢N = dN. We must show that

(aN)(e¢N) = acN = bdN = (bN)(dN).
Then a = bnq and ¢ = dny for some n; and n9 in N. Hence,

acN = bnidnoN
= bni1dN
=bniNd
=bNd
= bdN.

The remainder of the theorem is easy: eN = N is the identity and ¢~ 'V is the inverse of
gN. The order of G/N is, of course, the number of cosets of N in G. |
It is very important to remember that the elements in a factor group are sets of elements

in the original group.

Example 10.5 Consider the normal subgroup of S3, N = {(1),(123),(132)}. The cosets
of N in S3 are N and (12)N. The factor group S3/N has the following multiplication table.

| N (12N
N N (12)N
(12)N | (12)N N

This group is isomorphic to Zs. At first, multiplying cosets seems both complicated and
strange; however, notice that S3/N is a smaller group. The factor group displays a certain
amount of information about S3. Actually, N = As, the group of even permutations, and
(12)N = {(12),(13),(23)} is the set of odd permutations. The information captured in
G/N is parity; that is, multiplying two even or two odd permutations results in an even
permutation, whereas multiplying an odd permutation by an even permutation yields an
odd permutation. O
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Example 10.6 Consider the normal subgroup 3Z of Z. The cosets of 3Z in Z are
0+32=4...,-3,0,3,6,...}

1432 =1{...,-2,1,4,7,...}
24+3Z=1{..,-1,2538,.. .}

The group Z/37Z is given by the Cayley table below.

+ |0+3Z 1+3Z 2+3Z
0+3Z|0+3Z 1+3Z 2+3Z
1+3Z |1+3Z 2+3Z 0+3Z
2+3Z|2+3Z 0+3Z 1+3Z

In general, the subgroup nZ of Z is normal. The cosets of Z/nZ are

nz
1+ nZ
2+ nZ

(n—1)+nZ.
The sum of the cosets k +nZ and [ + nZ is k + | + nZ. Notice that we have written our
cosets additively, because the group operation is integer addition. O

Example 10.7 Consider the dihedral group D,, generated by the two elements r and s,
satisfying the relations

r" =id
2 =id
srs=r"L

The element r actually generates the cyclic subgroup of rotations, R,,, of D,,. Since srs™! =

srs = r~1 € R, the group of rotations is a normal subgroup of D,,; therefore, D, /R, is a
group. Since there are exactly two elements in this group, it must be isomorphic to Zy. U

10.2 The Simplicity of the Alternating Group

Of special interest are groups with no nontrivial normal subgroups. Such groups are called
simple groups. Of course, we already have a whole class of examples of simple groups, Zj,
where p is prime. These groups are trivially simple since they have no proper subgroups
other than the subgroup consisting solely of the identity. Other examples of simple groups
are not so easily found. We can, however, show that the alternating group, A,, is simple
for n > 5. The proof of this result requires several lemmas.

Lemma 10.8 The alternating group A, is generated by 3-cycles for n > 3.
ProOOF. To show that the 3-cycles generate A,, we need only show that any pair of

transpositions can be written as the product of 3-cycles. Since (a,b) = (b, a), every pair of
transpositions must be one of the following:

(a,0)(a,b) =id

(a,0)(c,d) = (a,c,b)(a,c,d)
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(a,b)(a,c) = (a,¢,b).

Lemma 10.9 Let N be a normal subgroup of A,, where n > 3. If N contains a 3-cycle,
then N = A,,.

Proor. We will first show that A, is generated by 3-cycles of the specific form (i, 7, k),
where ¢ and j are fixed in {1,2,...,n} and we let k vary. Every 3-cycle is the product of
3-cycles of this form, since

(i,a,5) = (i,j,a)?

(i,a,b) = (i, 4,b)(i, j, a)

(j,a,b) = (4, 5,b)*(4, j, a)

(a,b,¢) = (i, 5,a)?(i, j, ) (i, 4,b)* (i, j, a).-

Now suppose that N is a nontrivial normal subgroup of A,, for n > 3 such that N contains
a 3-cycle of the form (i, j,a). Using the normality of N, we see that

(6, 9)(a, k)] (G, 4, @)?[(i, 5) (a, k)] 7F = (3,5, k)
is in N. Hence, N must contain all of the 3-cycles (i, j, k) for 1 < k < n. By Lemma 10.8,
these 3-cycles generate A,; hence, N = A,,. [ |

Lemma 10.10 For n > 5, every nontrivial normal subgroup N of A, contains a 3-cycle.
PROOF. Let o be an arbitrary element in a normal subgroup N. There are several possible
cycle structures for o.

e o is a 3-cycle.

o is the product of disjoint cycles, o = 7(a1,as,...,a,) € N, where r > 3.

o is the product of disjoint cycles, o = 7(aq, az, as) (a4, as, ag)-
e 0 =7(ay,ae,as), where 7 is the product of disjoint 2-cycles.
e 0 =r7(ay,a2)(as,as), where 7 is the product of an even number of disjoint 2-cycles.

If o is a 3-cycle, then we are done. If IV contains a product of disjoint cycles, o, and at least
one of these cycles has length greater than 3, say o0 = 7(ay, ag, ..., a,), then

(a1,a2,a3)0(ar, az,az)

is in NV since N is normal; hence,

o (a1, as,a3)0(ay,az,a3)”"
is also in N. Since

o~ (a1, a2, a3)0 (a1, ag,a3) "' = 0 (ar, a, az)o (a1, a3, az)

= (a1,a2,...,a;) " '77Hay, a2, a3)7 (a1, az, . .., a,)(a1, a3, as)
= (a1,ar,ar_1,...,a2)(a1, az,a3)(ai,as, ..., ar)(a1, as, az)
= (a17a37a7‘)7

N must contain a 3-cycle; hence, N = A,,.
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Now suppose that N contains a disjoint product of the form

0 = T(al, a2, a3)(a4, as, a6)-

Then
ail(al,ag,a4)a(a1,ag,a4)*1 eEN
since
(al,ag,a4)a(a1,a2,a4)_1 € N.
So

(a4, aq,a5) (a1, as, a2)7 (a1, as, a4)7(a1, ag, as)(as, as, ag) (a1, as, az)
(as,a6,as5)(a1,as,az)(a1, az,as)(a1, az, as)(aq, as, ag) (a1, as, az)
(

U_l(al, az, a4)a(a1,a2,a4)_1 = [1(a1, a2, a3)(a4, as, aﬁ)]_l(ala az, as)7(a1, az, az)(as, as, ag)(a, az, a4)_1
= (a1, a4, a2, a6, a3).

So N contains a disjoint cycle of length greater than 3, and we can apply the previous case.
Suppose N contains a disjoint product of the form o = 7(ai,a2,as), where 7 is the
product of disjoint 2-cycles. Since ¢ € N, 02 € N, and
o® = 7(a1, a2, a3)7(a1, az, as)
= (a1,a3,a2)-

So N contains a 3-cycle.
The only remaining possible case is a disjoint product of the form

g = T(al, ag)(ag, a4),
where 7 is the product of an even number of disjoint 2-cycles. But
0'71(&1, as, a3)0'(a1, as, ag)fl
is in N since (a1, az,a3)o(a1,as,a3)~! is in N; and so

o Han,a,a3)0(ar, as,a3) "t =77 (a1, a2)(az, as) (a1, as, a3)v(a1, a2)(as, as) (a1, az, az)
= (a1, as)(az, aq).
Since n > 5, we can find b € {1,2,...,n} such that b # a1, az,a3,a4. Let p = (a1,as,b).

Then
1 (a1, a3)(ag, ag)p(ar, az)(az, as) € N

and

(a1, a3)(az, as)p(ar, as)(ag, as) = (a1, bas)(a1, as)(az, as)(as, as, b)(a1, az)(az, as)
= (alagb).

Therefore, N contains a 3-cycle. This completes the proof of the lemma. |

Theorem 10.11 The alternating group, Ay, is simple for n > 5.

PrOOF. Let N be a normal subgroup of A,. By Lemma 10.10, N contains a 3-cycle. By
Lemma 10.9, N = A,; therefore, A, contains no proper nontrivial normal subgroups for
n > 5. |
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[ | Historical Note [ |

One of the foremost problems of group theory has been to classify all simple finite groups.
This problem is over a century old and has been solved only in the last few decades of
the twentieth century. In a sense, finite simple groups are the building blocks of all finite
groups. The first nonabelian simple groups to be discovered were the alternating groups.
Galois was the first to prove that As was simple. Later, mathematicians such as C. Jordan
and L. E. Dickson found several infinite families of matrix groups that were simple. Other
families of simple groups were discovered in the 1950s. At the turn of the century, William
Burnside conjectured that all nonabelian simple groups must have even order. In 1963, W.
Feit and J. Thompson proved Burnside’s conjecture and published their results in the paper
“Solvability of Groups of Odd Order,” which appeared in the Pacific Journal of Mathematics.
Their proof, running over 250 pages, gave impetus to a program in the 1960s and 1970s
to classify all finite simple groups. Daniel Gorenstein was the organizer of this remarkable
effort. One of the last simple groups was the “Monster,” discovered by R. Greiss. The
Monster, a 196,833 x 196,833 matrix group, is one of the 26 sporadic, or special, simple
groups. These sporadic simple groups are groups that fit into no infinite family of simple
groups. Some of the sporadic groups play an important role in physics.

10.3 Reading Questions

1. Let G be the group of symmetries of an equilateral triangle, expressed as permutations
of the vertices numbered 1,2,3. Let H be the subgroup H = ((12)). Build the left
and right cosets of H in G.

2. Based on your answer to the previous question, is H normal in G7 Explain why or
why not.

3. The subgroup 8Z is normal in Z. In the factor group Z/8Z perform the computation
(3+8Z) + (7 + 8Z).

4. List two statements about a group G and a subgroup H that are equivalent to “H is
normal in G.”

5. In your own words, what is a factor group?

10.4 Exercises

1. For each of the following groups G, determine whether H is a normal subgroup of G.
If H is a normal subgroup, write out a Cayley table for the factor group G/H.

(a) G=Syand H= A,
(b) G = As and H = {(1),(123),(132)}
() G=5,and H = D,

(d) G =Qsand H={1,-1,1,~1}

() G=7Z and H = 5Z
2. Find all the subgroups of Dy. Which subgroups are normal? What are all the factor
groups of D4 up to isomorphism?
3. Find all the subgroups of the quaternion group, Js. Which subgroups are normal?
What are all the factor groups of Qg up to isomorphism?
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4. Let T be the group of nonsingular upper triangular 2 x 2 matrices with entries in R;
that is, matrices of the form
a b
6 2)

where a, b, ¢ € R and ac # 0. Let U consist of matrices of the form

(7).

where x € R.
(a) Show that U is a subgroup of 7T

(b) Prove that U is abelian.
(c) Prove that U is normal in 7.
(d) Show that T'/U is abelian.

(e) Is T normal in GLy(R)?
5. Show that the intersection of two normal subgroups is a normal subgroup.
6. If G is abelian, prove that G/H must also be abelian.

7. Prove or disprove: If H is a normal subgroup of G such that H and G/H are abelian,
then G is abelian.

8. If G is cyclic, prove that G/H must also be cyclic.
9. Prove or disprove: If H and G/H are cyclic, then G is cyclic.

10. Let H be a subgroup of index 2 of a group G. Prove that H must be a normal subgroup
of GG. Conclude that S, is not simple for n > 3.

11. If a group G has exactly one subgroup H of order k, prove that H is normal in G.

12. Define the centralizer of an element g in a group G to be the set
C(g) ={z € G:x2g=gzx}.
Show that C'(g) is a subgroup of G. If g generates a normal subgroup of G, prove that

C(g) is normal in G.
13. Recall that the center of a group G is the set

Z(G) ={z € G:xg =gz for all g € G}.

(a) Calculate the center of Ss.
(b) Calculate the center of GLa(R).
(¢) Show that the center of any group G is a normal subgroup of G.

(d) If G/Z(G) is cyclic, show that G is abelian.

14. Let G be a group and let G’ = (aba~'b~!'); that is, G’ is the subgroup of all finite
products of elements in G of the form aba~'b~'. The subgroup G’ is called the com-
mutator subgroup of G.

(a) Show that G’ is a normal subgroup of G.
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(b) Let N be a normal subgroup of G. Prove that G/N is abelian if and only if N
contains the commutator subgroup of G.

10.5 Sage

Sage has several convenient functions that will allow us to investigate quickly if a subgroup
is normal, and if so, the nature of the resulting quotient group. But for an initial under-
standing, we can also work with the raw cosets. Let us get our hands dirty first, then learn
about the easy way.

Multiplying Cosets

The definiton of a factor group requires a normal subgroup, and then we define a way to
“multiply” two cosets of the subgroup to produce another coset. It is important to realize
that we can interpret the definition of a normal subgroup to be ezactly the condition we
need for our new multiplication to be workable. We will do two examples — first with a
normal subgroup, then with a subgroup that is not normal.

Consider the dihedral group Dg that is the symmetry group of an 8-gon. If we take the
element that creates a quarter-turn, we can use it generate a cyclic subgroup of order 4.
This will be a normal subgroup (trust us for the moment on this). First, build the (right)
cosets (notice there is no output):

G = DihedralGroup(8)

quarter_turn = G('(1,3,5,7)(2,4,6,8)")
S = G.subgroup([quarter_turnl])

C G.cosets(S)

So C is a list of lists, with every element of the group G occuring exactly once somewhere.
You could ask Sage to print out C for you if you like, but we will try to avoid that here. We
want to multiply two cosets (lists) together. How do we do this? Take any element out of
the first list, and any element out of the second list and multiply them together (which we
know how to do since they are elements of G). Now we have an element of G. What do we
do with this element, since we really want a coset as the result of the product of two cosets?
Simple — we see which coset the product is in. Let us give it a try. We will multiply coset 1
with coset 3 (there are 4 cosets by Lagrange’s Theorem). Study the following code carefully
to see if you can understand what it is doing, and then read the explanation that follows.

p = C[1][e]*xC[3][@]
[i for i in srange(len(C)) if p in C[i]]

[2]

What have we accomplished? In the first line we create p as the product of two group
elements, one from coset 1 and one from coset 3 (C[1], C[3]). Since we can choose any
element from each coset, we choose the first element of each (C[ 1[@]). Then we count our
way through all the cosets, selecting only cosets that contain p. Since p will only be in one
coset, we expect a list with just one element. Here, our one-element list contains only 2. So
we say the product of coset 1 and coset 3 is coset 2.

The point here is that this result (coset 1 times coset 3 is coset 2) should always be
the same, no matter which elements we pick from the two cosets to form p. So let us do it
again, but this time we will not simply choose the first element from each of coset 1 and
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coset 3, instead we will choose the third element of coset 1 and the second element of coset
3 (remember, we are counting from zero!).

p = C[1]1[2]1*C[3]1[1]
[i for i in srange(len(C)) if p in C[i]]

[2]

Good. We have the same result. If you are still trusting us on S being a normal subgroup
of G, then this is the result that the theory predicts. Make a copy of the above compute cell
and try other choices for the representatives of each coset. Then try the product of other
cosets, with varying representatives.Now is a good time to introduce a way to extend Sage
and add new functions. We will design a coset-multiplication function. Read the following
carefully and then see the subsequent explanation.

def coset_product(i, j, C):
p = CLiJ[el*xC[jI[0]
c = [k for k in srange(len(C)) if p in C[k1]
return c[0]

The first line creates a new Sage function named coset_product. This is accomplished
with the word def, and note the colon ending the line. The inputs to the function are the
numbers of the cosets we want to multiply and the complete list of the cosets. The middle
two lines should look familiar from above. We know c is a one-element list, so c[0] will
extract this one coset number, and return is what determines that this is the output of
the function. Notice that the indentation above must be exactly as shown. We could have
written all this computation on a single line without making a new function, but that begins
to get unwieldly. You need to execute the code block above to actually define the function,
and there will be no output if successful. Now we can use our new function to repeat our
work above:

coset_product (1, 3, C)

Now you know the basics of how to add onto Sage and do much more than it was
designed for. And with some practice, you could suggest and contribute new functions to
Sage, since it is an open source project. Nice.

Now let us examine a situation where the subgroup is not normal. So we will see that
our definition of coset multiplication is insufficient in this case. And realize that our new
coset_product function is also useless since it assumes the cosets come from a normal
subgroup.

Consider the alternating group A4 which we can interpet as the symmetry group of a
tetrahedron. For a subgroup, take an element that fixes one vertex and rotates the opposite
face — this will generate a cyclic subgroup of order 3, and by Lagrange’s Theorem we will
get four cosets. We compute them here. (Again, no output is requested.)

G = AlternatingGroup (4)
face_turn = G("(1,2,3)")

S = G.subgroup([face_turnl)
C = G.cosets(S)

Again, let’s consider the product of coset 1 and coset 3:
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p = CL1]Le]*xC[3][0]
[i for i in srange(len(C)) if p in C[i]]

(o]

Again, but now for coset 3, choose the second element of the coset to produce the
product p:

p = C[L1]C[e]+xC[3][1]
[i for i in srange(len(C)) if p in C[il]]

[2]
So, is the product of coset 1 and coset 3 equal to coset 0 or coset 27 We cannot say!
So there is no way to construct a quotient group for this subgroup. You can experiment
some more with this subgroup, but in some sense, we are done with this example — there
is nothing left to say.

Sage Methods for Normal Subgroups

You can easily ask Sage if a subgroup is normal or not. This is viewed as a property of the
subgroup, but you must tell Sage what the “supergroup” is, since the answer can change
depending on this value. (For example H.1is_normal(H) will always be True.) Here are our
two examples from above.

G = DihedralGroup(8)

quarter_turn = G('(1,3,5,7)(2,4,6,8)")
S = G.subgroup([quarter_turn])
S.is_normal (G)

True

G = AlternatingGroup (4)
face_turn = G("(1,2,3)")

S = G.subgroup([face_turnl)
S.is_normal (G)

False

The text proves in Section 10.2 that As is simple, i.e. A5 has no normal subgroups. We
could build every subgroup of As and ask if it is normal in As using the .is_normal()
method. But Sage has this covered for us already.

G = AlternatingGroup (5)
G.is_simple ()

True

We can also build a quotient group when we have a normal subgroup.

= DihedralGroup(8)
arter_turn = G('(1,3,5,7)(2,4,6,8)")
= G.subgroup([quarter_turn])

G
qu
S
Q = G.quotient(S)
Q




CHAPTER 10. NORMAL SUBGROUPS AND FACTOR GROUPS 188

Permutation Group with generators [(1,2)(3,4), (1,3)(2,4)]

This is useful, but also a bit unsettling. We have the quotient group, but any notion of
cosets has been lost, since Q is returned as a new permutation group on a different set of
symbols. We cannot presume that the numbers used for the new permutation group Q bear
any resemblance to the cosets we get from the .cosets() method. But we can see that the
quotient group is described as a group generated by two elements of order two. We could
ask for the order of the group, or by Lagrange’s Theorem we know the quotient has order
4. We can say now that there are only two groups of order four, the cyclic group of order
4 and a non-cyclic group of order 4, known to us as the Klein 4-group or Zs X Zs. This
quotient group looks like the non-cyclic one since the cyclic group of order 4 has just one
element of order 2. Let us see what Sage says.

Q.is_isomorphic(KleinFourGroup())

True

Yes, that’s it.

Finally, Sage can build us a list of all of the normal subgroups of a group. The list of
groups themselves, as we have seen before, is sometimes an overwhelming amount of infor-
mation. We will demonstrate by just listing the orders of the normal subgroups produced.

G = DihedralGroup(8)
N = G.normal_subgroups ()
[H.order () for H in NJ

(16, 8, 8, 8, 4, 2, 1]

So, in particular, we see that our “quarter-turn” subgroup is the only normal subgroup
of order 4 in this group.

10.6 Sage Exercises

1. Build every subgroup of the alternating group on 5 symbols, A5, and check that each
is not a normal subgroup (except for the two trivial cases). This command might take
a couple seconds to run. Compare this with the time needed to run the .is_simple()
method and realize that there is a significant amount of theory and cleverness brought
to bear in speeding up commands like this. (It is possible that your Sage installation
lacks GAaP’s “Table of Marks” library and you will be unable to compute the list of
subgroups.)

2.  Consider the quotient group of the group of symmetries of an 8-gon, formed with
the cyclic subgroup of order 4 generated by a quarter-turn. Use the coset_product
function to determine the Cayley table for this quotient group. Use the number of
each coset, as produced by the .cosets() method as names for the elements of the
quotient group. You will need to build the table “by hand” as there is no easy way
to have Sage’s Cayley table command do this one for you. You can build a table in
the Sage Notebook pop-up editor (shift-click on a blue line) or you might read the
documentation of the html.table() method.

3. Consider the cyclic subgroup of order 4 in the symmetries of an 8-gon. Verify that the
subgroup is normal by first building the raw left and right cosets (without using the
.cosets() method) and then checking their equality in Sage, all with a single command
that employs sorting with the sorted() command.
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4.

Again, use the same cyclic subgroup of order 4 in the group of symmetries of an 8-gon.
Check that the subgroup is normal by using part (2) of Theorem 10.3. Construct a
one-line command that does the complete check and returns True. Maybe sort the
elements of the subgroup S first, then slowly build up the necessary lists, commands,
and conditions in steps. Notice that this check does not require ever building the
cosets.

Repeat the demonstration from the previous subsection that for the symmetries of a
tetrahedron, a cyclic subgroup of order 3 results in an undefined coset multiplication.
Above, the default setting for the .cosets() method builds right cosets — but in this
problem, work instead with left cosets. You need to choose two cosets to multiply, and
then demonstrate two choices for representatives that lead to different results for the
product of the cosets.

Construct some dihedral groups of order 2n (i.e. symmetries of an n-gon, D,, in the
text, DihedralGroup(n) in Sage). Maybe all of them for 3 < n < 100. For each
dihedral group, construct a list of the orders of each of the normal subgroups (so use
.normal_subgroups()). You may need to wait ten or twenty seconds for this to finish
- be patient. Observe enough examples to hypothesize a pattern to your observations,
check your hypothesis against each of your examples and then state your hypothesis
clearly.

Can you predict how many normal subgroups there are in the dihedral group D470448
without using Sage to build all the normal subgroups? Can you describe all of the
normal subgroups of a dihedral group in a way that would let us predict all of the
normal subgroups of Dy4ro44g Without using Sage?
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Homomorphisms

One of the basic ideas of algebra is the concept of a homomorphism, a natural generalization
of an isomorphism. If we relax the requirement that an isomorphism of groups be bijective,
we have a homomorphism.

11.1 Group Homomorphisms

A homomorphism between groups (G, ) and (H,o) is a map ¢ : G — H such that

P(g1 - g2) = ¢(91) © (g2)

for g1, 92 € G. The range of ¢ in H is called the homomorphic image of ¢.

Two groups are related in the strongest possible way if they are isomorphic; however, a
weaker relationship may exist between two groups. For example, the symmetric group S,
and the group Zso are related by the fact that 5, can be divided into even and odd permu-
tations that exhibit a group structure like that Zo, as shown in the following multiplication
table.

‘ even odd

even | even odd

odd | odd even
We use homomorphisms to study relationships such as the one we have just described.

Example 11.1 Let G be a group and g € G. Define a map ¢ : Z — G by ¢(n) = g". Then
¢ is a group homomorphism, since

¢(m+mn) = g"t" = g"g" = ¢(m)e(n).
This homomorphism maps Z onto the cyclic subgroup of G generated by g. U
Example 11.2 Let G = GL2(R). If
b
A= ("
(¢ 3

is in G, then the determinant is nonzero; that is, det(A) = ad — be # 0. Also, for any two
elements A and B in G, det(AB) = det(A) det(B). Using the determinant, we can define a
homomorphism ¢ : GLa(R) — R* by A — det(A). O

190
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Example 11.3 Recall that the circle group T consists of all complex numbers z such that
|z| = 1. We can define a homomorphism ¢ from the additive group of real numbers R to T
by ¢ : 0+ cos 4 isinf. Indeed,

¢(a+ B) = cos(a+ ) + isin(a + )
= (cosacos f — sinasin ) + i(sin a cos  + cos acsin 3)
= (cosa + isina)(cos B + isin f)

= ¢(a)o(B).

Geometrically, we are simply wrapping the real line around the circle in a group-theoretic
fashion. n
The following proposition lists some basic properties of group homomorphisms.

Proposition 11.4 Let ¢ : G1 — Ga be a homomorphism of groups. Then
1. If e is the identity of Gy, then ¢(e) is the identity of Ga;

2. For any element g € Gy, ¢(g71) = [¢(g)]™Y;
3. If Hy is a subgroup of G1, then ¢(Hy) is a subgroup of Ga;

4. If Hy is a subgroup of Go, then ¢~ 1 (Hs) = {g € G1: ¢(g) € Ha} is a subgroup of G1.
Furthermore, if Hy is normal in Go, then ¢~1(Hs) is normal in G1.
PROOF. (1) Suppose that e and €’ are the identities of G; and Gy, respectively; then

¢'d(e) = d(e) = p(ee) = d(e)d(e).

/

By cancellation, ¢(e) = €.
(2) This statement follows from the fact that

d(g Nelg) = ¢(g~'g) = ple) = €',

(3) The set ¢(H;) is nonempty since the identity of Gy is in ¢(H;). Suppose that H;
is a subgroup of G and let z and y be in ¢(H;). There exist elements a,b € H; such that
¢(a) = z and ¢(b) = y. Since

zy~ = 6(a)[o(0)] 7" = d(ab™") € $(Hn),

¢(H1) is a subgroup of Go by Proposition 3.31.

(4) Let H be a subgroup of G2 and define Hy to be ¢~!(Hs); that is, Hj is the set of
all g € G1 such that ¢(g) € Hy. The identity is in H; since ¢(e) = ¢’. If a and b are in Hy,
then ¢(ab™!) = é(a)[¢(b)]~! is in Hy since Ho is a subgroup of G3. Therefore, ab™! € Hj
and H; is a subgroup of Gy. If Hy is normal in G5, we must show that g~'hg € H; for
h € Hy and g € G1. But

d(g " hg) = [0(9)] ' ¢(h)p(g) € Ha,

since Hy is a normal subgroup of Gy. Therefore, g 'hg € Hj. |

Let ¢ : G — H be a group homomorphism and suppose that e is the identity of H. By
Proposition 11.4, ¢~!({e}) is a subgroup of G. This subgroup is called the kernel of ¢ and
will be denoted by ker ¢. In fact, this subgroup is a normal subgroup of G since the trivial
subgroup is normal in H. We state this result in the following theorem, which says that
with every homomorphism of groups we can naturally associate a normal subgroup.



CHAPTER 11. HOMOMORPHISMS 192

Theorem 11.5 Let ¢ : G — H be a group homomorphism. Then the kernel of ¢ is a
normal subgroup of G.

Example 11.6 Let us examine the homomorphism ¢ : GLa(R) — R* defined by A
det(A). Since 1 is the identity of R*, the kernel of this homomorphism is all 2 x 2 matrices
having determinant one. That is, ker ¢ = SLo(R). O

Example 11.7 The kernel of the group homomorphism ¢ : R — C* defined by ¢(0) =
cosf +isinf is {2mn : n € Z}. Notice that ker ¢ = Z. O

Example 11.8 Suppose that we wish to determine all possible homomorphisms ¢ from Zr
to Zis. Since the kernel of ¢ must be a subgroup of Zr, there are only two possible kernels,
{0} and all of Z7. The image of a subgroup of Z7 must be a subgroup of Zj2. Hence, there
is no injective homomorphism; otherwise, Zio would have a subgroup of order 7, which
is impossible. Consequently, the only possible homomorphism from Z; to Zjs is the one
mapping all elements to zero. O

Example 11.9 Let G be a group. Suppose that g € G and ¢ is the homomorphism from Z
to G given by ¢(n) = ¢g™. If the order of g is infinite, then the kernel of this homomorphism
is {0} since ¢ maps Z onto the cyclic subgroup of G generated by g. However, if the order
of g is finite, say n, then the kernel of ¢ is nZ. O

11.2 The Isomorphism Theorems

Although it is not evident at first, factor groups correspond exactly to homomorphic images,
and we can use factor groups to study homomorphisms. We already know that with every
group homomorphism ¢ : G — H we can associate a normal subgroup of G, ker ¢. The con-
verse is also true; that is, every normal subgroup of a group G gives rise to homomorphism
of groups.

Let H be a normal subgroup of G. Define the natural or canonical homomorphism

¢»:G—G/H
by

This is indeed a homomorphism, since

P(9192) = 9192H = g1Hgo H = ¢(91)9(92)-

The kernel of this homomorphism is H. The following theorems describe the relationships
between group homomorphisms, normal subgroups, and factor groups.

Theorem 11.10 First Isomorphism Theorem. Ify : G — H is a group homomorphism
with K = ker ), then K is normal in G. Let ¢ : G — G/K be the canonical homomorphism.
Then there exists a unique isomorphism n: G/K — ¥ (G) such that ¢ = n¢.

PRrROOF. We already know that K is normal in G. Definen: G/K — ¢(G) by n(gK) = ¥ (g).
We first show that 7 is a well-defined map. If g1 K = ¢go K, then for some k € K, g1k = go;
consequently,

(1K) =¥(g91) = ¥(g91)Y (k) = ¥(g1k) = ¥(g92) = n(g2K).

Thus, 1 does not depend on the choice of coset representatives and the map n : G/K — (G)
is uniquely defined since ¥ = n¢. We must also show that 1 is a homomorphism. Indeed,

(91K g2 K) = n(g192K)
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= ¥(9192)
¥(91)1(g2)
= (g1 K)n(g2K).

Clearly, n is onto (G). To show that 7 is one-to-one, suppose that 7(g1K) = n(g2K).
Then ¥(g1) = 1(g2). This implies that 1/1(91_192) =e, or gl_lgg is in the kernel of v; hence,
gl_lggK = K; that is, s K = g2 K. |

Mathematicians often use diagrams called commutative diagrams to describe such
theorems. The following diagram “commutes” since ¢ = ne.

G v H

G/K

Example 11.11 Let G be a cyclic group with generator g. Define a map ¢ : Z — G by
n +— ¢". This map is a surjective homomorphism since

p(m+n)=g"t" = g"g" = p(m)p(n).

Clearly ¢ is onto. If |g| = m, then ¢™ = e. Hence, ker ¢ = mZ and Z/ker ¢ = Z/mZ = G.
On the other hand, if the order of g is infinite, then ker ¢ = 0 and ¢ is an isomorphism of
G and Z. Hence, two cyclic groups are isomorphic exactly when they have the same order.
Up to isomorphism, the only cyclic groups are Z and Z,,. [l

Theorem 11.12 Second Isomorphism Theorem. Let H be a subgroup of a group G
(not necessarily normal in G) and N a normal subgroup of G. Then HN is a subgroup of
G, HN N s a normal subgroup of H, and

H/HNN=HN/N.
Proor. We will first show that HN = {hn : h € H,n € N} is a subgroup of G. Suppose
that hini, hany € HN. Since N is normal, (hz) 'nihy € N. So

(h1n1)(hang) = hiha((h2) ™ 'nihe)ns
isin HN. The inverse of hn € HN is in HN since
(hn)™' =n7 At = B (AR,

Next, we prove that H NN is normal in H. Let h € H and n € H N N. Then
h~'nh € H since each element is in H. Also, h~'nh € N since N is normal in G therefore,
h~'nh € HNN.

Now define a map ¢ from H to HN/N by h — hN. The map ¢ is onto, since any coset
hnN = hN is the image of h in H. We also know that ¢ is a homomorphism because

é(hh') = hh/N = hNK'N = ¢(h)p(h).
By the First Isomorphism Theorem, the image of ¢ is isomorphic to H/ker ¢; that is,
HN/N = ¢(H) = H/ker ¢.
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Since

kero={he H:he N} =HNN,
HN/N = ¢(H) = H/HNN. m

Theorem 11.13 Correspondence Theorem. Let N be a normal subgroup of a group
G. Then H — H/N is a one-to-one correspondence between the set of subgroups H of G
containing N and the set of subgroups of G/N. Furthermore, the normal subgroups of G
containing N correspond to normal subgroups of G/N.

PROOF. Let H be a subgroup of G containing N. Since N is normal in H, H/N is a factor
group. Let aN and bN be elements of H/N. Then (aN)(b~'N) = ab~!N € H/N; hence,
H/N is a subgroup of G/N.

Let S be a subgroup of G/N. This subgroup is a set of cosets of N. If H = {g € G :
gN € S}, then for hy,he € H, we have that (hiN)(heN) = hihaN € S and hl_lN e S.
Therefore, H must be a subgroup of G. Clearly, H contains N. Therefore, S = H/N.
Consequently, the map H — H/N is onto.

Suppose that H; and Hs are subgroups of G containing N such that H;/N = Hy/N.
If hy € Hy, then hyN € H;/N. Hence, hhyN = hoN C Hj for some hy in Hy. However,
since N is contained in Ho, we know that hy € Hy or Hy C Hy. Similarly, Hy C H;. Since
H, = Hy, the map H — H/N is one-to-one.

Suppose that H is normal in G and N is a subgroup of H. Then it is easy to verify
that the map G/N — G/H defined by gN — gH is a homomorphism. The kernel of this
homomorphism is H /N, which proves that H/N is normal in G/N.

Conversely, suppose that H/N is normal in G/N. The homomorphism given by

G/N

G—>G/N—>m

has kernel H. Hence, H must be normal in G. |

Notice that in the course of the proof of Theorem 11.13, we have also proved the following
theorem.

Theorem 11.14 Third Isomorphism Theorem. Let G be a group and N and H be
normal subgroups of G with N C H. Then

G/N
H= —~——.
G/ H/N
Example 11.15 By the Third Isomorphism Theorem,
Z/mZ = (Z)/mnZ)/(mZ/mnZ).

Since |Z/mnZ| = mn and |Z/mZ| = m, we have |mZ/mnZ| = n. O

11.3 Reading Questions

1. Consider the function ¢ : Zjy — Z1g defined by ¢(z) = x + z. Prove that ¢ is a group
homomorphism.

2. For ¢ defined in the previous question, explain why ¢ is not a group isomorphism.
3. Compare and contrast isomorphisms and homomorphisms.

4. Paraphrase the First Isomorphism Theorem using only words. No symbols allowed at
all.
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5.

“For every normal subgroup there is a homomorphism, and for every homomorphism
there is a normal subgroup.” Explain the (precise) basis for this (vague) statement.

11.4 Exercises

1.

Prove that det(AB) = det(A) det(B) for A, B € GL2(R). This shows that the deter-
minant is a homomorphism from GLy(R) to R*.

Which of the following maps are homomorphisms? If the map is a homomorphism,
what is the kernel?

(a) ¢:R* = GLy(R) defined by

o= (5 )

(b) ¢:R — GL2(R) defined by

(c) ¢: GL2(R) — R defined by
(d) ¢ : GLa(R) — R* defined by

(e) ¢:Mz(R) — R defined by

o((0 1)

where My (R) is the additive group of 2 x 2 matrices with entries in R.

Let A be an m X n matrix. Show that matrix multiplication, x — Ax, defines a
homomorphism ¢ : R” — R™.
Let ¢ : Z — 7Z be given by ¢(n) = 7n. Prove that ¢ is a group homomorphism. Find
the kernel and the image of ¢.

Describe all of the homomorphisms from Zso4 to Zqg.
Describe all of the homomorphisms from Z to Zqs.
In the group Za4, let H = (4) and N = (6).

(a) List the elements in HN (we usually write H + N for these additive groups) and
HNN.

(b) List the cosets in HN /N, showing the elements in each coset.
(c) List the cosets in H/(H N N), showing the elements in each coset.

(d) Give the correspondence between HN /N and H/(H N N) described in the proof
of the Second Isomorphism Theorem.
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8.

10.
11.

12.
13.
14.

15.

16.

17.

18.

19.

If G is an abelian group and n € N, show that ¢ : G — G defined by g — ¢" is a group
homomorphism.

If ¢ : G — H is a group homomorphism and G is abelian, prove that ¢(G) is also
abelian.

If ¢ : G — H is a group homomorphism and G is cyclic, prove that ¢(G) is also cyclic.
Show that a homomorphism defined on a cyclic group is completely determined by its
action on the generator of the group.

If a group G has exactly one subgroup H of order k, prove that H is normal in G.
Prove or disprove: Q/Z = Q.

Let G be a finite group and N a normal subgroup of G. If H is a subgroup of G/N,
prove that ¢~!(H) is a subgroup in G of order |H| - |N|, where ¢ : G — G/N is the
canonical homomorphism.

Let G1 and G4 be groups, and let H; and Hy be normal subgroups of G and G respec-
tively. Let ¢ : G1 — G2 be a homomorphism. Show that ¢ induces a homomorphism
o : (Gl/Hl) — (GQ/HQ) if ¢(H1) C Hs.

If H and K are normal subgroups of G and H N K = {e}, prove that G is isomorphic
to a subgroup of G/H x G/K.

Let ¢ : G1 — G2 be a surjective group homomorphism. Let H; be a normal subgroup
of G and suppose that ¢(H;) = Hy. Prove or disprove that G1/H; = G2/ Ho.

Let ¢ : G — H be a group homomorphism. Show that ¢ is one-to-one if and only if
¢~ '(e) = {e}.

Given a homomorphism ¢ : G — H define a relation ~ on G by a ~ b if ¢(a) = ¢(b)

for a,b € G. Show this relation is an equivalence relation and describe the equivalence
classes.

11.5 Additional Exercises: Automorphisms

1.

Let Aut(G) be the set of all automorphisms of G; that is, isomorphisms from G to

itself. Prove this set forms a group and is a subgroup of the group of permutations of
G; that is, Aut(G) < Sg.

An inner automorphism of G,
ig: G = G,

is defined by the map

Zg(x) = g.ﬁUg_l,

for g € G. Show that i, € Aut(G).

The set of all inner automorphisms is denoted by Inn(G). Show that Inn(G) is a
subgroup of Aut(G).

Find an automorphism of a group G that is not an inner automorphism.
Let G be a group and i, be an inner automorphism of G, and define a map
G — Aut(G)
by
g ig.

Prove that this map is a homomorphism with image Inn(G) and kernel Z(G). Use this
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result to conclude that
G/Z(G) = Inn(Q).

6. Compute Aut(S3) and Inn(S3). Do the same thing for Dy.
7. Find all of the homomorphisms ¢ : Z — Z. What is Aut(Z)?
8. Find all of the automorphisms of Zg. Prove that Aut(Zs) = U(8).
9. For k € Z,, define a map ¢y, : Z,, — Zy, by a — ka. Prove that ¢, is a homomorphism.
10. Prove that ¢y is an isomorphism if and only if k is a generator of Z,.
11. Show that every automorphism of Z, is of the form ¢, where k is a generator of Z,.
12. Prove that ¢ : U(n) — Aut(Z,) is an isomorphism, where ¢ : k — ¢.

11.6 Sage

Sage is able to create homomorphisms (and by extension, isomorphisms and automorphisms)
between finite permutation groups. There is a limited supply of commands then available
to manipulate these functions, but we can still illustrate many of the ideas in this chapter.

Homomorphisms

The principal device for creating a homomorphism is to specify the specific images of the
set of generators for the domain. Consider cyclic groups of order 12 and 20:

G = {da'|a'? = ¢} H = {z']2* = ¢}

and define a homomorphism by just defining the image of the generator of G, and define
the rest of the mapping by extending the mapping via the operation-preserving property of
a homomorphism.

The constructor PermutationGroupMorphism requires the two groups, then a list of images
for each generator (in order!), and then will create the homomorphism. Note that we can
then use the result as a function. In the example below, we first verify that C12 has a
single generator (no surprise there), which we then send to a particular element of order 4
in the codomain. Sage then constructs the unique homomorphism that is consistent with
this requirement.

C12 = CyclicPermutationGroup (12)
C20 = CyclicPermutationGroup (20)
domain_gens = C12.gens ()

[g.order () for g in domain_gens]

[12]

C20.gen(0)
x5

X
y:
y.order ()
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phi = PermutationGroupMorphism(C12, C20, [yl)
phi

Permutation group morphism:
From: Cyclic group of order 12 as a permutation group
To: Cyclic group of order 20 as a permutation group
Defn: [(1,2,3,4,5,6,7,8,9,10,11,12)] ->
[(1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5,10,15,20)]

a = C12(¢("(1,6,11,4,9,2,7,12,5,10,3,8)")
phi(a)

(1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5,10,15,20)

b = Cc12(¢("(1,3,5,7,9,11)(2,4,6,8,10,12)")
phi (b)

(1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)

c = C12("(1,9,5)(2,10,6)(3,11,7)(4,12,8)")
phi(c)

O

Note that the element ¢ must therefore be in the kernel of phi.

We can then compute the subgroup of the domain that is the kernel, in this case a cyclic
group of order 3 inside the cyclic group of order 12. We can compute the image of any
subgroup, but here we will build the whole homomorphic image by supplying the whole
domain to the .image() method. Here the image is a cyclic subgroup of order 4 inside the
cyclic group of order 20. Then we can verify the First Isomorphism Theorem.

K = phi.kernel(); K

Subgroup generated by [(1,5,9)(2,6,10)(3,7,11)(4,8,12)1]
of (Cyclic group of order 12 as a permutation group)

Im = phi.image(C12); Im

Subgroup generated by
[(1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5,10,15,20)1]
of (Cyclic group of order 20 as a permutation group)

Im.is_isomorphic(C12.quotient (K))

True

Here is a slightly more complicated example. The dihedral group Doy is the symmetry
group of a 20-gon. Inside this group is a subgroup that is isomorphic to the symmetry group
of a 5-gon (pentagon). Is this a surprise, or is this obvious? Here is a way to make precise
the statement “Dsyg contains a copy of Ds.”

We build the domain and find its generators, so we know how many images to supply in
the definition of the homomorphism. Then we construct the codomain, from which we will
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construct images. Our choice here is to send a reflection to a reflection, and a rotation to a
rotation. But the rotations will both have order 5, and both are a rotation by 72 degrees.

G = DihedralGroup(5)
H = DihedralGroup (20)
G.gens ()

((1,2,3,4,5), (1,5)(2,4))

H.gens ()

(¢1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),
(1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11))

x = H.gen(0) "4

y H.gen(1)

rho = PermutationGroupMorphism(G, H, [x, yl1)
rho.kernel ()

Subgroup generated by [()] of (Dihedral group of order 10 as a
permutation group)
Since the kernel is trivial, rho is a one-to-one function (see Exercise 11.4.18). But
more importantly, by the First Isomorphishm Theorem, G is isomorphic to the image of the
homomorphism. We compute the image and check the claim.

Im = rho.image(G); Im

Subgroup generated by
[¢(1,5,9,13,17)(2,6,10,14,18)(3,7,11,15,19)(4,8,12,16,20),
(1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)1]

of (Dihedral group of order 40 as a permutation group)

Im.is_subgroup(H)

True

Im.is_isomorphic(G)

True

Just providing a list of images for the generators of the domain is no guarantee that
the function will extend to a homomorphism. For starters, the order of each image must
divide the order of the corresponding preimage. (Can you prove this?) And similarly, if
the domain is abelian, then the image must also be abelian, so in this case the list of
images should not generate a non-abelian subgroup. Here is an example. There are no
homomorphisms from a cyclic group of order 7 to a cyclic group of order 4 (other than the
trivial function that takes every element to the identity). To see this, consider the possible
orders of the kernel, and of the two possibilities, see that one is impossible and the other
arises with the trivial homomorphism. Unfortunately, Sage acts as if nothing is wrong in
creating a homomorphism between these groups, but what Sage builds is useless and raises
errors when you try to use it.
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G = CyclicPermutationGroup (7)

H = CyclicPermutationGroup (4)
tau = PermutationGroupMorphism_im_gens(G, H, H.gens())
tau

Permutation group morphism:
From: Cyclic group of order 7 as a permutation group
To: Cyclic group of order 4 as a permutation group
Defn: [(1,2,3,4,5,6,7)]1 -> [(1,2,3,4)]

tau.kernel ()

Traceback (most recent call last):

RuntimeError: Gap produced error output

Rather than creating homomorphisms ourselves, in certain situations Sage knows of the
existence of natural homomorphisms and will create them for you. One such case is a direct
product construction. Given a group G, the method .direct_product(H) will create the di-
rect product Gx H. (This is not the same command as the function direct_product_permgroups()
from before.) Not only does this command create the direct product, but it also builds four
homomorphisms, one with domain G, one with domain H and two with domain G x H.

So the output consists of five objects, the first being the actual group, and the remain-
der are homomorphisms. We will demonstrate the call here, and leave a more thorough
investigation for the exercises.

G CyclicPermutationGroup (3)
H DihedralGroup (4)

results = G.direct_product (H)
results[0]

Permutation Group with generators [(4,5,6,7), (4,7)(5,6), (1,2,3)]

results[1]

Permutation group morphism:
From: Cyclic group of order 3 as a permutation group
To: Permutation Group with generators
[(4,5,6,7), (4,7)(5,6), (1,2,3)]
Defn: Embedding( Group( [ (1,2,3), (4,5,6,7), (4,7)(5,6) 1 ), 1)

results[2]

Permutation group morphism:
From: Dihedral group of order 8 as a permutation group
To: Permutation Group with generators
[(4,5,6,7), (4,7)(5,6), (1,2,3)]
Defn: Embedding( Group( [ (1,2,3), (4,5,6,7), (4,7)(5,6) 1 ), 2 )

results[3]
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Permutation group morphism:

From: Permutation Group with generators
[(4,5,6,7), (4,7)(5,6), (1,2,3)]
To: Cyclic group of order 3 as a permutation group
Defn: Projection( Group( [ (1,2,3), (4,5,6,7), (4,7)(5,6) 1), 1)

results[4]

Permutation group morphism:

From: Permutation Group with generators
[(4,5,6,7), (4,7)(5,6), (1,2,3)]
To: Dihedral group of order 8 as a permutation group
Defn: Projection( Group( [ (1,2,3), (4,5,6,7), (4,7)(5,6) 1), 2)

11.7 Sage Exercises

1.

An automorphism is an isomorphism between a group and itself. The identity function
(x +— z) is always an isomorphism, which we consider trivial. Use Sage to construct
a nontrivial automorphism of the cyclic group of order 12. Check that the mapping
is both onto and one-to-one by computing the image and kernel and performing the
proper tests on these subgroups. Now construct all of the possible automorphisms of
the cyclic group of order 12 without any duplicates.

The four homomorphisms created by the direct product construction are each an ex-
ample of a more general construction of homomorphisms involving groups G, H and
G x H. By using the same groups as in the example in the previous subsection, see
if you can discover and describe these constructions with exact definitions of the four
homomorphisms in general.

Your tools for investigating a Sage group homomorphism are limited, you might
take each generator of the domain and see what its image is. Here is an example
of the type of computation you might do repeatedly. We’ll investigate the second
homomorphism. The domain is the dihedral group, and we will compute the image of
the first generator.

G = CyclicPermutationGroup (3)
H = DihedralGroup (4)

results = G.direct_product (H)
phi = results[2]

H.gens ()

((1,2,3,4), (1,4)(2,3))

a = H.gen(0); a

(1,2,3,4)

phi(a)

(4,5,6,7)
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3. Consider two permutation groups. The first is the subgroup of S7 generated by (1,2, 3)
and (4,5,6,7). The second is a subgroup of S generated by (1, 2,3)(4,5,6)(7,8,9)(10,11,12)
and (1,10,7,4)(2,11,8,5)(3,12,9,6). Build these two groups and use the proper Sage
command to see that they are isomorphic. Then construct a homomorphism between
these two groups that is an isomorphism and include enough details to verify that the
mapping is really an isomorphism.

4. The second paragraph of this chapter informally describes a homomorphism from S,
to Zs, where the even permutations all map to one of the elements and the odd per-
mutations all map to the other element. Replace S, by Sg and replace Zs by the
permutation version of the cyclic subgroup of order 2, and construct a nontrivial ho-
momorphism between these two groups. Evaluate your homomorphism with enough
even and odd permutations to be convinced that it is correct. Then construct the
kernel and verify that it is the group you expect.

Hints: First, decide which elements of the group of order 2 will be associated with
even permutations and which will be associated with odd permutations. Then examine
the generators of Sg to help decide just how to build the homomorphism.

5. The dihedral group Doy has several normal subgroups, as seen below. Each of these
is the kernel of a homomorphism with Doy as the domain. For each normal subgroup
of Dy construct a homomorphism from Doy to Doy that has the normal subgroup as
the kernel. Include in your work verifications that you are creating the desired kernels.
There is a pattern to many of these, but the three of order 20 will be a challenge.

G = DihedralGroup (20)
[H.order () for H in G.normal_subgroups ()]

[40, 20, 20, 20, 10, 4, 2, 5, 1]
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Matrix Groups and Symmetry

When Felix Klein (1849-1925) accepted a chair at the University of Erlangen, he outlined in
his inaugural address a program to classify different geometries. Central to Klein’s program
was the theory of groups: he considered geometry to be the study of properties that are
left invariant under transformation groups. Groups, especially matrix groups, have now
become important in the study of symmetry and have found applications in such disciplines
as chemistry and physics. In the first part of this chapter, we will examine some of the
classical matrix groups, such as the general linear group, the special linear group, and the
orthogonal group. We will then use these matrix groups to investigate some of the ideas
behind geometric symmetry.

12.1 Matrix Groups

Some Facts from Linear Algebra

Before we study matrix groups, we must recall some basic facts from linear algebra. One of
the most fundamental ideas of linear algebra is that of a linear transformation. A linear
transformation or linear map T : R™ — R™ is a map that preserves vector addition and
scalar multiplication; that is, for vectors x and y in R™ and a scalar o € R,

Tx+y)=Tx) +T(y)
T(ay) = oT(y).
An m x n matrix with entries in R represents a linear transformation from R™ to R™. If

we write vectors x = (71,...,2,)  and y = (y1,...,y»)" in R” as column matrices, then an
m X n matrix

aii ai2 Aln

a1 a2 a2n
A= .

aml Am2 " Gmn

maps the vectors to R™ linearly by matrix multiplication. Observe that if « is a real number,

Ax+y)=Ax+Ay and  adx = A(ax),

203
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where
T

Z2

Ln

We will often abbreviate the matrix A by writing (a;).
Conversely, if T : R® — R™ is a linear map, we can associate a matrix A with T by
considering what 7' does to the vectors

e; = (1,0,...,0)"
es = (0,1,...,0)"

t
en = (0,0,...,1)"
We can write any vector x = (z1,...,2,)" as
rier + roex + - - + xpey.

Consequently, if

T(el) = (an,agl, e ,aml)t,
T(eg) = (alg, as, ... ,amg)t,
T(en) - (alnu a2n’ R} amn)ty

then

T(x) =T(x1e1 + z2€2+ -+ xn€p)
=x1T(e1) + 2T (e2) + -+ - + x,T(ey)

n n t
= Zalkxkv"')zamkxk
k=1 k=1

= Ax.
Example 12.1 If we let T : R? — R? be the map given by

T($1, xg) = (2%1 + bxo, —4x1 + 3$2),

the axioms that 7" must satisfy to be a linear transformation are easily verified. The column
vectors Te; = (2,—4)" and Tey = (5,3)" tell us that T is given by the matrix

=20
-4 3
O

Since we are interested in groups of matrices, we need to know which matrices have
multiplicative inverses. Recall that an n x n matrix A is invertible exactly when there
exists another matrix A~! such that AA™! = A=1A = I, where

0 1 0
I =
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is the n x n identity matrix. From linear algebra we know that A is invertible if and only if
the determinant of A is nonzero. Sometimes an invertible matrix is said to be nonsingular.

()
Al:(_35 ‘21>.

We are guaranteed that A~! exists, since det(4) =2-3 —5-1 = 1 is nonzero. g

Example 12.2 If A is the matrix

then the inverse of A is

Some other facts about determinants will also prove useful in the course of this chapter.
Let A and B be n x n matrices. From linear algebra we have the following properties of
determinants.

e The determinant is a homomorphism into the multiplicative group of real numbers;

that is, det(AB) = (det A)(det B).
o If A is an invertible matrix, then det(A~!) = 1/ det A.
o If we define the transpose of a matrix A = (a;;) to be A* = (aj;), then det(A") = det A.

o Let T be the linear transformation associated with an n x n matrix A. Then T
multiplies volumes by a factor of |det A|. In the case of R2, this means that T
multiplies areas by | det A|.

Linear maps, matrices, and determinants are covered in any elementary linear algebra
text; however, if you have not had a course in linear algebra, it is a straightforward process
to verify these properties directly for 2 x 2 matrices, the case with which we are most
concerned.

The General and Special Linear Groups

The set of all n x n invertible matrices forms a group called the general linear group.
We will denote this group by GL,(R). The general linear group has several important
subgroups. The multiplicative properties of the determinant imply that the set of matrices
with determinant one is a subgroup of the general linear group. Stated another way, suppose
that det(A) = 1 and det(B) = 1. Then det(AB) = det(A)det(B) = 1 and det(4A~!) =
1/det A = 1. This subgroup is called the special linear group and is denoted by SL,(R).

a b
A=
(¢ a)
the determinant of A is ad — be. The group GL2(R) consists of those matrices in which
ad — be # 0. The inverse of A is

1 d —b
Al = .
ad — bc (—c a >

Example 12.3 Given a 2 x 2 matrix

If Aisin SLa(R), then
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Geometrically, SLa(R) is the group that preserves the areas of parallelograms. Let

A 1 1
0 1
be in SLy(R). In Figure 12.4, the unit square corresponding to the vectors x = (1,0)"

and y = (0,1)" is taken by A to the parallelogram with sides (1,0)* and (1,1)%; that is,
Ax = (1,0)" and Ay = (1,1)". Notice that these two parallelograms have the same area.

]
) Yy
(0,1) % L1
(1,0) G ) G

Figure 12.4 SLy(R) acting on the unit square

The Orthogonal Group O(n)

Another subgroup of G L, (R) is the orthogonal group. A matrix A is orthogonal if A~! =
At. The orthogonal group consists of the set of all orthogonal matrices. We write O(n)
for the n x n orthogonal group. We leave as an exercise the proof that O(n) is a subgroup
of GL,(R).

Example 12.5 The following matrices are orthogonal:

-1/vV2 0 1/V2
3/5 —4/5 1/2 —V3/2 / -
(4/5 3/5)’ <\/§/2 1/2 ) 5% 12//\/? Zg

O

There is a more geometric way of viewing the group O(n). The orthogonal matrices
are exactly those matrices that preserve the length of vectors. We can define the length
of a vector using the Fuclidean inner product, or dot product, of two vectors. The

Euclidean inner product of two vectors x = (z1,...,2,)  and y = (y1,...,yn)" is
Y1
t Y2
<X’Y>:Xy:(l'1>$2""’xn) . =T1Yy1 + -+ TnyYn.
Yn

We define the length of a vector x = (z1,...,2,)" to be

Ill = v/fom) = /2 4+ 22,
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Associated with the notion of the length of a vector is the idea of the distance between two
vectors. We define the distance between two vectors x and y to be ||x — y||. We leave as
an exercise the proof of the following proposition about the properties of Euclidean inner
products.

Proposition 12.6 Let x, y, and w be vectors in R™ and o € R. Then
1 (xy) = (y,x).
2. (x,y+w)=(x,y) + (x,W).
3. {ax,y) = (x,ay) = a(X,y).
4. (x,x) > 0 with equality exactly when x = 0.
5. If (x,y) =0 for all x in R™, then y = 0.
Example 12.7 The vector x = (3,4)" has length /32 4+ 42 = 5. We can also see that the

orthogonal matrix
A (35 —4/5
4/5 3/5
preserves the length of this vector. The vector Ax = (—7/5,24/5)" also has length 5. O

Since det(AA") = det(I) = 1 and det(A) = det(A"), the determinant of any orthogonal
matrix is either 1 or —1. Consider the column vectors

anj

is the Kronecker delta. Accordingly, column vectors of an orthogonal matrix all have length
1; and the Euclidean inner product of distinct column vectors is zero. Any set of vectors
satisfying these properties is called an orthonormal set. Conversely, given an n X n matrix
A whose columns form an orthonormal set, it follows that A=t = A¢.

We say that a matrix A is distance-preserving, length-preserving, or inner product-
preserving when || Ax — Ay|| = ||x — y||, ||Ax|| = [|x]|, or (Ax, Ay) = (x,y), respectively.
The following theorem, which characterizes the orthogonal group, says that these notions
are the same.

Theorem 12.8 Let A be an n x n matriz. The following statements are equivalent.

1. The columns of the matrix A form an orthonormal set.
A~ = At
For vectors x and y, (Ax, Ay) = (x,y).

For vectors x and y, ||Ax — Ay|| = ||x — y||.

Gvo o e

For any vector x, || Ax|| = ||x/|.
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ProOOF. We have already shown (1) and (2) to be equivalent.
(2) = (3).
(Ax, Ay) = (Ax)"Ay
=x'A'Ay
= Xty
= (xy)
(3) = (2). Since
(x,x) = (Ax, Ax)
= x"A'Ax
= (x, A" Ax),

we know that (x, (A4 — I)x) = 0 for all x. Therefore, AYA—T=0or A~! = A",
(3) = (4). If A is inner product-preserving, then A is distance-preserving, since

IAx — Ay[? = | A(x — y)|?
= (Ax-y), Alx—y))
=(x-y.x-y)
=[x —yl*
(4) = (5). If A is distance-preserving, then A is length-preserving. Letting y = 0, we

have
[Ax|| = |Ax — Ayl = [|x — y[| = [|x]|.

(5) = (3). We use the following identity to show that length-preserving implies inner
product-preserving;:

1
xy) =3 [+ ylI* = 1> = [y lI”] -
Observe that

1

(Ax, Ay) = 5 [IAx + Ay|* — || Ax|* — || Ay|*]
1
=3 [IAGx +y)II” — | Ax[]* — [ Ay]]*]
1
=3 [+ ylI* = IIxI* = [ly[*]
=(x,y).
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(sin @, — cos 0)

(a,b) (cosf,sin )

(a> _b)

Figure 12.9 O(2) acting on R?

Example 12.10 Let us examine the orthogonal group on R? a bit more closely. An element
A € O(2) is determined by its action on e; = (1,0)" and ex = (0,1)*. If Ae; = (a,b)", then
a®+b? = 1, since the length of a vector must be preserved when it is multiplied by A. Since
multiplication of an element of O(2) preserves length and orthogonality, Aey = +(—b,a).
If we choose Aey = (—b,a)t, then

A— (@ —b\  (cosf —sinf
~\b a/) \sinf cosh )’
where 0 < 6 < 27. The matrix A rotates a vector in R? counterclockwise about the origin

by an angle of 6 (Figure 12.9).
If we choose Aey = (b, —a)!, then we obtain the matrix

B a b\ (cosf sinf
~\b —a) \sinf —cosf)"’

B = (1",
0 1
A reflection about the horizontal axis is given by the matrix
c— 1 0 7
0 -1

and B = AC (see Figure 12.9). Thus, a reflection about a line ¢ is simply a reflection about
the horizontal axis followed by a rotation. ([

Here, det B = —1 and

Two of the other matrix or matrix-related groups that we will consider are the special
orthogonal group and the group of Euclidean motions. The special orthogonal group,
SO(n), is just the intersection of O(n) and SL,(R); that is, those elements in O(n) with
determinant one. The Euclidean group, E(n), can be written as ordered pairs (A4,x),
where A is in O(n) and x is in R”. We define multiplication by

(A,x)(B,y) = (AB, Ay + x).

The identity of the group is (I, 0); the inverse of (A4,x) is (A~!, —A~!x). In Exercise 12.4.6,
you are asked to check that E(n) is indeed a group under this operation.
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Y Y

/X+y

Figure 12.11 Translations in R?

12.2 Symmetry

An isometry or rigid motion in R™ is a distance-preserving function f from R” to R".
This means that f must satisfy

1F() = FI)I = lIx =yl

for all x,y € R™. It is not difficult to show that f must be a one-to-one map. By Theo-
rem 12.8, any element in O(n) is an isometry on R"™; however, O(n) does not include all
possible isometries on R™. Translation by a vector x, Ty(x) = x + y is also an isometry
(Figure 12.11); however, T' cannot be in O(n) since it is not a linear map.

We are mostly interested in isometries in R2. In fact, the only isometries in R? are
rotations and reflections about the origin, translations, and combinations of the two. For
example, a glide reflection is a translation followed by a reflection (Figure 12.12). In R™
all isometries are given in the same manner. The proof is very easy to generalize.

Y Y

x N

Lemma 12.13 An isometry f that fizes the origin in R? is a linear transformation. In
particular, f is given by an element in O(2).

PROOF. Let f be an isometry in R? fixing the origin. We will first show that f preserves
inner products. Since f(0) =0, || f(x)|| = ||x]|; therefore,

Ix[* = 2(f (%), £(¥)) + IYII* = [ FI* = 2(£ (), f () + [ F )
= {f(x) = f(¥), f(x) = f(¥))

Figure 12.12 Glide reflections
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= | f(x) = F)I
=[x -y
= <X_Y7X_y>

= [x]* - 2(x,¥) + [ly|I*-

Consequently,
(f(x), f(y)) = (x,¥)

Now let e; and es be (1,0)" and (0,1)", respectively. If
X = (r1,22) = r1€1 + 2202,

then
f(x) = (f(x), fler))fe1) + (f(x), f(e2)) f(e2) = z1f(e1) + w2 f(e2).
The linearity of f easily follows. |

For any arbitrary isometry, f, Tk f will fix the origin for some vector x in R?; hence,
Tx f(y) = Ay for some matrix A € O(2). Consequently, f(y) = Ay+x. Given the isometries

f(y) =Ay + x4
g(y) = By + xa,

their composition is
f(9(y)) = f(By +x2) = ABy + Axz + x1.
This last computation allows us to identify the group of isometries on R? with F(2).

Theorem 12.14 The group of isometries on R? is the Euclidean group, E(2).

A symmetry group in R" is a subgroup of the group of isometries on R™ that fixes a
set of points X C R™. It is important to realize that the symmetry group of X depends
both on R™ and on X. For example, the symmetry group of the origin in R! is Zs, but the
symmetry group of the origin in R? is O(2).

Theorem 12.15 The only finite symmetry groups in R? are Z,, and D,,.

PRrROOF. We simply need to find all of the finite subgroups G of E(2). Any finite symmetry
group G in R? must fix the origin and must be a finite subgroup of O(2), since translations
and glide reflections have infinite order. By Example 12.10, elements in O(2) are either

rotations of the form
R, — (o8 6 —sind
o= sinf cos@

or reflections of the form

__(cos¢p —sing\ (1 0\ (cos¢ sing
~ \sing  cos¢ 0 —1) \sing —cos¢/)’
Notice that det(Ry) = 1, det(Ty) = —1, and Tg = I. We can divide the proof up into two

cases. In the first case, all of the elements in G have determinant one. In the second case,
there exists at least one element in G with determinant —1.

Case 1. The determinant of every element in G is one. In this case every element in G must
be a rotation. Since G is finite, there is a smallest angle, say 6y, such that the corresponding
element Ry, is the smallest rotation in the positive direction. We claim that Ry, generates
G. If not, then for some positive integer n there is an angle 6, between nfy and (n + 1)6p.



CHAPTER 12. MATRIX GROUPS AND SYMMETRY 212
If so, then (n + 1)fy — 01 corresponds to a rotation smaller than 6y, which contradicts the
minimality of 6.

Case 2. The group G contains a reflection 7. The kernel of the homomorphism ¢ :
G — {—1,1} given by A > det(A) consists of elements whose determinant is 1. Therefore,
|G/ ker ¢| = 2. We know that the kernel is cyclic by the first case and is a subgroup of G
of, say, order n. Hence, |G| = 2n. The elements of G are

Ry,...,Ry "\ TRy,...,TRy) ™.
These elements satisfy the relation
TRyT = R,

Consequently, G must be isomorphic to D,, in this case. |

The Wallpaper Groups

Suppose that we wish to study wallpaper patterns in the plane or crystals in three dimen-
sions. Wallpaper patterns are simply repeating patterns in the plane (Figure 12.16). The
analogs of wallpaper patterns in R3 are crystals, which we can think of as repeating pat-
terns of molecules in three dimensions (Figure 12.17). The mathematical equivalent of a
wallpaper or crystal pattern is called a lattice.

NN ININTINS

NN

Figure 12.16 A wallpaper pattern in R?
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Figure 12.17 A crystal structure in R?

Let us examine wallpaper patterns in the plane a little more closely. Suppose that x
and y are linearly independent vectors in R?; that is, one vector cannot be a scalar multiple
of the other. A lattice of x and y is the set of all linear combinations mx + ny, where m
and n are integers. The vectors x and y are said to be a basis for the lattice.

Notice that a lattice can have several bases. For example, the vectors (1,1)* and (2,0)*
have the same lattice as the vectors (—1,1)* and (—1,—1)" (Figure 12.18). However, any
lattice is completely determined by a basis. Given two bases for the same lattice, say
{x1,%2} and {y1,y2}, we can write

Y1 = a1Xy + 2Xo

y2 = B1x1 + Paxa,
where a1, ag, B1, and (2 are integers. The matrix corresponding to this transformation is
] Qg
v= (51 52) '
If we wish to give x; and X, in terms of y; and ys, we need only calculate U~!; that is,
- ()-)
y2 X2
Since U has integer entries, U~! must also have integer entries; hence the determinants of
both U and U~! must be integers. Because UU ! =1,
det(UUY) = det(U) det(U™) = 1;

consequently, det(U) = £1. A matrix with determinant +1 and integer entries is called
unimodular. For example, the matrix

3 1

5 2

is unimodular. It should be clear that there is a minimum length for vectors in a lattice.
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(_17 1)

L)
/ / (2.0)
~1)

(_17

Figure 12.18 A lattice in R?

We can classify lattices by studying their symmetry groups. The symmetry group of a
lattice is the subgroup of E(2) that maps the lattice to itself. We consider two lattices in R?
to be equivalent if they have the same symmetry group. Similarly, classification of crystals
in R? is accomplished by associating a symmetry group, called a space group, with each
type of crystal. Two lattices are considered different if their space groups are not the same.
The natural question that now arises is how many space groups exist.

A space group is composed of two parts: a translation subgroup and a point. The
translation subgroup is an infinite abelian subgroup of the space group made up of the
translational symmetries of the crystal; the point group is a finite group consisting of ro-
tations and reflections of the crystal about a point. More specifically, a space group is a
subgroup of G C E(2) whose translations are a set of the form {(I,t) : t € L}, where L is a
lattice. Space groups are, of course, infinite. Using geometric arguments, we can prove the
following theorem (see [5] or [6]).

Theorem 12.19 FEvery translation group in R? is isomorphic to Z x 7.

The point group of G is Go = {A : (4,b) € G for some b}. In particular, Gy must be a
subgroup of O(2). Suppose that x is a vector in a lattice L with space group G, translation
group H, and point group Gy. For any element (A,y) in G,

(A, ), x)(Ay) " = (4, Ax+y) (A, -Ay)
= (AA7 —AAT 'y + Ax +y)
= (I, Ax);

hence, (I, Ax) is in the translation group of G. More specifically, Ax must be in the lattice
L. Tt is important to note that Gg is not usually a subgroup of the space group G; however,
if T is the translation subgroup of G, then G/T = Gy. The proof of the following theorem
can be found in [2], [5], or [6].

Theorem 12.20 The point group in the wallpaper groups is isomorphic to Z,, or D,,, where
n=1,23,4,6.

To answer the question of how the point groups and the translation groups can be
combined, we must look at the different types of lattices. Lattices can be classified by the
structure of a single lattice cell. The possible cell shapes are parallelogram, rectangular,
square, rhombic, and hexagonal (Figure 12.21). The wallpaper groups can now be classified
according to the types of reflections that occur in each group: these are ordinarily reflections,
glide reflections, both, or none.
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Square

Rectangular

215

Rhombic

Parallelogram

Figure 12.21 Types of lattices in R?

Table 12.22 The 17 wallpaper groups

N

NNANANAN

Hexagonal

AVAVAVAN

AVAVAVAN

AVAVAVAN

Notation and
Space Groups

Point Group

Lattice Type

Reflections or
Glide Reflections?

pl

p2

p3

p4

p6

pm

pg

cm
pmm
pmg
pgg
c2mm

p3ml, p31lm
pdm, pdg

pbm

7
Lig
L3
Ly
L
Dy
D,
D,

parallelogram
parallelogram
hexagonal
square
hexagonal
rectangular
rectangular
rhombic
rectangular
rectangular
rectangular
rhombic
hexagonal
square
hexagonal

none
none
none
none
none
reflections
glide reflections
both
reflections
glide reflections
both
both
both
both
both

Theorem 12.23 There are exactly 17 wallpaper groups.
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p4m p4g

Figure 12.24 The wallpaper groups p4m and p4g

The 17 wallpaper groups are listed in Table 12.22. The groups p3ml and p31m can
be distinguished by whether or not all of their threefold centers lie on the reflection axes:
those of p3m1 must, whereas those of p31m may not. Similarly, the fourfold centers of p4m
must lie on the reflection axes whereas those of p4dg need not (Figure 12.24). The complete
proof of this theorem can be found in several of the references at the end of this chapter,
including [5], [6], [10], and [11].

[ ] Historical Note [ ]

Symmetry groups have intrigued mathematicians for a long time. Leonardo da Vinci was
probably the first person to know all of the point groups. At the International Congress of
Mathematicians in 1900, David Hilbert gave a now-famous address outlining 23 problems
to guide mathematics in the twentieth century. Hilbert’s eighteenth problem asked whether
or not crystallographic groups in n dimensions were always finite. In 1910, L. Bieberbach
proved that crystallographic groups are finite in every dimension. Finding out how many
of these groups there are in each dimension is another matter. In R? there are 230 different
space groups; in R* there are 4783. No one has been able to compute the number of
space groups for R and beyond. It is interesting to note that the crystallographic groups
were found mathematically for R? before the 230 different types of crystals were actually
discovered in nature.

12.3 Reading Questions

1. What is a nonsingular matrix? Give an example of a 2 X 2 nonsingular matrix. How
do you know your example is nonsingular?

What is an isometry in R”? Can you give an example of an isometry in R2?

What is an orthonormal set of vectors?
What is the difference between the orthogonal group and the special orthogonal group?

What is a lattice?

LA ol S



CHAPTER 12. MATRIX GROUPS AND SYMMETRY 217

12.4 Exercises
1. Prove the identity
1
(x,y) = 3 (1% + yI1* = [1x]1> = [ly[I*] -

2.  Show that O(n) is a group.

3. Prove that the following matrices are orthogonal. Are any of these matrices in SO(n)?

(a) (c)

4/5 0 3/5
1/vV2 —1/V2

(1/\/5 1/\/§> _?(’)/5 _01 465

(d)
(b) 1/3 2/3 —-2/3
1/vV5  2/v5 -2/3 2/3 1/3
<2/\/5 1/\/5> 2/3 1/3 2/3

4. Determine the symmetry group of each of the figures below.
®
(a)

(c)

(b)
5. Let x, y, and w be vectors in R" and a € R. Prove each of the following properties of
inner products.
(a) (x,y) = (y,x).
(b) (xy+w) =Xxy)+xw).
(c) (ax,y) = (x,ay) = a(x,y).
(d) (x,x) > 0 with equality exactly when x = 0.
(e) If (x,y) = 0 for all x in R™, then y = 0.
6. Verify that
E(n)={(4,x): A€ O(n) and x € R"}
is a group.
7. Prove that {(2,1),(1,1)} and {(12,5),(7,3)} are bases for the same lattice.

Let G be a subgroup of F(2) and suppose that T is the translation subgroup of G.
Prove that the point group of G is isomorphic to G/T.
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Let A € SLy(R) and suppose that the vectors x and y form two sides of a parallelo-
gram in R?. Prove that the area of this parallelogram is the same as the area of the
parallelogram with sides Ax and Ay.

Prove that SO(n) is a normal subgroup of O(n).
Show that any isometry f in R™ is a one-to-one map.

Prove or disprove: an element in F(2) of the form (A,x), where x # 0, has infinite
order.

Prove or disprove: There exists an infinite abelian subgroup of O(n).
Let x = (71, 22) be a point on the unit circle in R?; that is, 22 + 23 = 1. If A € O(2),
show that Ax is also a point on the unit circle.

Let G be a group with a subgroup H (not necessarily normal) and a normal subgroup
N. Then G is a semidirect product of N by H if

o HNN = {id};
e HN =G.
Show that each of the following is true.
(a) S is the semidirect product of Az by H = {(1),(12)}.
(b) The quaternion group, (s, cannot be written as a semidirect product.

(c) E(2) is the semidirect product of O(2) by H, where H consists of all translations
in R?.
Determine which of the 17 wallpaper groups preserves the symmetry of the pattern in
Figure 12.16.

Determine which of the 17 wallpaper groups preserves the symmetry of the pattern in
Figure 12.25.

o>
§><><a

Figure 12.25 Lattice for Exercise 12.4.17

18.
19.

Find the rotation group of a dodecahedron.

For each of the 17 wallpaper groups, draw a wallpaper pattern having that group as a
symmetry group.



CHAPTER 12. MATRIX GROUPS AND SYMMETRY 219

12.5 References and Suggested Readings

[1] Coxeter, H. M. and Moser, W. O. J. Generators and Relations for Discrete Groups,
3rd ed. Springer-Verlag, New York, 1972.

[2] Grove, L. C. and Benson, C. T. Finite Reflection Groups. 2nd ed. Springer-Verlag,
New York, 1985.

[3] Hiller, H. “Crystallography and Cohomology of Groups,” American Mathematical
Monthly 93 (1986), 765—-79.

[4] Lockwood, E. H. and Macmillan, R. H. Geometric Symmetry. Cambridge University
Press, Cambridge, 1978.

[5] Mackiw, G. Applications of Abstract Algebra. Wiley, New York, 1985.

[6] Martin, G. Transformation Groups: An Introduction to Symmetry. Springer-Verlag,
New York, 1982.

[7] Milnor, J. “Hilbert’s Problem 18: On Crystallographic Groups, Fundamental Domains,
and Sphere Packing,” ¢t Proceedings of Symposia in Pure Mathematics 18, American
Mathematical Society, 1976.

[8] Phillips, F. C. An Introduction to Crystallography. 4th ed. Wiley, New York, 1971.

[9] Rose, B. L. and Stafford, R. D. “An Elementary Course in Mathematical Symmetry,”
American Mathematical Monthly 88 (1980), 54—64.

[10] Schattschneider, D. “The Plane Symmetry Groups: Their Recognition and Their
Notation,” American Mathematical Monthly 85 (1978), 439-50.

[11] Schwarzenberger, R. L. “The 17 Plane Symmetry Groups,” Mathematical Gazette 58
(1974), 123-31.

[12] Weyl, H. Symmetry. Princeton University Press, Princeton, NJ, 1952.

12.6 Sage

There is no Sage material for this chapter.

12.7 Sage Exercises

There are no Sage exercises for this chapter.
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The Structure of Groups

The ultimate goal of group theory is to classify all groups up to isomorphism; that is, given a
particular group, we should be able to match it up with a known group via an isomorphism.
For example, we have already proved that any finite cyclic group of order n is isomorphic
to Zy; hence, we “know” all finite cyclic groups. It is probably not reasonable to expect
that we will ever know all groups; however, we can often classify certain types of groups or
distinguish between groups in special cases.

In this chapter we will characterize all finite abelian groups. We shall also investigate
groups with sequences of subgroups. If a group has a sequence of subgroups, say

G:HnDHn_lD"‘thDHo:{e},

where each subgroup H; is normal in H;; and each of the factor groups H;;1/H; is abelian,
then G is a solvable group. In addition to allowing us to distinguish between certain classes
of groups, solvable groups turn out to be central to the study of solutions to polynomial
equations.

13.1 Finite Abelian Groups

In our investigation of cyclic groups we found that every group of prime order was isomorphic
to Z,, where p was a prime number. We also determined that Z,,, = Z,, x Z, when
ged(m,n) = 1. In fact, much more is true. Every finite abelian group is isomorphic to a
direct product of cyclic groups of prime power order; that is, every finite abelian group is
isomorphic to a group of the type

chlx1 Xoee XZp;J{n,

where each py, is prime (not necessarily distinct).

First, let us examine a slight generalization of finite abelian groups. Suppose that G
is a group and let {g;} be a set of elements in G, where i is in some index set I (not
necessarily finite). The smallest subgroup of G containing all of the g;’s is the subgroup of
G generated by the g;’s. If this subgroup of G is in fact all of G, then G is generated by
the set {g; : i € I}. In this case the g;’s are said to be the generators of G. If there is a
finite set {g; : i € I} that generates G, then G is finitely generated.

Example 13.1 Obviously, all finite groups are finitely generated. For example, the group
Ss is generated by the permutations (12) and (12 3). The group Z X Z,, is an infinite group
but is finitely generated by {(1,0), (0,1)}. O

220
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Example 13.2 Not all groups are finitely generated. Consider the rational numbers Q
under the operation of addition. Suppose that Q is finitely generated with generators
P1/q1s- -+, Pn/Gn, where each p;/q; is a fraction expressed in its lowest terms. Let p be some
prime that does not divide any of the denominators ¢, ...,q,. We claim that 1/p cannot
be in the subgroup of QQ that is generated by p1/q1,...,Pn/qn, since p does not divide the
denominator of any element in this subgroup. This fact is easy to see since the sum of any
two generators is

pi/@ +pi/a; = (pigj + piai)/(qg;)-
0

Proposition 13.3 Let H be the subgroup of a group G that is generated by {g; € G : i € I}.
Then h € H exactly when it is a product of the form

— 401, On
h=g' 9",

where the g;, s are not necessarily distinct.

PROOF. Let K be the set of all products of the form gi'' ---gi'", where the g; s are not
necessarily distinct. Certainly K is a subset of H. We need only show that K is a subgroup
of G. If this is the case, then K = H, since H is the smallest subgroup containing all the
gis.

Clearly, the set K is closed under the group operation. Since gZQ = 1, the identity is in
K. It remains to show that the inverse of an element g = gfll x gf: in K must also be in
K. However,

gt =g gty = (g g M.
|

The reason that powers of a fixed g; may occur several times in the product is that we
may have a nonabelian group. However, if the group is abelian, then the g¢;s need occur
only once. For example, a product such as a 3b°a” in an abelian group could always be
simplified (in this case, to a*b%).

Now let us restrict our attention to finite abelian groups. We can express any finite
abelian group as a finite direct product of cyclic groups. More specifically, letting p be
prime, we define a group G to be a p-group if every element in GG has as its order a power
of p. For example, both Zy x Zo and Z, are 2-groups, whereas Zo7 is a 3-group. We shall
prove the Fundamental Theorem of Finite Abelian Groups which tells us that every finite
abelian group is isomorphic to a direct product of cyclic p-groups.

Theorem 13.4 Fundamental Theorem of Finite Abelian Groups. FEvery finite
abelian group G is isomorphic to a direct product of cyclic groups of the form

Zpllﬂq X ZP§2 X -+ X Zp;)f"

here the p;’s are primes (not necessarily distinct).

Example 13.5 Suppose that we wish to classify all abelian groups of order 540 = 22-33.5.
The Fundamental Theorem of Finite Abelian Groups tells us that we have the following six
possibilities.

o Zo X Ly X Ly x Lz X Ls X Zs;
o Zo X Ly X L3 X Ly X Ls;

o Zog X Lo X Loy X Zs;

o Zy X T3 X L3 X L3 X Ls;
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OZ4XZ3XZ9XZ5;
. Z4 X Z27 X Z5.

(]
The proof of the Fundamental Theorem of Finite Abelian Groups depends on several
lemmas.

Lemma 13.6 Let G be a finite abelian group of order n. If p is a prime that divides n,
then G contains an element of order p.

Proor. We will prove this lemma by induction. If n = 1, then there is nothing to show.
Now suppose that the lemma is true for all groups of order k, where k < n. Furthermore,
let p be a prime that divides n.

If G has no proper nontrivial subgroups, then G = (a), where a is any element other
than the identity. By Exercise 4.5.39, the order of G must be prime. Since p divides n, we
know that p = n, and G contains p — 1 elements of order p.

Now suppose that G contains a nontrivial proper subgroup H. Then 1 < |H| < n. If
p | |H|, then H contains an element of order p by induction and the lemma is true. Suppose
that p does not divide the order of H. Since G is abelian, it must be the case that H is a
normal subgroup of G, and |G| = |H| - |G/H|. Consequently, p must divide |G/H|. Since
|G/H| < |G| = n, we know that G/H contains an element aH of order p by the induction
hypothesis. Thus,

H = (aH)’ = d’H,

and a? € H but a ¢ H. If |H| = r, then p and r are relatively prime, and there exist
integers s and t such that sp + tr = 1. Furthermore, the order of a? must divide r, and
(@) = (@) = 1.

We claim that a” has order p. We must show that " # 1. Suppose a” = 1. Then

Since a? € H, it must be the case that a = (aP)® € H, which is a contradiction. Therefore,
a” # 1 is an element of order p in G. [ |

Lemma 13.6 is a special case of Cauchy’s Theorem (Theorem 15.1), which states that
if G is a finite group and p a prime such that p divides the order of G, then G contains a
subgroup of order p. We will prove Cauchy’s Theorem in Chapter 15.

Lemma 13.7 A finite abelian group is a p-group if and only if its order is a power of p.
ProOF. If |G| = p™ then by Lagrange’s theorem, then the order of any g € G must divide
p", and therefore must be a power of p. Conversely, if |G| is not a power of p, then it has

some other prime divisor ¢, so by Lemma 13.6, G has an element of order ¢ and thus is not

a p-group. |
Lemma 13.8 Let G be a finite abelian group of order n = p{* - -- pi*, where where p1, ..., pg
are distinct primes and a1, Qs,...,qr are positive integers. Then G is the internal direct

product of subgroups G1,Ga, ..., Gy, where G; is the subgroup of G consisting of all elements
of order p; for some integer r.

PROOF. Since G is an abelian group, we are guaranteed that G; is a subgroup of G for
i =1,...,k. Since the identity has order p? =1, we know that 1 € G;. If g € GG; has order
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1

p;, then g7 must also have order p;. Finally, if h € G; has order p;, then

(gh)Pi = gPikPi =1-1=1,

where ¢ is the maximum of r and s.
‘We must show that
G =GGy- -Gy,

and G; N G; = {1} for i # j. Suppose that g € G; is in the subgroup generated by
G2,G3,...,Gi. Then g1 = gag3--- g for g; € G;. Since g; has order p;*, we know that

gfai =1fori=23,...,k and 911,22...pkk = 1. Since the order of g; is a power of p;
and ged(p1,ps? - pg’“) = 1, it must be the case that g; = 1 and the intersection of G
with any of the subgroups Ga,Gs, ..., G is the identity. A similar argument shows that
GiNG; = {1} for i # j.

Next, we must show that it possible to write every g € G as a product g - - - gi, where
g; € G;. Since the order of g divides the order of G, we know that

gl = p{'p5 -y
for some integers 31, ..., 8. Letting a; = |g|/pfi, the a;’s are relatively prime; hence, there

exist integers by, ..., b such that a1b; + - - - + agbr = 1. Consequently,

arbi+-+agby _ ja1b: akbi

9=49 g g

Since 5
g(aibi)pi _ gbi\g\ —e,

it follows that ¢%® must be in G;. Let ¢; = ¢%%. Then g = g1---gr € G1G3---Gy.
Therefore, G = G1Gs - - - G is an internal direct product of subgroups. |
If remains for us to determine the possible structure of each p;-group G; in Lemma 13.8.

Lemma 13.9 Let G be a finite abelian p-group and suppose that g € G has maximal order.
Then G is isomorphic to (g) x H for some subgroup H of G.
PrROOF. By Lemma 13.7, we may assume that the order of G is p". We shall induct on n.
If n = 1, then G is cyclic of order p and must be generated by g. Suppose now that the
statement of the lemma holds for all integers k with 1 < k < n and let g be of maximal
order in G, say |g| = p™. Then a?" = e for all a € G. Now choose h in G such that h ¢ (g),
where h has the smallest possible order. Certainly such an h exists; otherwise, G = (g) and
we are done. Let H = (h).

We claim that (g) N H = {e}. It suffices to show that |H| = p. Since |hP| = |h|/p, the
order of AP is smaller than the order of h and must be in (g) by the minimality of h; that
is, h? = g" for some number r. Hence,

(9"

and the order of ¢" must be less than or equal to p™~!. Therefore, g" cannot generate (g).
Notice that p must occur as a factor of r, say r = ps, and h? = ¢g" = ¢gP%. Define a to be
g~ *h. Then a cannot be in (g); otherwise, h would also have to be in (g). Also,

m—1 m—1 m

= (hP)P =h" =e,

al = g °PhP = g7 "h? = h™PhP =e.

We have now formed an element a with order p such that a ¢ (g). Since h was chosen to
have the smallest order of all of the elements that are not in (g), |H| = p.
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Now we will show that the order of gH in the factor group G/H must be the same as
the order of g in G. If |[gH| < |g| = p™, then

m—1

H=(gH" =g H;

hence, P~ must be in (g) N H = {e}, which contradicts the fact that the order of g is p™.
Therefore, g H must have maximal order in G/H. By the Correspondence Theorem and our
induction hypothesis,

G/H = (gH) x K/H

for some subgroup K of G containing H. We claim that (¢g) N K = {e}. If b € (g) N K, then
bH € (JH)NK/H ={H} and b € (g) N H = {e}. It follows that G = (¢) K implies that
G=(g) x K. |

The proof of the Fundamental Theorem of Finite Abelian Groups follows very quickly
from Lemma 13.9. Suppose that G is a finite abelian group and let g be an element of
maximal order in G. If (g) = G, then we are done; otherwise, G = Z, x H for some
subgroup H contained in G by the lemma. Since |H| < |G|, we can apply mathematical
induction.

We now state the more general theorem for all finitely generated abelian groups. The
proof of this theorem can be found in any of the references at the end of this chapter.

Theorem 13.10 The Fundamental Theorem of Finitely Generated Abelian
Groups. FEuvery finitely generated abelian group G is isomorphic to a direct product of
cyclic groups of the form

prln XZng X oo X Lpon X LX -+ X L,

where the p;’s are primes (not necessarily distinct).

13.2 Solvable Groups

A subnormal series of a group G is a finite sequence of subgroups
G=H,D>DH,.1D>--DH DH():{(B},

where H; is a normal subgroup of H;11. If each subgroup H; is normal in G, then the series
is called a normal series. The length of a subnormal or normal series is the number of
proper inclusions.

Example 13.11 Any series of subgroups of an abelian group is a normal series. Consider
the following series of groups:

Z D 9Z D 45Z D 180Z > {0},
Zs24 D (2) D (6) D (12) D {0}.

O

Example 13.12 A subnormal series need not be a normal series. Consider the following
subnormal series of the group Djy:

Dy 2 {(1),(12)(34), (13)(24), (14)(23)} > {(1), (12)34)} > {(1)}.

The subgroup {(1), (12)(34)} is not normal in Dy; consequently, this series is not a normal
series. 0
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A subnormal (normal) series { K} is a refinement of a subnormal (normal) series
{H;} if {H;} C {K;}. That is, each H; is one of the Kj.

Example 13.13 The series
Z D 37 D 9Z D 45Z D 90Z D 180Z D {0}
is a refinement of the series
Z D 97 D 457 D 180Z D {0}.

O

The best way to study a subnormal or normal series of subgroups, {H;} of G, is actually

to study the factor groups H;;1/H;. We say that two subnormal (normal) series {H;} and

{K;} of a group G are isomorphic if there is a one-to-one correspondence between the
collections of factor groups {H;11/H;} and {K;1/K;}.

Example 13.14 The two normal series

Zeo O (3) D (15) D {0}
Zeo O (4) D (20) D {0}

of the group Zgp are isomorphic since

Zoo/(3) = (20)/{0} = Zy
(3)/(15) = (4)/(20) = Zs
(15)/{0} = Zgo/(4) = Za.
O
A subnormal series {H;} of a group G is a composition series if all the factor groups

are simple; that is, if none of the factor groups of the series contains a normal subgroup. A
normal series {H;} of G is a principal series if all the factor groups are simple.

Example 13.15 The group Zgy has a composition series
Zeo D (3) D (15) D (30) D {0}

with factor groups

I

Zeo/(3) = Zs
(3)/(15) = Zs
(15)/(30) = Zs
(30)/{0} = Zs.

Since Zgp is an abelian group, this series is automatically a principal series. Notice that a
composition series need not be unique. The series

Zeo D (2) D (4) D (20) D {0}

is also a composition series. O

Example 13.16 For n > 5, the series

Sn DA, D{(1)}
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is a composition series for S,, since S, /A, = Zo and A, is simple. O

Example 13.17 Not every group has a composition series or a principal series. Suppose
that
{O}ZH()CHl c---CH, 1.CH,=%

is a subnormal series for the integers under addition. Then H; must be of the form kZ
for some k € N. In this case Hi/Hy = kZ is an infinite cyclic group with many nontrivial
proper normal subgroups. O

Although composition series need not be unique as in the case of Zgg, it turns out that
any two composition series are related. The factor groups of the two composition series
for Zgo are Zo, Zo, Z3, and Zs; that is, the two composition series are isomorphic. The
Jordan-Hoélder Theorem says that this is always the case.

Theorem 13.18 Jordan-Holder. Any two composition series of G are isomorphic.
PRrROOF. We shall employ mathematical induction on the length of the composition series.
If the length of a composition series is 1, then G must be a simple group. In this case any
two composition series are isomorphic.

Suppose now that the theorem is true for all groups having a composition series of length
k, where 1 < k < n. Let

G=H,DH, 1D -DH DHy={e}
G=K,DKpn1D--DK;DKy={e}
be two composition series for G. We can form two new subnormal series for G since H; N
K,,—1 is normal in H; 1 N K,,,—1 and K; N Hy,_q is normal in K1 N Hy,_1:
G=H,>OH, 1DH, 1NKj,,_1D---DHyNKp_1 = {6}
G=K, DK, 1>K,.1nNH,_1D>---D>DKyNnH,_1= {6}
Since H; N K,p—1 is normal in H;y; N Kp,—1, the Second Isomorphism Theorem (Theo-
rem 11.12) implies that
(Hix1 N K1)/ (HiN K1) = (Hig1 N Kyp—1)/(Hi 0 (Hipr N K1)
= Hi(Hiy1 N K1)/ H;,
where H; is normal in H;(H;y1 N Kp,—1). Since {H;} is a composition series, H;i1/H;
must be simple; consequently, H;(H;+1 N K,,—1)/H; is either H;+1/H; or H;/H;. That is,
H;(H;11 N K;,—1) must be either H; or H;;1. Removing any nonproper inclusions from the

series
H,1>oH, 1NK,,_1D---DHyNK,,_1= {6},

we have a composition series for H,_1. Our induction hypothesis says that this series must
be equivalent to the composition series

H, 1> ---DH; DH():{e}.
Hence, the composition series
GZHnDHn_lD”'DI‘hDHO:{e}

and
G=H,>DH,  1DH, 1NKyp_1D---DHyNKy_1= {6}

are equivalent. If H,_; = K,_1, then the composition series {H;} and {K;} are equivalent
and we are done; otherwise, H,_1K,,—1 is a normal subgroup of G properly containing
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H,_1. In this case H,_1K,,-1 = G and we can apply the Second Isomorphism Theorem
once again; that is,

Km—l/(Km—l N Hn—l) = (Hn—le—l)/Hn—l = G/Hn—l-

Therefore,
G=H,>DH, 1D>ODH,_1NKypu-1D ---D>DHyNK,,_1 :{6}
and
G=K,OKn1>OKn-1NH,_1D---DKoyNH,_1= {6}
are equivalent and the proof of the theorem is complete. |

A group G is solvable if it has a subnormal series { H; } such that all of the factor groups
H;1/H; are abelian. Solvable groups will play a fundamental role when we study Galois
theory and the solution of polynomial equations.

Example 13.19 The group Sy is solvable since
512 A4 D{(1),(12)(34),(13)(24),(14)(23)} > {(1)}
has abelian factor groups; however, for n > 5 the series
Sn DA, D {(1)}
is a composition series for S, with a nonabelian factor group. Therefore, S,, is not a solvable

group for n > 5. U

13.3 Reading Questions

How many abelian groups are there of order 200 = 23527
How many abelian groups are there of order 729 = 367

Find a subgroup of order 6 in Zg x Z3 X Zs.

Lol o A

It can be shown that an abelian group of order 72 contains a subgroup of order 8.
What are the possibilities for this subgroup?

5. What is a principal series of the group G? Your answer should not use new terms
defined in this chapter.

13.4 Exercises

Find all of the abelian groups of order less than or equal to 40 up to isomorphism.
Find all of the abelian groups of order 200 up to isomorphism.

Find all of the abelian groups of order 720 up to isomorphism.

W=

Find all of the composition series for each of the following groups.
(a) Zlg (e) Sg X Z4

(b) Zusg (f) Sy
(¢) The quaternions, Qg (g) Sp,n>5

(d) D4 (h) Q@
5. Show that the infinite direct product G = Zs X Zso X --- is not finitely generated.
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6.

7.

10.

11.

12.

13.

14.
15.
16.
17.

18.

19.

20.

21.

22,

23.

Let G be an abelian group of order m. If n divides m, prove that G has a subgroup of
order n.

A group G is a torsion group if every element of G has finite order. Prove that a
finitely generated abelian torsion group must be finite.

Let G, H, and K be finitely generated abelian groups. Show that if G x H =2 G x K,
then H = K. Give a counterexample to show that this cannot be true in general.

Let G and H be solvable groups. Show that G x H is also solvable.

If G has a composition (principal) series and if N is a proper normal subgroup of G,
show there exists a composition (principal) series containing N.

Prove or disprove: Let N be a normal subgroup of G. If N and G/N have composition
series, then G must also have a composition series.

Let N be a normal subgroup of G. If N and G/N are solvable groups, show that G is
also a solvable group.

Prove that G is a solvable group if and only if G has a series of subgroups
G:PnDPnle"'DPlDPo:{e}

where P; is normal in P, 1 and the order of P,y1/P; is prime.

Let G be a solvable group. Prove that any subgroup of G is also solvable.

Let G be a solvable group and N a normal subgroup of G. Prove that G/N is solvable.
Prove that D,, is solvable for all integers n.

Suppose that G has a composition series. If N is a normal subgroup of G, show that
N and G/N also have composition series.

Let G be a cyclic p-group with subgroups H and K. Prove that either H is contained
in K or K is contained in H.

Suppose that G is a solvable group with order n > 2. Show that G contains a normal
nontrivial abelian subgroup.

Recall that the commutator subgroup G’ of a group G is defined as the subgroup of
G generated by elements of the form a='b~tab for a,b € G. We can define a series of
subgroups of G by G0 = G, GV = @', and GO+ = (GO

(a) Prove that GU+1) is normal in (G(®)'. The series of subgroups
GO —g->agV 5@ ...
is called the derived series of G.

(b) Show that G is solvable if and only if G(™ = {e} for some integer n.

Suppose that G is a solvable group with order n > 2. Show that GG contains a normal
nontrivial abelian factor group.

Zassenhaus Lemma. Let H and K be subgroups of a group G. Suppose also that
H* and K* are normal subgroups of H and K respectively. Then

(a) H*(H N K*) is a normal subgroup of H*(H N K).
(b) K*(H* N K) is a normal subgroup of K*(H N K).
(¢c) H(HNK)/H*(HNK*) =2 K*(HNK)/K*(H*NK) = (HNK)/(H*NK)(HNK"™).

Schreier’s Theorem. Use the Zassenhaus Lemma to prove that two subnormal
(normal) series of a group G have isomorphic refinements.
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24. Use Schreier’s Theorem to prove the Jordan-Holder Theorem.

13.5 Programming Exercises

1. Write a program that will compute all possible abelian groups of order n. What is the
largest n for which your program will work?

13.6 References and Suggested Readings

[1] Hungerford, T. W. Algebra. Springer, New York, 1974.
[2] Lang, S. Algebra. 3rd ed. Springer, New York, 2002.

[3] Rotman, J. J. An Introduction to the Theory of Groups. 4th ed. Springer, New York,
1995.

13.7 Sage

Cyclic groups, and direct products of cyclic groups, are implemented in Sage as permutation
groups. However, these groups quickly become very unwieldly representations and it should
be easier to work with finite abelian groups in Sage. So we will postpone any specifics for
this chapter until that happens. However, now that we understand the notion of isomorphic
groups and the structure of finite abelian groups, we can return to our quest to classify all
of the groups with order less than 16.

Classification of Finite Groups

It does not take any sophisticated tools to understand groups of order 2p, where p is an
odd prime. There are two possibilities — a cyclic group of order 2p and the dihedral
group of order 2p that is the set of symmetries of a regular p-gon. The proof requires
some close, tight reasoning, but the required theorems are generally just concern orders of
elements, Lagrange’s Theorem and cosets. See Exercise 9.4.55. This takes care of orders
n =6, 10, 14.

For n = 9, the upcoming Corollary 14.16 will tell us that any group of order p? (where
p is a prime) is abelian. So we know from this section that the only two possibilities are Zg
and Zs X Zs. Similarly, the upcoming Theorem 15.10 will tell us that every group of order
n = 15 is abelian. Now this leaves just one possibility for this order: Zs X Zs = Z15.

We have just two orders left to analyze: n = 8 and n = 12. The possibilities are
groups we already know, with one exception. However, the analysis that these are the only
possibilities is more complicated, and will not be pursued now, nor in the next few chapters.
Notice that n = 16 is more complicated still, with 14 different possibilities (which explains
why we stopped here).

For n = 8 there are 3 abelian groups, and the two non-abelian groups are the dihedral
group (symmetries of a square) and the quaternions.

For n = 12 there are 2 abelian groups, and 3 non-abelian groups. We know two of the
non-abelian groups as a dihedral group, and the alternating group on 4 symbols (which
is also the symmetries of a tetrahedron). The third non-abelian group is an example of a
“dicyclic” group, which is an infinite family of groups, each with order divisible by 4. The
order 12 dicyclic group can also be constructed as a “semi-direct product” of two cyclic
groups — this is a construction worth knowing as you pursue further study of group theory.
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The order 8 dicyclic group is also the quaternions and more generally, the dicyclic groups
of order 2%, k > 2 are known as “generalized quaternion groups.”

The following examples will show you how to construct some of these groups, while also
exercising a few of the commands and allowing us to be more certain the following table is
accurate.

= SymmetricGroup(3)
DihedralGroup (3)
is_isomorphic (D)

S
D
S.

True

C3 = CyclicPermutationGroup(3)

C5 = CyclicPermutationGroup(5)

DP = direct_product_permgroups([C3, C5])
C = CyclicPermutationGroup (15)
DP.is_isomorphic(C)

True

Q QuaternionGroup ()
DI DiCyclicGroup (2)
Q.is_isomorphic(DI)

True

Groups of Small Order as Permutation Groups

We list here constructions, as permutation groups in Sage, for all of the groups of order less
than 16.
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Table 13.20 The Groups of Order 15 or Less in Sage

Order Construction

Notes, Alternatives

1 CyclicPermutationGroup(1) Trivial
2 CyclicPermutationGroup(2) SymmetricGroup(2)
3 CyclicPermutationGroup(3) Prime order
4 CyclicPermutationGroup(4) Cyclic
4 KleinFourGroup() Abelian, non-cyclic
5 CyclicPermutationGroup(5) Prime order
6 CyclicPermutationGroup(6) Cyclic
6 SymmetricGroup(3) Non-abelian
DihedralGroup(3)
7 CyclicPermutationGroup(7) Prime order
8 CyclicPermutationGroup(8) Cyclic
8 C2=CyclicPermutationGroup(2)
C4=CyclicPermutationGroup(4)
G=direct_product_permgroups([C2,C4]) Abelian, non-cyclic
8 C2=CyclicPermutationGroup(2)

G=direct_product_permgroups([C2,C2,C2]) Abelian, non-cyclic

8 DihedralGroup(4)

Non-abelian

8 QuaternionGroup() Quaternions
DiCyclicGroup(2)

9 CyclicPermutationGroup(9) Cyclic

9 C3=CyclicPermutationGroup(3)
G=direct_product_permgroups([C3,C3]) Abelian, non-cyclic

10 CyclicPermutationGroup(10) Cyclic

10 DihedralGroup(5) Non-abelian

11 CyclicPermutationGroup(11) Prime order

12 CyclicPermutationGroup(12) Cyclic

12 C2=CyclicPermutationGroup(2)

C6=CyclicPermutationGroup(6)
G=direct_product_permgroups([C2,C6])

Abelian, non-cyclic

12 DihedralGroup(6) Non-abelian
12 AlternatingGroup(4) Non-abelian
Symmetries of tetrahedron
12 DiCyclicGroup(3) Non-abelian
Semi-direct product Z3 x Z4
13 CyclicPermutationGroup(13) Prime order
14 CyclicPermutationGroup(14) Cyclic
14 DihedralGroup(7) Non-abelian
15 CyclicPermutationGroup(15) Cyclic

13.8 Sage Exercises

There are no Sage exercises for this chapter.
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Group Actions

Group actions generalize group multiplication. If G is a group and X is an arbitrary set, a
group action of an element g € G and = € X is a product, gz, living in X. Many problems
in algebra are best be attacked via group actions. For example, the proofs of the Sylow
theorems and of Burnside’s Counting Theorem are most easily understood when they are
formulated in terms of group actions.

14.1 Groups Acting on Sets

Let X be a set and G be a group. A (left) action of G on X is a map G x X — X given
by (g, ) — gz, where

1. ex =z for all x € X;
2. (g192)r = g1(gox) for all x € X and all g;,g92 € G.

Under these considerations X is called a G-set. Notice that we are not requiring X to be
related to G in any way. It is true that every group G acts on every set X by the trivial
action (g,x) + x; however, group actions are more interesting if the set X is somehow
related to the group G.

Example 14.1 Let G = GLy(R) and X = R2. Then G acts on X by left multiplication. If
v € R? and I is the identity matrix, then Jv = v. If A and B are 2 x 2 invertible matrices,
then (AB)v = A(Bwv) since matrix multiplication is associative. O

Example 14.2 Let G = D4 be the symmetry group of a square. If X = {1,2, 3,4} is the set
of vertices of the square, then we can consider D, to consist of the following permutations:

{(1),(13),(24),(1432),(1234),(12)(34),(14)(23),(13)(24)}.

The elements of Dy act on X as functions. The permutation (13)(24) acts on vertex 1 by
sending it to vertex 3, on vertex 2 by sending it to vertex 4, and so on. It is easy to see that
the axioms of a group action are satisfied. O

In general, if X is any set and G is a subgroup of Sx, the group of all permutations
acting on X, then X is a G-set under the group action

(o,2) — o(x)

forc e Gand x € X.

232
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Example 14.3 If we let X = G, then every group G acts on itself by the left regular
representation; that is, (g,x) — Ag(x) = gz, where A4 is left multiplication:

e T=AT=€x =21
(gh) - & = Aghx = AgApx = Ag(hx) =g - (h - x).

If H is a subgroup of G, then G is an H-set under left multiplication by elements of H. [J

Example 14.4 Let G be a group and suppose that X = G. If H is a subgroup of G, then
G is an H-set under conjugation; that is, we can define an action of H on G,

HxG— G,

via
(h,g) = hgh™
for h € H and g € G. Clearly, the first axiom for a group action holds. Observing that

(h1h2, g) = hihag(hiha) ™!
= h1(haghy )b
= (h1>(h27g))7

we see that the second condition is also satisfied. O

Example 14.5 Let H be a subgroup of G and L the set of left cosets of H. The set Lp
is a G-set under the action
(9,xH) — gzH.

Again, it is easy to see that the first axiom is true. Since (g¢')xH = g(¢’xH), the second
axiom is also true. ([

If G acts on a set X and x,y € X, then x is said to be G-equivalent to y if there exists
a g € G such that gr = y. We write z ~g y or x ~ y if two elements are G-equivalent.

Proposition 14.6 Let X be a G-set. Then G-equivalence is an equivalence relation on X.
PRrOOF. The relation ~ is reflexive since ex = x. Suppose that © ~ y for 2,y € X. Then
there exists a g such that gz = y. In this case ¢~ 'y = z; hence, y ~ x. To show that the
relation is transitive, suppose that = ~ y and y ~ 2. Then there must exist group elements
g and h such that gx = y and hy = z. So z = hy = (hg)x, and x is equivalent to z. |
If X is a G-set, then each partition of X associated with G-equivalence is called an
orbit of X under G. We will denote the orbit that contains an element = of X by O,.

Example 14.7 Let G be the permutation group defined by
G ={(1),(123),(132),(45),(123)(45),(132)(45)}

and X = {1,2,3,4,5}. Then X is a G-set. The orbits are O; = Oy = O3 = {1,2,3} and
04 =05 = {4,5}. O

Now suppose that G is a group acting on a set X and let g be an element of G. The
fized point set of g in X, denoted by X, is the set of all x € X such that gz = 2. We can
also study the group elements g that fix a given x € X. This set is more than a subset of G,
it is a subgroup. This subgroup is called the stabilizer subgroup or isotropy subgroup
of z. We will denote the stabilizer subgroup of x by G,.

Remark 14.8 It is important to remember that X, C X and G, C G.
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Example 14.9 Let X = {1,2,3,4,5,6} and suppose that G is the permutation group given
by the permutations

{(1),(12)(3456),(35)(46),(12)(3654)}.
Then the fixed point sets of X under the action of G are

X(l) — )(7
X3s5)46) = {1, 2},
X12)3456) = X(12)3654) = 0,

and the stabilizer subgroups are

G1=G2={(1),(35)(46)},
G3 =Gy =G5 =Ge = {(1)}.

It is easily seen that G, is a subgroup of G for each x € X. O

Proposition 14.10 Let G be a group acting on a set X and x € X. The stabilizer group
of x, Gy, is a subgroup of G.
PROOF. Clearly, e € GG, since the identity fixes every element in the set X. Let g,h € G,.
Then gz = x and ha = x. So (gh)x = g(hz) = gx = x; hence, the product of two elements
in G is also in G,. Finally, if g € G, then z = ex = (¢ 'g)z = (¢ Y)gz = g 'x. So g~!
is in G. [ |

We will denote the number of elements in the fixed point set of an element g € G by
|X,| and denote the number of elements in the orbit of z € X by |O,|. The next theorem
demonstrates the relationship between orbits of an element x € X and the left cosets of G,
in G.
Theorem 14.11 Let G be a finite group and X a finite G-set. If x € X, then |O,| = [G :
Gl
ProOOF. We know that |G|/|G5| is the number of left cosets of G, in G by Lagrange’s
Theorem (Theorem 6.10). We will define a bijective map ¢ between the orbit O, of X and
the set of left cosets Lg, of G, in G. Let y € O,. Then there exists a g in G such that
gz =y. Define ¢ by ¢(y) = gG,. To show that ¢ is one-to-one, assume that ¢(y1) = ¢(y2).
Then

d(y1) = 1Ge = 92G2 = 9(32),

where g1z = y1 and gox = yo. Since g1G, = goG,, there exists a g € G, such that go = g19,

Y2 = 92T = g19T = 1T = Y1;

consequently, the map ¢ is one-to-one. Finally, we must show that the map ¢ is onto. Let
gG, be a left coset. If gr =y, then ¢(y) = gG,. |

14.2 The Class Equation
Let X be a finite G-set and X be the set of fixed points in X; that is,

Xg={reX:gx=uforall g e G}



CHAPTER 14. GROUP ACTIONS 235

Since the orbits of the action partition X,

n
X = 1Xcl+ ) 10a,
i=k

where zy, ..., z, are representatives from the distinct nontrivial orbits of X.
Now consider the special case in which G acts on itself by conjugation, (g, ) + grg—!.
The center of G,
Z(G)={z:xg = gx for all g € G},

is the set of points that are fixed by conjugation. The nontrivial orbits of the action are
called the conjugacy classes of G. If x1,...,x are representatives from each of the
nontrivial conjugacy classes of G and |0y, | = n1,...,|Oz,| = ng, then

|G| = |Z(G)| +n1+ - + ng.

The stabilizer subgroups of each of the z;’s, C(z;) = {g € G : gz; = z;g}, are called the
centralizer subgroups of the x;’s. From Theorem 14.11, we obtain the class equation:

Gl =1Z(G)+[G: Clz1)] + -+ [G: Clax)].

One of the consequences of the class equation is that the order of each conjugacy class must
divide the order of G.

Example 14.12 It is easy to check that the conjugacy classes in S5 are the following:

{(W}, {(123),(132)}, {(12),(13),(23)}-

The class equation is 6 =1+ 2 + 3. ([
Example 14.13 The center of Dy is {(1),(13)(24)}, and the conjugacy classes are

{(13),(24)}, {(1432),(1234)}, {(12)(34),(14)(23)}.

Thus, the class equation for Dy is 8 =2+ 2+ 2+ 2. O

Example 14.14 For S, it takes a bit of work to find the conjugacy classes. We begin with
cycles. Suppose that o = (a1, ...,ax) is a cycle and let 7 € S,,. By Theorem 6.16,

ror = (r(ay), ..., m(ay)).

Consequently, any two cycles of the same length are conjugate. Now let ¢ = o109 - - g, be
a cycle decomposition, where the length of each cycle o; is r;. Then o is conjugate to every
other 7 € S,, whose cycle decomposition has the same lengths.

The number of conjugate classes in .S, is the number of ways in which n can be parti-
tioned into sums of positive integers. In the case of S3 for example, we can partition the
integer 3 into the following three sums:

3=14+1+1
3=1+2
3=3;

therefore, there are three conjugacy classes. There are variations to problem of finding the
number of such partitions for any positive integer n that are what computer scientists call
NP-complete. This effectively means that the problem cannot be solved for a large n
because the computations would be too time-consuming for even the largest computer. [
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Theorem 14.15 Let G be a group of order p"™ where p is prime. Then G has a nontrivial

center.
ProOOF. We apply the class equation

|G| = |Z(G)| +n1+ -+ ng.

Since each n; > 1 and n; | |G|, it follows that p must divide each n;. Also, p | |G|; hence, p
must divide |Z(G)|. Since the identity is always in the center of G, |Z(G)| > 1. Therefore,
|Z(G)| > p, and there exists some g € Z(G) such that g # 1. [

Corollary 14.16 Let G be a group of order p*> where p is prime. Then G is abelian.
PROOF. By Theorem 14.15, |Z(G)| = p or p?. Suppose that |Z(G)| = p. Then Z(G) and
G/Z(G) both have order p and must both be cyclic groups. Choosing a generator aZ(G)
for G/Z(G), we can write any element ¢Z(G) in the quotient group as a™Z(G) for some
integer m; hence, g = a™x for some z in the center of G. Similarly, if hZ(G) € G/Z(G),
there exists a y in Z(G) such that h = a™y for some integer n. Since = and y are in the
center of G, they commute with all other elements of G; therefore,

gh = a™za"y = a™ " zy = a"ya™x = hg,

and G must be abelian. Hence, |Z(G)| = p*. [ |

14.3 Burnside’s Counting Theorem

Suppose that we wish to color the vertices of a square with two different colors, say black and
white. We might suspect that there would be 24 = 16 different colorings. However, some of
these colorings are equivalent. If we color the first vertex black and the remaining vertices
white, it is the same as coloring the second vertex black and the remaining ones white since
we could obtain the second coloring simply by rotating the square 90° (Figure 14.17).

B |44 14 B

B |44 |44 B

Figure 14.17 Equivalent colorings of square
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Burnside’s Counting Theorem offers a method of computing the number of distinguish-
able ways in which something can be done. In addition to its geometric applications, the
theorem has interesting applications to areas in switching theory and chemistry. The proof
of Burnside’s Counting Theorem depends on the following lemma.

Lemma 14.18 Let X be a G-set and suppose that x ~ y. Then G is isomorphic to G,.
In particular, |G| = |Gyl.
PRrROOF. Let G act on X by (g,x) — ¢ - x. Since z ~ y, there exists a g € G such that
g-x=y. Let a € G;. Since

gag™'y=ga-gTly=ga-x=g-x=y,

we can define a map ¢ : G, — G by ¢(a) = gag—'. The map ¢ is a homomorphism since

¢(ab) = gabg™! = gag~ gbg™" = ¢(a)p(b).
Suppose that ¢(a) = ¢(b). Then gag~' = gbg~! or a = b; hence, the map is injective. To
show that ¢ is onto, let b be in G; then g~ 'bg is in G, since

g g x=g"tgr=9"by=9g"" y=1

and ¢(g~tbg) = b. [ |

Theorem 14.19 Burnside. Let G be a finite group acting on a set X and let k denote
the number of orbits of X. Then

1
k=—> |X,].
‘G‘Z g’

geCG
PROOF. We look at all the fixed points = of all the elements in g € G; that is, we look at
all ¢’s and all ’s such that gr = x. If viewed in terms of fixed point sets, the number of all

g’s fixing x’s is
> Xl
geG
However, if viewed in terms of the stabilizer subgroups, this number is

> 1Gal;

rzeX

hence, > ¢ | Xg| = >_,cx |Gzl By Lemma 14.18,

Z ’Gy’ = [Og| - |Gal.

y€Oy

By Theorem 14.11 and Lagrange’s Theorem, this expression is equal to |G|. Summing over
all of the k£ distinct orbits, we conclude that

DXl =Y Gl =k-|Gl.

geCG zeX

Example 14.20 Let X = {1,2,3,4,5} and suppose that G is the permutation group
G={(1),(13),(13)(25),(25)}. The orbits of X are {1,3}, {2,5}, and {4}. The fixed point
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sets are

X=X
X(13) =1{2,4,5}

X(13)(25) = {4}
X(25) = {17374}

Burnside’s Theorem says that

|G‘Z|X\ 5+3+1+3) 3.
geG

A Geometric Example

Before we apply Burnside’s Theorem to switching-theory problems, let us examine the
number of ways in which the vertices of a square can be colored black or white. Notice
that we can sometimes obtain equivalent colorings by simply applying a rigid motion to the
square. For instance, as we have pointed out, if we color one of the vertices black and the
remaining three white, it does not matter which vertex was colored black since a rotation
will give an equivalent coloring.

The symmetry group of a square, Dy, is given by the following permutations:

(1) (13) (24) (1432)
(1234) (12)(34) (14)(23) (13)(24)

The group G acts on the set of vertices {1,2,3,4} in the usual manner. We can describe
the different colorings by mappings from X into Y = {B, W} where B and W represent
the colors black and white, respectively. Each map f : X — Y describes a way to color
the corners of the square. Every o € D4 induces a permutation o of the possible colorings
given by o(f) = foo for f: X — Y. For example, suppose that f is defined by

I
(
(
(

and 0 = (12)(34). Then o(f) = f o o sends vertex 2 to B and the remaining vertices to
W. The set of all such ¢ is a permutation group G on the set of possible colorings. Let X
denote the set of all possible colorings; that is, X is the set of all possible maps from X to
Y. Now we must compute the number of é—equivalence classes.

L X = X since the identity fixes every possible coloring. |X| = 2* = 16.

2. X(1234) consists of all f € X such that f is unchanged by the permutation (1234).
In this case f(1) = f(2) = f(3) = f(4), so that all values of f must be the same; that
is, either f(x) = B or f(x) = W for every vertex x of the square. So | X(234)| = 2.

3. |)?(1432)| =2.

4. For )N((13)(24), f(1) = f(3) and f(2) = f(4). Thus, ’)N((13)(24)| =22 =4.
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5. [Xa2)@yl =4
6. | X1 ay@z)l = 4.

7. For )?(1 3), f(1) = f(3) and the other corners can be of any color; hence, \)Z'(l 3| =
23 =38.

By Burnside’s Theorem, we can conclude that there are exactly

1

8(24+21+22+21+22+22+23+23):6

ways to color the vertices of the square.

Proposition 14.21 Let G be a permutation group of X and X the set of functions from X
toY. Then G induces a group G that permutes the elements of X, where 0 € G is defined
by o(f) = foo foro € G and f € X. Furthermore, if n is the number of cycles in the
cycle decomposition of o, then | X,| = |Y|™.

PrOOF. Let 0 € G and f € X. Since o permutes the elements of X, f o o must also be in
X. Suppose that g is another function from X to Y such that a(f) =o(g). Then for each
x e X,

flo(z)) = a(f)(x) = a(g)(z) = g(o(x)).

Since o is a permutation of X, every element z’ in X is the image of some z in X under o;
hence, f and g agree on all elements of X. Therefore, f = g and & is injective. The map
o — o is onto, since the two sets are the same size.

Suppose that o is a permutation of X with cycle decomposition o = o102+ 0p. Any
J in X, must have the same value on each cycle of 0. Since there are n cycles and Y|
possible values for each cycle, | X,| = |Y|™. [ |

Example 14.22 Let X = {1,2,...,7} and suppose that Y = {A,B,C}. If g is the
permutation of X given by (13)(245) = (13)(245)(6)(7), then n = 4. Any f € )Z'g must
have the same value on each cycle in g. There are |Y| = 3 such choices for any value, so
1 X,| = 3% =381 0

Example 14.23 Suppose that we wish to color the vertices of a square using four different
colors. By Proposition 14.21, we can immediately decide that there are

1

8(44+41+42+41+42+42+43+43):55

possible ways. O

Switching Functions

In switching theory we are concerned with the design of electronic circuits with binary
inputs and outputs. The simplest of these circuits is a switching function that has n inputs
and a single output (Figure 14.24). Large electronic circuits can often be constructed by
combining smaller modules of this kind. The inherent problem here is that even for a simple
circuit a large number of different switching functions can be constructed. With only four
inputs and a single output, we can construct 65,536 different switching functions. However,
we can often replace one switching function with another merely by permuting the input
leads to the circuit (Figure 14.25).
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1 —

ro —
’ f —>f($1,332,...,$n)

xnﬁ

Figure 14.24 A switching function of n variables

We define a switching or Boolean function of n variables to be a function from Z7
to Zso. Since any switching function can have two possible values for each binary n-tuple
and there are 2" binary n-tuples, 22" switching functions are possible for n variables. In
general, allowing permutations of the inputs greatly reduces the number of different kinds
of modules that are needed to build a large circuit.

a — a
f = fa0) f = fb,a) =g(a,b
. ( X (v.0) = g(0.1)

Figure 14.25 Switching functions in two variables

The possible switching functions with two input variables a and b are listed in Ta-
ble 14.26. Two switching functions f and g are equivalent if g can be obtained from f
by a permutation of the input variables. For example, g(a,b,c) = f(b,c,a). In this case
g ~ f via the permutation (a,c,b). In the case of switching functions of two variables, the
permutation (a,b) reduces 16 possible switching functions to 12 equivalent functions since

fo~ fa

fa~ s

Jio ~ fi2

Ji1 ~ fis.

Table 14.26 Switching functions in two variables
Inputs Outputs
fo i fo fs fu s fe f7

0O 0|0 0 O 0 0 0 0 0
0O 110 0 O 0 1 1 1 1
1 00 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1
Inputs Outputs

fs fo fio fu fiz fizs fiu fis

0 0 1 1 1 1 1 1 1 1
0 1 0 0 O 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1

For three input variables there are 22° — 256 possible switching functions; in the case
of four variables there are 22" = 65,536. The number of equivalence classes is too large to
reasonably calculate directly. It is necessary to employ Burnside’s Theorem.
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Consider a switching function with three possible inputs, a, b, and ¢. As we have
mentioned, two switching functions f and g are equivalent if a permutation of the input
variables of f gives ¢g. It is important to notice that a permutation of the switching functions
is not simply a permutation of the input values {a,b,c}. A switching function is a set of
output values for the inputs a, b, and ¢, so when we consider equivalent switching functions,
we are permuting 23 possible outputs, not just three input values. For example, each binary
triple (a,b,c) has a specific output associated with it. The permutation (acb) changes
outputs as follows:

(0,0,0) — (0,0,0)

(0,0,1) — (0,1,0)
(0,1,0) — (1,0,0)

Let X be the set of output values for a switching function in n variables. Then |X| = 2".
We can enumerate these values as follows:

(0,...,0,1) 50
(0,...,1,0) 1
0,...,1,1) 52

(1,...,1,1) = 2" — 1,

Now let us consider a circuit with four input variables and a single output. Suppose that
we can permute the leads of any circuit according to the following permutation group:

(a), (a,c), (b,d), (a,d,c,b),
(a,b,¢,d), (a,b)(c,d), (a,d)(b,c), (a,c)(b,d).

The permutations of the four possible input variables induce the permutations of the output
values in Table 14.27.
Hence, there are .
8
possible switching functions of four variables under this group of permutations. This number
will be even smaller if we consider the full symmetric group on four letters.

(210 4 2. 212 1 2.20 1 3.210) = 9616
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Table 14.27 Permutations of switching functions in four variables

Group Number
Permutation Switching Function Permutation of Cycles
(a) (0) 16
(a,¢) (2,8)(3,9)(6,12)(7,13) 12
(b,d) (1,4)(3,6)(9,12)(11,14) 12
(a,d,c,b) (1,2,4,8)(3,6.12,9)(5,10)(7,14,13,11) 6
(a,b,c,d) (1,8,4,2)(3,9,12,6)(5,10)(7,11,13,14) 6
(a,b)(c,d) (1,2)(4,8)(5,10)(6,9)(7,11)(13,14) 10
(a,d)(b,c) (1,8)(2,4)(3,12)(5,10)(7,14)(11,13) 10
(a,c)(b,d) (1,4)(2,8)(3,12)(6,9)(7,13)(11, 14) 10

[ | Historical Note [ |

William Burnside was born in London in 1852. He attended Cambridge University from
1871 to 1875 and won the Smith’s Prize in his last year. After his graduation he lectured
at Cambridge. He was made a member of the Royal Society in 1893. Burnside wrote
approximately 150 papers on topics in applied mathematics, differential geometry, and
probability, but his most famous contributions were in group theory. Several of Burnside’s
conjectures have stimulated research to this day. One such conjecture was that every group
of odd order is solvable; that is, for a group G of odd order, there exists a sequence of
subgroups
G:HnDHn_lD”'DH1DHO:{C}

such that H; is normal in H; 1 and H;11/H; is abelian. This conjecture was finally proven
by W. Feit and J. Thompson in 1963. Burnside’s The Theory of Groups of Finite Order,
published in 1897, was one of the first books to treat groups in a modern context as opposed
to permutation groups. The second edition, published in 1911, is still a classic.

14.4 Reading Questions

Give an informal description of a group action.
Describe the class equation.

What are the groups of order 497

Lol ol .

How many switching functions are there with 5 inputs? (Give both a simple expression
and the total number as a single integer.)

5. The “Historical Note” mentions the proof of Burnside’s Conjecture. How long was the
proof?

14.5 Exercises

1. Examples 14.1-14.5 in the first section each describe an action of a group GG on a set X,
which will give rise to the equivalence relation defined by G-equivalence. For each ex-
ample, compute the equivalence classes of the equivalence relation, the G-equivalence
classes.

2. Compute all X, and all G, for each of the following permutation groups.

(a) X ={1,2,3}, G=S53={(1),(12),(13),(23),(123),(132)}
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10.

11.

12.

13.

14.

15.

16.

(b) X = {1,2,3,4,5,6}, G = {(1), (12), (345), (354), (12)(345), (12)(354)}
Compute the G-equivalence classes of X for each of the G-sets in Exercise 14.5.2. For
each z € X verify that |G| = |Oy| - |G4|.

Let G be the additive group of real numbers. Let the action of # € G on the real plane

R? be given by rotating the plane counterclockwise about the origin through 6 radians.
Let P be a point on the plane other than the origin.

(a) Show that R? is a G-set.
(b) Describe geometrically the orbit containing P.

(c¢) Find the group Gp.

Let G = A4 and suppose that G acts on itself by conjugation; that is, (g,h) — ghg~!.

(a) Determine the conjugacy classes (orbits) of each element of G.

(b) Determine all of the isotropy subgroups for each element of G.

Find the conjugacy classes and the class equation for each of the following groups.
(a) Sy (b) Ds (c) Zg (d) Qs

Write the class equation for S5 and for As.

If a square remains fixed in the plane, how many different ways can the corners of the

square be colored if three colors are used?

How many ways can the vertices of an equilateral triangle be colored using three

different colors?

Find the number of ways a six-sided die can be constructed if each side is marked

differently with 1,...,6 dots.

Up to a rotation, how many ways can the faces of a cube be colored with three different
colors?

Consider 12 straight wires of equal lengths with their ends soldered together to form
the edges of a cube. Either silver or copper wire can be used for each edge. How many
different ways can the cube be constructed?

Suppose that we color each of the eight corners of a cube. Using three different colors,
how many ways can the corners be colored up to a rotation of the cube?

Each of the faces of a regular tetrahedron can be painted either red or white. Up to a
rotation, how many different ways can the tetrahedron be painted?

Suppose that the vertices of a regular hexagon are to be colored either red or white.
How many ways can this be done up to a symmetry of the hexagon?

A molecule of benzene is made up of six carbon atoms and six hydrogen atoms, linked
together in a hexagonal shape as in Figure 14.28.

(a) How many different compounds can be formed by replacing one or more of the
hydrogen atoms with a chlorine atom?

(b) Find the number of different chemical compounds that can be formed by replacing
three of the six hydrogen atoms in a benzene ring with a C'H3 radical.
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17.

18.

19.

20.

21.

22.
23.
24.

25.

Figure 14.28 A benzene ring

How many equivalence classes of switching functions are there if the input variables x1,
Z2, and x3 can be permuted by any permutation in S37 What if the input variables
x1, T2, T3, and x4 can be permuted by any permutation in Sy7

How many equivalence classes of switching functions are there if the input variables x1,
x9, 3, and x4 can be permuted by any permutation in the subgroup of Sy generated
by the permutation (x1,x2, x3,x4)?

A striped necktie has 12 bands of color. Each band can be colored by one of four
possible colors. How many possible different-colored neckties are there?

A group acts faithfully on a G-set X if the identity is the only element of G that

leaves every element of X fixed. Show that G acts faithfully on X if and only if no two
distinct elements of G have the same action on each element of X.

Let p be prime. Show that the number of different abelian groups of order p™ (up to
isomorphism) is the same as the number of conjugacy classes in S,.

Let a € G. Show that for any g € G, gC(a)g~! = C(gag™!).
Let |G| = p™ be a nonabelian group for p prime. Prove that |Z(G)| < p»~!.

Let G be a group with order p™ where p is prime and X a finite G-set. If Xg = {x €
X : gx = x for all g € G} is the set of elements in X fixed by the group action, then
prove that |X| = |X¢| (mod p).

If G is a group of order p”, where p is prime and n > 2, show that G must have a
proper subgroup of order p. If n > 3, is it true that G will have a proper subgroup of
order p??

14.6 Programming Exercise

1.

Write a program to compute the number of conjugacy classes in S,,. What is the largest
n for which your program will work?
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14.8 Sage

Groups can be realized in many ways, such as as sets of permutations, as sets of matrices,
or as sets of abstract symbols related by certain rules (“presentations”) and in myriad
other ways. We have concentrated on permutation groups because of their concrete feel,
with elements written as functions, and because of their thorough implementation in Sage.
Group actions are of great interest when the set they act on is the group itself, and group
actions will figure prominently in the proofs of the main results of the next chapter. However,
any time we have a group action on a set, we can view that group as a permutation group on
the elements of the set. So permutation groups are an area of group theory of independent
interest, with its own definitions and theorems.

We will describe Sage’s commands applicable when a group action arises naturally via
conjugation, and then move into the more general situation in a more general application.

Conjugation as a Group Action

We might think we need to be careful how Sage defines conjugation (gzg~! versus g~ 'zg)

and the difference between Sage and the text on the order of products. However, if you look
at the definition of the center and centralizer subgroups you can see that any difference in
ordering is irrelevant. Here are the group action commands for the particular action that
is conjugation of the elements of the group.

Sage has a permutation group method .center() which returns the subgroup of fixed
points. The permutation group method, .centralizer(g), returns a subgroup that is the
stabilizer of the group element g. Finally, the orbits are given by conjugacy classes, but
Sage will not flood you with the full conjugacy classes and instead gives back a list of
one element per conjugacy class, the representatives, via the permutation group method
.conjugacy_classes_representatives(). You can manually reconstruct a conjugacy class
from a representative, as we do in the example below.

Here is an example of the above commands in action. Notice that an abelian group
would be a bad choice for this example.

D
C

DihedralGroup (8)
D.center(); C

Subgroup generated by [(1,5)(2,6)(3,7)(4,8)]
of (Dihedral group of order 16 as a permutation group)
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C.list()

LO, (1,5)(2,6)(3,7)(4,8)]

a =D("(1,2)(3,8)(4,7)(5,6)")
Cl = D.centralizer(a); C1.list()

LO, (1,2)(3,8)(4,7)(5,6), (1,5)(2,6)(3,7)(4,8), (1,6)(2,5)(3,4)(7,8)]

b =D("(1,2,3,4,5,6,7,8)")
C2 = D.centralizer(b); C2.order ()

CCR = D.conjugacy_classes_representatives(); CCR

LO, (2,8)(3,7)(4,6), (1,2)(3,8)(4,7)(5,6), (1,2,3,4,5,6,7,8),
(1,3,5,7)(2,4,6,8), (1,4,7,2,5,8,3,6), (1,5)(2,6)(3,7)(4,8)]

r = CCR[2]; r

(1,2)(3,8)(4,7)(5,6)

conj = []
x = [conj.append(g”*-1*xr*g) for g in D if not g*-1*xrxg in conj]
conj

£(1,2)(3,8)(4,7)(5,6),
(1,6)(2,5)(3,4)(7,8),
(1,8)(2,7)(3,6)(4,5),
(1,4)(2,3)(5,8)(6,7)]

Notice that in the one conjugacy class constructed all the elements have the same cycle
structure, which is no accident. Notice too that rep and a are the same element, and the
product of the order of the centralizer (4) and the size of the conjugacy class (4) equals the
order of the group (16), which is a variant of the conclusion of Theorem 14.11.

Verify that the following is a demonstration of the class equation in the special case
when the action is conjugation, but would be valid for any group, rather than just D.

sizes = [D.order()/D.centralizer(g).order ()
for g in D.conjugacy_classes_representatives ()]
sizes

D.order () == sum(sizes)

True
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Graph Automorphisms

As mentioned, group actions can be even more interesting when the set they act on is
different from the group itself. Omne class of examples is the group of symmetries of a
geometric solid, where the objects in the set are the vertices of the object, or perhaps
some other aspect such as edges, faces or diagonals. In this case, the group is all those
permutations that move the solid but leave it filling the same space before the motion
(“rigid motions”).

In this section we will examine something very similar. A graph is a mathematical
object, consisting of vertices and edges, but the only structure is whether or not any given
pair of vertices are joined by an edge or not. The group consists of permutations of vertices
that preserve the structure, that is, permutations of vertices that take edges to edges and
non-edges to non-edges. It is very similar to a symmetry group, but there is no notion of
any geometric relationships being preserved.

Here is an example. You will need to run the first compute cell to define the graph and
get a nice graphic representation.

Q = graphs.CubeGraph(3)
Q.plot(layout="spring')

A = Q.automorphism_group ()
A.order ()

48

Your plot should look like the vertices and edges of a cube, but may not quite look
regular, which is fine, since the geometry is not relevant. Vertices are labeled with strings
of three binary digits, 0 or 1, and any two vertices are connected by an edge if their strings
differ in exactly one location. We might expect the group of symmetries to have order 24,
rather than order 48, given its resemblance to a cube (in appearance and in name). However,
when not restricted to rigid motions, we have new permutations that preserve edges. One
in particular is to interchange two “opposite faces.” Locate two 4-cycles opposite of each
other, listed in the same order: 000,010,110,100 and 001,011,111,101. Notice that each
cycle looks very similar, but all the vertices of the first end in a zero and the second cycle
has vertices ending in a one.

We can create explicitly the permutation that interchanges these two opposite faces,
using a text version of the permutation in cycle notation.

a = A("('e00','001"') ('010"','211") ('"110"','111") ("100"','101")")
a in A

True

We can use this group to illustrate the relevant Sage commands for group actions.

A.orbits ()

[['ee0', '@01', '@10', '100', '011', '101', "110', '111']]

len(A.orbits()[Q])
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So this action has only one (big) orbit. This implies that every vertex is “like” any other.
When a permutation group behaves this way, we say the group is transitive.

A.is_transitive()

True

If every vertex is “the same” we can compute the stabilizer of any vertex, since they
will all be isomorphic. Because vertex 000 is the simplest in some sense, we compute its
stabilizer.

S = A.stabilizer('000"')
S.list ()

Lo,
('e01','010"','100')('011"','110"',"'101"),
('001','100"','010')('011"','101"',"'110"),
('e10',"100')('011"','101"),
('eo1','010"')('101"','110"),
('eo1',"100"')('011','110")1]

That S has 6 elements is no surprise, since the group has order 48 and the size of the
lone orbit is 8. But we can go one step further. The three vertices of the graph attached
directly to 000 are 100, 010, 001. Any automorphism of the graph that fixes 000 must then
permute the three adjacent vertices. There are 3! = 6 possible ways to do this, and you can
check that each appears in one of the six elements of the stabilizer. So we can understand a
transitive group by considering the smaller stabilizer, and in this case we can see that each
element of the stabilizer is determined by how it permutes the neighbors of the stabilized
vertex.

Transitive groups are both unusual and important. To contrast, here is a graph auto-
morphism group that is far from transitive (without being trivial). A path is a graph that
has all of its vertices in a line. Run the first compute cell to see a path on 11 vertices.

P = graphs.PathGraph(11)
P.plot ()

A = P.automorphism_group ()
A.list ()

LO, (0,10)(1,9)(2,8)(3,7)(4,6)]
The automorphism group is the trivial identity automorphism (always) and an order 2
permutation that “flips” the path end-to-end. The group is far from transitive and there
are many orbits.

A.is_transitive()

False

A.orbits ()

(o, 1), (1, 9, (2, &, (3, 7, (4, 6), (5,))
Most of the stabilizers are trivial, with one exception. As subgroups of a group of order
2, there really are not too many options.
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A.stabilizer (2).list()

[O1

A.stabilizer (5).Llist()

LO, (0,10)(1,9)(2,8)(3,7)(4,6)]
How would this final example have been different if we had used a path on 10 vertices?
NOTE: There was once a small bug with stabilizers being created as subgroups of
symmetric groups on fewer symbols than the correct number. This is fixed in Sage 4.8 and
newer. Note the correct output below, and you can check your installation by running these
commands. If you do not see the singleton [4] in your output, you should definitely update
your copy of Sage.

G = SymmetricGroup (4)
S = G.stabilizer (4)
S.orbits ()

1, 2, 3), (4,

14.9 Sage Exercises

1. Construct the Higman-Sims graph with the command graphs.HigmanSimsGraph(). Then
construct the automorphism group and determine the order of the one interesting nor-
mal subgroup of this group. You can try plotting the graph, but the graphic is unlikely
to be very informative.

2. This exercise asks you to verify the class equation outside of the usual situation where
the group action is conjugation. Consider the example of the automorphism group of
the path on 11 vertices. First construct the list of orbits. From each orbit, grab the
first element of the orbit as a representative. Compute the size of the orbit as the
index of the stabilizer of the representative in the group via Theorem 14.11. (Yes, you
could just compute the size of the full orbit, but the idea of the exercise is to use more
group-theoretic results.) Then sum these orbit-sizes, which should equal the size of the
whole vertex set since the orbits form a partition.

3. Construct a simple graph (no loops or multiple edges), with at least two vertices and at
least one edge, whose automorphism group is trivial. You might start experimenting
by drawing pictures on paper before constructing the graph. A command like the
following will let you construct a graph from edges. The graph below looks like a
triangle or 3-cycle.

G = Graph([(1y2), (273)7 (3’1)])
G.plot ()

4. For the following two pairs of groups, compute the list of conjugacy class representatives
for each group in the pair. For each part, compare and contrast the results for the two
groups in the pair, with thoughtful and insightful comments.

(a) The full symmetric group on 5 symbols, S5, and the alternating group on 5
symbols, As.

(b) The dihedral groups that are symmetries of a 7-gon and an 8-gon, D7 and Dsg.
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5. Use the command graphs.CubeGraph(4) to build the four-dimensional cube graph, Q4.
Using a plain .plot() command (without a spring layout) should create a nice plot.
Construct the automorphism group of the graph, which will provide a group action on
the vertex set.

(a) Construct the orbits of this action, and comment.

(b) Construct a stabilizer of a single vertex (which is a subgroup of the full auto-
morphism group) and then consider the action of this group on the vertex set.
Construct the orbits of this new action, and comment carefully and fully on your
observations, especially in terms of the vertices of the graph.

6. Build the graph given by the commands below. The result should be a symmetric-
looking graph with an automorphism group of order 16.

G = graphs.CycleGraph(8)
G.add_edges([(0,2),(1,3),(4,6),(5,7)1)
G.plot ()

Repeat the two parts of the previous exercise, but realize that in the second part
there are now two different stabilizers to create, so build both and compare the differ-
ences in the stabilizers and their orbits. Creating a second plot with G.plot(layout='planar')
might provide extra insight.
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The Sylow Theorems

We already know that the converse of Lagrange’s Theorem is false. If G is a group of
order m and n divides m, then G does not necessarily possess a subgroup of order n. For
example, A4 has order 12 but does not possess a subgroup of order 6. However, the Sylow
Theorems do provide a partial converse for Lagrange’s Theorem—in certain cases they
guarantee us subgroups of specific orders. These theorems yield a powerful set of tools for
the classification of all finite nonabelian groups.

15.1 The Sylow Theorems

We will use what we have learned about group actions to prove the Sylow Theorems. Recall
for a moment what it means for G to act on itself by conjugation and how conjugacy
classes are distributed in the group according to the class equation, discussed in Chapter 14.
A group G acts on itself by conjugation via the map (g,z) — grg~'. Let x1,...,2) be
representatives from each of the distinct conjugacy classes of G that consist of more than

one element. Then the class equation can be written as
Gl =1Z(G)|+[G: C(z1)] + - +[G : Claw)],

where Z(G) = {g € G : gr = xg for all x € G} is the center of G and C(z;) = {g € G :
gx; = x;g} is the centralizer subgroup of x;.

We begin our investigation of the Sylow Theorems by examining subgroups of order p,
where p is prime. A group G is a p-group if every element in G has as its order a power of
p, where p is a prime number. A subgroup of a group G is a p-subgroup if it is a p-group.

Theorem 15.1 Cauchy. Let G be a finite group and p a prime such that p divides the
order of G. Then G contains a subgroup of order p.
ProoF. We will use induction on the order of G. If |G| = p, then clearly G itself is the
required subgroup. We now assume that every group of order k, where p < k < n and p
divides k, has an element of order p. Assume that |G| = n and p | n and consider the class
equation of G:

Gl =1Z(G)|+ ]G : Cle)] +--- + G : Clag)].

We have two cases.

Case 1. Suppose the order of one of the centralizer subgroups, C(z;), is divisible by p for
some i, ¢ = 1,..., k. In this case, by our induction hypothesis, we are done. Since C(x;)
is a proper subgroup of G and p divides |C(z;)|, C(x;) must contain an element of order p.
Hence, G must contain an element of order p.

251
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Case 2. Suppose the order of no centralizer subgroup is divisible by p. Then p divides
[G : C(x;)], the order of each conjugacy class in the class equation; hence, p must divide
the center of G, Z(G). Since Z(G) is abelian, it must have a subgroup of order p by the
Fundamental Theorem of Finite Abelian Groups. Therefore, the center of G contains an
element of order p. [ |

Corollary 15.2 Let G be a finite group. Then G is a p-group if and only if |G| = p™.

Example 15.3 Let us consider the group As. We know that |As| = 60 = 22.3.5. By
Cauchy’s Theorem, we are guaranteed that As has subgroups of orders 2, 3 and 5. The
Sylow Theorems will give us even more information about the possible subgroups of As. [

We are now ready to state and prove the first of the Sylow Theorems. The proof is very
similar to the proof of Cauchy’s Theorem.

Theorem 15.4 First Sylow Theorem. Let G be a finite group and p a prime such that
p" divides |G|. Then G contains a subgroup of order p”.

PrROOF. We induct on the order of G once again. If |G| = p, then we are done. Now
suppose that the order of G is n with n > p and that the theorem is true for all groups of
order less than n, where p divides n. We shall apply the class equation once again:

Gl =1Z(G)|+[G: C(z1)] + - +[G : Clax)].

First suppose that p does not divide [G : C(x;)] for some i. Then p” | |C(z;)|, since p”
divides |G| = |C(z;)| - [G : C(z;)]. Now we can apply the induction hypothesis to C(x;).
Hence, we may assume that p divides [G : C(z;)] for all 7. Since p divides |G|, the class
equation says that p must divide |Z(G)|; hence, by Cauchy’s Theorem, Z(G) has an element
of order p, say g. Let N be the group generated by g. Clearly, N is a normal subgroup
of Z(G) since Z(@G) is abelian; therefore, N is normal in G since every element in Z(G)
commutes with every element in G. Now consider the factor group G/N of order |G|/p. By
the induction hypothesis, G/N contains a subgroup H of order p"~!. The inverse image of
H under the canonical homomorphism ¢ : G — G/N is a subgroup of order p" in G. |

A Sylow p-subgroup P of a group G is a maximal p-subgroup of G. To prove the other
two Sylow Theorems, we need to consider conjugate subgroups as opposed to conjugate
elements in a group. For a group G, let S be the collection of all subgroups of G. For any
subgroup H, S is a H-set, where H acts on S by conjugation. That is, we have an action

HxS—S
defined by
h-K— hKh™!
for K in S.
The set

N(H)={geG:gHg ' = H}

is a subgroup of G called the the normalizer of H in G. Notice that H is a normal
subgroup of N(H). In fact, N(H) is the largest subgroup of G in which H is normal.

Lemma 15.5 Let P be a Sylow p-subgroup of a finite group G and let x have as its order
a power of p. If t='Px = P, then x € P.

PROOF. Certainly x € N(P), and the cyclic subgroup, (xP) C N(P)/P, has as its order a
power of p. By the Correspondence Theorem there exists a subgroup H of N(P) containing
P such that H/P = (zP). Since |H| = |P| - [(xP)|, the order of H must be a power of p.
However, P is a Sylow p-subgroup contained in H. Since the order of P is the largest power
of p dividing |G|, H = P. Therefore, H/P is the trivial subgroup and P = P, or = € P.
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Lemma 15.6 Let H and K be subgroups of G. The number of distinct H -conjugates of K
is [H: N(K)N HJ.

PROOF. We define a bijection between the conjugacy classes of K and the right cosets of
N(K)NH by h=*Kh ~ (N(K)N H)h. To show that this map is a bijection, let hy, hy € H
and suppose that (N(K) N H)hy = (N(K) N H)hy. Then hohy! € N(K). Therefore,
K = hghl_lKhlhgl or hl_lKhl = hz_lth, and the map is an injection. It is easy to
see that this map is surjective; hence, we have a one-to-one and onto map between the
H-conjugates of K and the right cosets of N(K)NH in H. |

Theorem 15.7 Second Sylow Theorem. Let G be a finite group and p a prime dividing
|G|. Then all Sylow p-subgroups of G are conjugate. That is, if Py and Py are two Sylow
p-subgroups, there exists a g € G such that gP g~ = P;.

PROOF. Let P be a Sylow p-subgroup of G and suppose that |G| = p"m with |P| = p". Let

S={P=P,P,....B)}
consist of the distinct conjugates of P in G. By Lemma 15.6, k = [G : N(P)]. Notice that
G =p"m = |N(P)|-[G: N(P)] = [N(P)| - k.

Since p" divides |N(P)|, p cannot divide k.

Given any other Sylow p-subgroup @), we must show that Q € S. Consider the Q-
conjugacy classes of each P;. Clearly, these conjugacy classes partition S. The size of the
partition containing P; is [@ : N(FP;) N Q] by Lemma 15.6, and Lagrange’s Theorem tells us
that |Q] = [Q : N(P;) NQJ|N(P;) N Q)|. Thus, [Q : N(F;) N Q] must be a divisor of |Q| = p".
Hence, the number of conjugates in every equivalence class of the partition is a power of
p. However, since p does not divide k, one of these equivalence classes must contain only a
single Sylow p-subgroup, say P;. In this case, x_le:r = Pj for all z € . By Lemma 15.5,
P, = Q. |

Theorem 15.8 Third Sylow Theorem. Let G be a finite group and let p be a prime
dividing the order of G. Then the number of Sylow p-subgroups is congruent to 1 (mod p)
and divides |G|.

PRrROOF. Let P be a Sylow p-subgroup acting on the set of Sylow p-subgroups,

S={P="P,P,..., P},

by conjugation. From the proof of the Second Sylow Theorem, the only P-conjugate of P
is itself and the order of the other P-conjugacy classes is a power of p. Each P-conjugacy
class contributes a positive power of p toward |S| except the equivalence class {P}. Since
|S| is the sum of positive powers of p and 1, |S| =1 (mod p).

Now suppose that G acts on S by conjugation. Since all Sylow p-subgroups are conjugate,
there can be only one orbit under this action. For P € S,

|S| = |orbit of P| =[G : N(P)]

by Lemma 15.6. But [G : N(P)] is a divisor of |G|; consequently, the number of Sylow
p-subgroups of a finite group must divide the order of the group. |
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[ | Historical Note [ |

Peter Ludvig Mejdell Sylow was born in 1832 in Christiania, Norway (now Oslo). After
attending Christiania University, Sylow taught high school. In 1862 he obtained a temporary
appointment at Christiania University. Even though his appointment was relatively brief,
he influenced students such as Sophus Lie (1842-1899). Sylow had a chance at a permanent
chair in 1869, but failed to obtain the appointment. In 1872, he published a 10-page paper
presenting the theorems that now bear his name. Later Lie and Sylow collaborated on a
new edition of Abel’s works. In 1898, a chair at Christiania University was finally created
for Sylow through the efforts of his student and colleague Lie. Sylow died in 1918.

15.2 Examples and Applications

Example 15.9 Using the Sylow Theorems, we can determine that As has subgroups of
orders 2, 3, 4, and 5. The Sylow p-subgroups of As have orders 3, 4, and 5. The Third
Sylow Theorem tells us exactly how many Sylow p-subgroups As has. Since the number of
Sylow 5-subgroups must divide 60 and also be congruent to 1 (mod 5), there are either one
or six Sylow 5-subgroups in As. All Sylow 5-subgroups are conjugate. If there were only
a single Sylow 5-subgroup, it would be conjugate to itself; that is, it would be a normal
subgroup of As. Since As has no normal subgroups, this is impossible; hence, we have
determined that there are exactly six distinct Sylow 5-subgroups of As. U

The Sylow Theorems allow us to prove many useful results about finite groups. By
using them, we can often conclude a great deal about groups of a particular order if certain
hypotheses are satisfied.

Theorem 15.10 If p and q are distinct primes with p < q, then every group G of order
pq has a single subgroup of order q and this subgroup is normal in G. Hence, G cannot be
simple. Furthermore, if ¢ #1 (mod p), then G is cyclic.

PrOOF. We know that G contains a subgroup H of order ¢. The number of conjugates of
H divides pg and is equal to 1 + kq for k = 0,1,.... However, 1 + ¢ is already too large to
divide the order of the group; hence, H can only be conjugate to itself. That is, H must be
normal in G.

The group G also has a Sylow p-subgroup, say K. The number of conjugates of K must
divide ¢ and be equal to 1 + kp for £k = 0,1,.... Since ¢ is prime, either 1 + kp = ¢ or
1+kp=1. If 14+ kp=1, then K is normal in G. In this case, we can easily show that G
satisfies the criteria, given in Chapter 9, for the internal direct product of H and K. Since
H is isomorphic to Z, and K is isomorphic to Z,, G = Z, X Zq = Zpq by Theorem 9.21. W

Example 15.11 Every group of order 15 is cyclic. This is true because 15 =5-3 and 5 #Z 1
(mod 3). O

Example 15.12 Let us classify all of the groups of order 99 = 32 - 11 up to isomorphism.
First we will show that every group G of order 99 is abelian. By the Third Sylow Theorem,
there are 1 4+ 3k Sylow 3-subgroups, each of order 9, for some k£ = 0,1,2,.... Also, 1 + 3k
must divide 11; hence, there can only be a single normal Sylow 3-subgroup H in G. Similarly,
there are 1+ 11k Sylow 11-subgroups and 14 11k must divide 9. Consequently, there is only
one Sylow 11-subgroup K in G. By Corollary 14.16, any group of order p? is abelian for p
prime; hence, H is isomorphic either to Zs x Zs3 or to Zg. Since K has order 11, it must
be isomorphic to Zi;. Therefore, the only possible groups of order 99 are Zs X Z3 x Z11 or
Zg X Z11 up to isomorphism. O

To determine all of the groups of order 57 -47 = 1645, we need the following theorem.
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Theorem 15.13 Let G' = (aba™'b~! : a,b € G) be the subgroup consisting of all finite
products of elements of the form aba='b~' in a group G. Then G’ is a normal subgroup of
G and G/G' is abelian.

The subgroup G’ of G is called the commutator subgroup of G. We leave the proof
of this theorem as an exercise (Exercise 10.4.14 in Chapter 10).

Example 15.14 We will now show that every group of order 5-7-47 = 1645 is abelian, and
cyclic by Theorem 9.21. By the Third Sylow Theorem, G has only one subgroup Hi of order
47. So G/H; has order 35 and must be abelian by Theorem 15.10. Hence, the commutator
subgroup of G is contained in H which tells us that |G’| is either 1 or 47. If |G'| = 1, we
are done. Suppose that |G'| = 47. The Third Sylow Theorem tells us that G has only one
subgroup of order 5 and one subgroup of order 7. So there exist normal subgroups Hs and
Hs in G, where |Hz| = 5 and |H3| = 7. In either case the quotient group is abelian; hence,
G’ must be a subgroup of H;, i = 1,2. Therefore, the order of G’ is 1, 5, or 7. However, we
already have determined that |G'| = 1 or 47. So the commutator subgroup of G is trivial,
and consequently G is abelian. O

Finite Simple Groups

Given a finite group, one can ask whether or not that group has any normal subgroups.
Recall that a simple group is one with no proper nontrivial normal subgroups. As in the
case of As, proving a group to be simple can be a very difficult task; however, the Sylow
Theorems are useful tools for proving that a group is not simple. Usually, some sort of
counting argument is involved.

Example 15.15 Let us show that no group G of order 20 can be simple. By the Third
Sylow Theorem, G contains one or more Sylow 5-subgroups. The number of such subgroups
is congruent to 1 (mod 5) and must also divide 20. The only possible such number is 1.
Since there is only a single Sylow 5-subgroup and all Sylow 5-subgroups are conjugate, this
subgroup must be normal. ([l

Example 15.16 Let G be a finite group of order p™, n > 1 and p prime. By Theorem 14.15,
G has a nontrivial center. Since the center of any group G is a normal subgroup, G cannot
be a simple group. Therefore, groups of orders 4, 8, 9, 16, 25, 27, 32, 49, 64, and 81 are not
simple. In fact, the groups of order 4, 9, 25, and 49 are abelian by Corollary 14.16. O

Example 15.17 No group of order 56 = 23 - 7 is simple. We have seen that if we can show
that there is only one Sylow p-subgroup for some prime p dividing 56, then this must be a
normal subgroup and we are done. By the Third Sylow Theorem, there are either one or
eight Sylow 7-subgroups. If there is only a single Sylow 7-subgroup, then it must be normal.

On the other hand, suppose that there are eight Sylow 7-subgroups. Then each of these
subgroups must be cyclic; hence, the intersection of any two of these subgroups contains
only the identity of the group. This leaves 8 - 6 = 48 distinct elements in the group, each
of order 7. Now let us count Sylow 2-subgroups. There are either one or seven Sylow
2-subgroups. Any element of a Sylow 2-subgroup other than the identity must have as its
order a power of 2; and therefore cannot be one of the 48 elements of order 7 in the Sylow
T-subgroups. Since a Sylow 2-subgroup has order 8, there is only enough room for a single
Sylow 2-subgroup in a group of order 56. If there is only one Sylow 2-subgroup, it must be
normal. O

For other groups G, it is more difficult to prove that G is not simple. Suppose G has
order 48. In this case the technique that we employed in the last example will not work.
We need the following lemma to prove that no group of order 48 is simple.
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Lemma 15.18 Let H and K be finite subgroups of a group G. Then

HK|= "——-.
| | |HN K|
PRrROOF. Recall that

HK ={hk:he H ke K}.

Certainly, |[HK| < |H| - | K| since some element in HK could be written as the product of
different elements in H and K. It is quite possible that hiki = hoks for hi,ho € H and
k1,ko € K. If this is the case, let

a=(h1) thy = k1 (ko) L.
Notice that a € H N K, since (hy)~thg is in H and ko(k1)~! is in K; consequently,

h2 = hla_l
k?g = akl.

Conversely, let h = hib~! and k = bky for b € HN K. Then hk = hi1ki, where h € H
and k € K. Hence, any element hk € HK can be written in the form h;k; for h; € H and

k; € K, as many times as there are elements in H N K; that is, |H N K| times. Therefore,
[HK| = (|H|- |K[)/|HNK]|. u

Example 15.19 To demonstrate that a group G of order 48 is not simple, we will show
that G contains either a normal subgroup of order 8 or a normal subgroup of order 16. By
the Third Sylow Theorem, G has either one or three Sylow 2-subgroups of order 16. If there
is only one subgroup, then it must be a normal subgroup.

Suppose that the other case is true, and two of the three Sylow 2-subgroups are H and
K. We claim that |[H N K| =38. If |H N K| <4, then by Lemma 15.18,

1616

HK| > 64,
which is impossible. Notice that H N K has index two in both of H and K, so is normal in
both, and thus H and K are each in the normalizer of H N K. Because H is a subgroup of
N(H N K) and because N(H N K) has strictly more than 16 elements, |N(H N K)| must
be a multiple of 16 greater than 1, as well as dividing 48. The only possibility is that
IN(H N K)| =48. Hence, N(HNK) =G. O
The following famous conjecture of Burnside was proved in a long and difficult paper
by Feit and Thompson [2].

Theorem 15.20 Odd Order Theorem. FEvery finite simple group of nonprime order
must be of even order.

The proof of this theorem laid the groundwork for a program in the 1960s and 1970s
that classified all finite simple groups. The success of this program is one of the outstanding
achievements of modern mathematics.

15.3 Reading Questions

1. State Sylow’s First Theorem.
How many groups are there of order 697 Why?

3. Give two descriptions, fundamentally different in character, of the normalizer of a
subgroup.
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4.

5.

Suppose that G is an abelian group. What is the commutator subgroup of GG, and how
do you know?

What’s all the fuss about Sylow’s Theorems?

15.4 Exercises

1.

10.

11.

12.

13.

14.

15.
16.
17.
18.

19.

20.

21.

22.

What are the orders of all Sylow p-subgroups where G has order 18, 24, 54, 72, and
807

Find all the Sylow 3-subgroups of S4 and show that they are all conjugate.

Show that every group of order 45 has a normal subgroup of order 9.

Let H be a Sylow p-subgroup of G. Prove that H is the only Sylow p-subgroup of G
contained in N(H).

Prove that no group of order 96 is simple.

Prove that no group of order 160 is simple.

If H is a normal subgroup of a finite group G and |H| = p* for some prime p, show
that H is contained in every Sylow p-subgroup of G.

Let G be a group of order p?q?, where p and ¢ are distinct primes such that ¢ {p? — 1
and p{¢? — 1. Prove that G must be abelian. Find a pair of primes for which this is
true.

Show that a group of order 33 has only one Sylow 3-subgroup.

Let H be a subgroup of a group G. Prove or disprove that the normalizer of H is
normal in G.

Let G be a finite group whose order is divisible by a prime p. Prove that if there is
only one Sylow p-subgroup in G, it must be a normal subgroup of G.

Let G be a group of order p”, p prime. Prove that G contains a normal subgroup of
order p" L.

Suppose that G is a finite group of order p"k, where k < p. Show that G must contain
a normal subgroup.

Let H be a subgroup of a finite group G. Prove that gN(H)g~' = N(gHg™!) for any
g€aqG.

Prove that a group of order 108 must have a normal subgroup.

Classify all the groups of order 175 up to isomorphism.

Show that every group of order 255 is cyclic.

Let G have order pi* ---pSr and suppose that G has n Sylow p-subgroups Pi,..., P,
where |P;| = p;*. Prove that G is isomorphic to Py X --- X P,.

Let P be a normal Sylow p-subgroup of G. Prove that every inner automorphism of G
fixes P.

What is the smallest possible order of a group G such that G is nonabelian and |G| is
odd? Can you find such a group?

The Frattini Lemma. If H is a normal subgroup of a finite group G and P is
a Sylow p-subgroup of H, for each g € G show that there is an h in H such that
gPg~' = hPh~'. Also, show that if N is the normalizer of P, then G = HN.

Show that if the order of GG is p™q, where p and g are primes and p > ¢, then G contains
a normal subgroup.
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23. Prove that the number of distinct conjugates of a subgroup H of a finite group G is
[G: N(H)|.

24. Prove that a Sylow 2-subgroup of Sj is isomorphic to Dj.

25. Another Proof of the Sylow Theorems.

(a) Suppose p is prime and p does not divide m. Show that

k
p*m
P .
* < p* )
(b) Let S denote the set of all p* element subsets of G. Show that p does not divide
|SI.

(c) Define an action of G on S by left multiplication, aT' = {at : t € T} for a € G
and T' € §. Prove that this is a group action.

(d) Prove p1|Or| for some T € S.

(e) Let {T1,...,Ty} be an orbit such that ptu and H = {g € G : gT1 = T1}. Prove
that H is a subgroup of G and show that |G| = u|H|.

(f) Show that p* divides |H| and p* < |H|.

(g) Show that |H| = |Op| < p¥; conclude that therefore p* = |H].

26. Let G be a group. Prove that G/ = (aba='b~! : a,b € G) is a normal subgroup of
G and G/G' is abelian. Find an example to show that {aba=1b=! : a,b € G} is not
necessarily a group.

15.5 A Project

The main objective of finite group theory is to classify all possible finite groups up to
isomorphism. This problem is very difficult even if we try to classify the groups of order
less than or equal to 60. However, we can break the problem down into several intermediate
problems. This is a challenging project that requires a working knowledge of the group
theory you have learned up to this point. Even if you do not complete it, it will teach you
a great deal about finite groups. You can use Table 15.21 as a guide.
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Table 15.21 Numbers of distinct groups G, |G| < 60

Order Number | Order Number | Order Number | Order Number
1 ? 16 14 31 1 46 2
2 ? 17 1 32 51 47 1
3 ? 18 ? 33 1 48 52
4 ? 19 ? 34 ? 49 ?
5 ? 20 5 35 1 50 5
6 ? 21 ? 36 14 51 ?
7 ? 22 2 37 1 52 ?
8 ? 23 1 38 ? 53 ?
9 ? 24 ? 39 2 54 15
10 ? 25 2 40 14 55 2

11 ? 26 2 41 1 56 ?
12 5 27 5 42 ? 57 2
13 ? 28 ? 43 1 58 ?
14 ? 29 1 44 4 59 1
15 1 30 4 45 ? 60 13

Find all simple groups G ( |G| < 60). Do not use the Odd Order Theorem unless you
are prepared to prove it.

Find the number of distinct groups G, where the order of G is n for n =1, ..., 60.

Find the actual groups (up to isomorphism) for each n.
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15.7 Sage

Sylow Subgroups

The Sage permutation group method .sylow_subgroup(p) will return a single Sylow p-
subgroup. If the prime is not a proper divisor of the group order it returns a subgroup of
order pY, in other words, a trivial subgroup. So be careful about how you construct your
primes. Sometimes, you may only want one such Sylow subgroup, since any two Sylow
p-subgroups are conjugate, and hence isomorphic (Theorem 15.7). This also means we can
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create other Sylow p-subgroups by conjugating the one we have. The permutation group
method .conjugate(g) will conjugate the group by g.

With repeated conjugations of a single Sylow p-subgroup, we will always create duplicate
subgroups. So we need to use a slightly complicated construction to form a list of just the
unique subgroups as the list of conjugates. This routine that computes all Sylow p-subgroups
can be helpful throughout this section. It could be made much more efficient by conjugating
by just one element per coset of the normalizer, but it will be sufficient for our purposes
here. Be sure to execute the next cell if you are online, so the function is defined for use
later.

def all_sylow(G, p):

""'"Form the set of all distinct Sylow p-subgroups of G'''
scriptP = []
P = G.sylow_subgroup(p)
for x in G:

H = P.conjugate(x)

if not(H in scriptP):

scriptP.append(H)

return scriptP

Lets investigate the Sylow subgroups of the dihedral group Dis. As a group of order
36 = 2232, we know by the First Sylow Theorem that there is a Sylow 2-subgroup of order
4 and a Sylow 3-subgroup of order 9. First for p = 2, we obtain one Sylow 2-subgroup, form
all the conjugates, and form a list of non-duplicate subgroups. (These commands take a
while to execute, so be patient.)

G = DihedralGroup(18)
S2 = G.sylow_subgroup(2); S2

Subgroup generated by
[(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11),
(1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16) (8,17)(9,18)1]

of (Dihedral group of order 36 as a permutation group)

unigqS2 = all_sylow(G, 2)
uniqgS2

[Permutation Group with generators
[(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11),
(1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)1],
Permutation Group with generators
[(1,7)(2,6)(3,5)(8,18)(9,17)(10,16) (11,15)(12,14),
(1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)1],
Permutation Group with generators
[(1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18),
(1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(14,18) (15,17)1,
Permutation Group with generators
[(1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18),
(1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,18)1,
Permutation Group with generators
[(1,3)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12),
(1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)1],
Permutation Group with generators
[(1,9)(2,8)(3,7)(4,6)(10,18)(11,17)(12,16)(13,15),
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(1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18) 1],
Permutation Group with generators
[(1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18),
(1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16) 1,
Permutation Group with generators
[(1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18),
(1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)1,
Permutation Group with generators
[(1,5)(2,4)(6,18)(7,17)(8,16)(9,15)(10,14)(11,13),
(1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18) 1]

len(uniqS2)

The Third Sylow Theorem tells us that for p = 2 we would expect 1,3 or 9 Sylow 2-
subgroups, so our computational result of 9 subgroups is consistent with what the theory
predicts. Can you visualize each of these subgroups as symmetries of an 18-gon? Notice
that we also have many subgroups of order 2 inside of these subgroups of order 4.

Now for the case of p = 3.

G = DihedralGroup(18)
S3 = G.sylow_subgroup(3); S3

Subgroup generated by
[(1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18),
(1,15,1,7,3,17,13,9,5)(2,16,12,8,4,18,14,10,6) ]

of (Dihedral group of order 36 as a permutation group)

unigS3 = all_sylow(G, 3)
uniqgS3

[Permutation Group with generators
[¢(1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18),
(1,15,11,7,3,17,13,9,5)(2,16,12,8,4,18,14,10,6) 11

len(uniqgS3)

What does the Third Sylow Theorem predict? Just 1 or 4 Sylow 3-subgroups. Having
found just one subgroup computationally, we know that all of the conjugates of the lone
Sylow 3-subgroup are equal. In other words, the Sylow 3-subgroup is normal in Dig. Let
us check anyway.

S3.is_normal (G)

True

At least one of the subgroups of order 3 contained in this Sylow 3-subgroup should be
obvious by looking at the orders of the generators, and then you may even notice that the
generators given could be reduced, and one is a power of the other.

S3.is_cyclic()
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True

Remember that there are many other subgroups, of other orders. For example, can you
construct a subgroup of order 6 =2 - 3 in D1g?

Normalizers

A new command that is relevant to this section is the construction of a normalizer. The
Sage command G.normalizer(H) will return the subgroup of G containing elements that
normalize the subgroup H. We illustrate its use with the Sylow subgroups from above.

G = DihedralGroup (18)

S2 = G.sylow_subgroup (2)
S3 = G.sylow_subgroup (3)
N2 = G.normalizer(S2); N2

Subgroup generated by
[(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11),
(1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)1

of (Dihedral group of order 36 as a permutation group)

N2 == S2

True

N3 = G.normalizer(S3); N3

Subgroup generated by

[(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11),
(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),
(1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18),
(1,15,11,7,3,17,13,9,5)(2,16,12,8,4,18,14,10,6) ]

of (Dihedral group of order 36 as a permutation group)

N3 ==

True

The normalizer of a subgroup always contains the whole subgroup, so the normalizer
of S2 is as small as possible. We already knew S3 is normal in G, so it is no surprise that
its normalizer is as big as possible — every element of G normalizes S3. Let us compute a
normalizer in Dig that is more “interesting.”

G = DihedralGroup (18)

a G("(1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)")
b = G("(1,5)(2,4)(6,18)(7,17)(8,16)(9,15)(10,14)(11,13)")
H

H

G.subgroup(La, bl)
.order ()

(o))

N = G.normalizer (H)
N
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Subgroup generated by
[(1,2)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11),
(1,5)(2,4)(6,18)(7,17)(8,16)(9,15)(10,14)(11,13),
(1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)1]

of (Dihedral group of order 36 as a permutation group)

N.order ()

12

So for this subgroup of order 6, the normalizer is strictly bigger than the subgroup, but
still strictly smaller than the whole group (and hence not normal in the dihedral group).
Trivially, a subgroup is normal in its normalizer:

H.is_normal (G)

False

H.is_normal (N)

True

Finite Simple Groups

We saw earlier Sage’s permutation group method .is_simple(). Example 15.16 tells us that
a group of order 64 is never simple. The dicyclic group DiCyclicGroup(16) is a non-abelian
group of 64, so we can test this method on this group. It turns out this group has many
normal subgroups — the list will always contain the trivial subgroup and the group itself,
so any number exceeding 2 indicates a non-trivial normal subgroup.

DC=DiCyclicGroup (16)
DC.order ()

64

DC.is_simple ()

False

ns = DC.normal_subgroups ()
len(ns)

Here is a rather interesting group, one of the 26 sporadic simple groups, known as the
Higman-Sims group, HS. The generators used below come from the representation on 100
points in GAP format, available off of web.mat.bham.ac.uk/atlas/v2.0/spor/HS/!3. Two
generators of just order 2 and order 5 (as you can esily see), generating exactly 44 352 000
elements, but no normal subgroups. Amazing.

3web.mat.bham.ac.uk/atlas/v2.0/spor/HS


http://web.mat.bham.ac.uk/atlas/v2.0/spor/HS/
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G = SymmetricGroup (100)

a = G([(1,60), (2,72), (3,81), (4,43), <(5,11), (6,87),
(7,34), (9,63), (12,46), (13,28), (14,71), (15,42),
(16,97), (18,57), (19,52), (21,32), (23,47), (24,54),
(25,83), (26,78), (29,89), (30,39), (33,61), (35,56),
(37,67), (44,76), (45,88), (48,59), (49,86), (50,74),
(51,66), (53,99), (55,75), (62,73), (65,79), (68,82),
(77,92), (84,90), (85,98), (94,100)1)

b = G([(1,86,13,10,47), (2,53,30,8,38),

(3,40,48,25,17), (4,29,92,88,43), (5,98,66,54, 65),
(6,27,51,73,24), (7,83,16,20,28),  (9,23,89,95,61),

(11,42,46,91,32), (12,14, 81,55,68), (15,90,31,56,37),

(18,69,45,84,76), (19,59,79,35,93), (21,22,64,39,100),

(26,58,96,85,77), (33,52,94,75,44), (34,62,87,78,50),

(36,82,60,74,72), (41,80,70,49,67), (57,63,71,99,97)1)
a.order (), b.order ()

(2, 5

HS = G.subgroup([a, bl)
HS.order ()

44352000

HS.is_simple ()

True

We saw this group earlier in the exercises for Chapter 14 on group actions, where it
was the single non-trivial normal subgroup of the automorphism group of the Higman-Sims
graph, hence its name.

GAP Console and Interface

This concludes our exclusive study of group theory, though we will be using groups some
in the subsequent sections. As we have remarked, much of Sage’s computation with groups
is performed by the open source program, “Groups, Algorithms, and Programming,” which
is better know as simply GApP. If after this course you outgrow Sage’s support for groups,
then learning GAP would be your next step as a group theorist. Every copy of Sage includes
a copy of GAP and is easy to see which version of GAP is included:

gap.version()

'4.12.2"

You can interact with GAP in Sage in several ways. The most direct is by creating a
permutation group via Sage’s gap() command.

G = gap('Group(.(1,2,3,4,5,6),.(1,3,5.)")
G

Group( [ (1,2,3,4,5,6), (1,3,5) 1)

Now we can use most any GAP command with G, via the convention that most cAP
commands expect a group as the first argument, and we instead provide the group by using
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the object-orientedG. syntax. If you consult the GAP documentation you will see that Center
is a GAP command that expects a group as its lone argument, and Centralizer is a GAP
command that expects two arguments — a group and then a group element.

G.Center ()

Group( [ (1,3,5)(2,4,6) 1)

G.Centralizer('(1,.3,.5)")

Group( [ (1,3,5), (2,4,6), (1,3,5)(2,4,6) 1)

If you use the Sage Notebook interface you can set the first line of a compute cell to %gap
and the entire cell will be interpreted as if you were interacting directly with GAp. This
means you would now use GAP’s syntax, which you can see above is slightly different than
Sage’s universal syntax. You can also use the drop-down box at the top of a worksheet, and
select gap as the system (rather than sage) and your whole worksheet will be interpreted
as GAP commands. Here is one simple example, which you should be able to evaluate in
your current worksheet. This particular example will not run properly in a Sage Cell in a
web page version of this section.

%gap
G := Group( (1,2,3,4,5,6), (1,3,5) );
Centralizer (G, (1,3,5));

Notice that

e We do not need to wrap the individual permutations in as many quotation marks as
we do in Sage.

o Assignment is := not =. If you forget the colon, you will get an error message such as
Variable: 'G' must have a value

o A line must end with a semi-colon. If you forget, several lines will be merged together.

You can get help about GAP commands with a command such as the following, though
you will soon see that GAP assumes you know a lot more algebra than Sage assumes you
know.

print(gap.help('SymmetricGroup', pager=False))

In the command-line version of Sage, you can also use the GAP “console.” Again, you
need to use GAP syntax, and you do not have many of the conveniences of the Sage notebook.
It is also good to know in advance that quit; is how you can leave the GAP console and get
back to Sage. If you run Sage at the command-line, use the command gap_console() to
start GAP running.

It is a comfort to know that with Sage you get a complete copy of GAP, installed and
all ready to run. However, this is not a tutorial on GAP, so consult the documentation
available at the main GAP website: www.gap-system.org™ to learn how to get the most out
of GAP.

1 /www. gap-system.org


http://www.gap-system.org
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15.8 Sage Exercises

1.

This exercise verifies Theorem 15.13. The commutator subgroup is computed with
the permutation group method .commutator(). For the dihedral group of order 40,
Dy (DihedralGroup(20) in Sage), compute the commutator subgroup and form the
quotient with the dihedral group. Then verify that this quotient is abelian. Can you
identify the quotient group exactly (in other words, up to isomorphism)?

For each possible prime, find all of the distinct Sylow p-subgroups of the alternating
group As. Confirm that your results are consistent with the Third Sylow Theorem for
each prime. We know that As is a simple group. Explain how this would explain or
predict some aspects of your answers.

Count the number of distinct elements contained in the union of all the Sylow
subgroups you just found. What is interesting about this count?

For the dihedral group D3¢ (symmetries of a 36-gon) and each possible prime, determine
the possibilities for the number of distinct Sylow p-subgroups as predicted by the Third
Sylow Theorem (Theorem 15.8). Now compute the actual number of distinct Sylow
p-subgroups for each prime and comment on the result.

It can be proved that any group with order 72 is not a simple group, using techniques
such as those used in the later examples in this chapter. Discuss this result in the
context of your computations with Sage.

This exercise verifies Lemma 15.6. Let G be the dihedral group of order 36, Dig. Let
H be the one Sylow 3-subgroup. Let K be the subgroup of order 6 generated by the
two permutations a and b given below. First, form a list of the distinct conjugates of
K Dby the elements of H, and determine the number of subgroups in this list. Compare
this with the index given in the statement of the lemma, employing a single (long)
statement making use of the .order(), .normalizer() and .intersection() methods
with G, H and K, only.

G = DihedralGroup(18)
a = G6("(1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)")
b = G("(1,5)(2,4)(6,18)(7,17)(8,16)(9,15)(10,14)(11,13)")

Example 15.19 shows that every group of order 48 has a normal subgroup. The dicyclic
groups are an infinite family of non-abelian groups with order 4n, which includes the
quaternions (the case of n = 2). So the permutation group DiCyclicGroup(12) has
order 48. Use Sage to follow the logic of the proof in Example 15.19 and construct a
normal subgroup in this group. (In other words, do not just ask for a list of the normal
subgroups from Sage, but instead trace through the implications in the example to
arrive at a normal subgroup, and then check your answer.)

The proofs of the Second and Third Sylow Theorems (Theorem 15.7, Theorem 15.8)
employ a group action on sets of Sylow p-subgrou