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Preface

This text is intended for an undergraduate course in ordinary differential
equations. The Ordinary Differential Equations Project began when the au-
thor was teaching the ordinary differential equations course at Harvard Uni-
versity. After arriving at Stephen F. Austin State University, the Harvard
notes began to transform into the makings of a textbook. At the same time,
the author was converting his abstract algebra book, Abstract Algebra: The-
ory and Applications (http://abstract.pugetsound.edu/index.html1) from La-
TeX into MathBook XML. With MathBook XML, which is now PreTeXt
(https://pretextbook.org2), one can produce HTML, PDF, EPUB, and even
braille versions of a textbook while only having to maintain the PreTeXt
source. The Ordinary Differential Equations Project is now available on https:/
/runestone.academy3, a Learning Engineering and Analytics Portal (LEAP) for
hosting textbooks, assignments, and interactive learning activities.

There has been a strong trend during the past few decades to incorpo-
rate both modeling and technology into undergraduate differential equations
courses. Since it is easy to insert computational cells inside an HTML ver-
sion of the textbook with PreTeXt, there is now an opportunity to seemlessly
embed technology into the textbook. Sage (sagemath.org4), our technolgy of
choice, is a free, open source, software system for advanced mathematics. Sage
is ideal for assisting with a study of ordinary differential equations, since it
cannot only be embedded as computational cells in a textbook, it can also be
used on a computer, a local server, or on CoCalc (https://cocalc.com5). The
Sage code in The Ordinary Differential Equations Project has been tested for
accuracy with the most recent version available at this time: Sage Version 9.2
(released 2020–10–24).

There are additional projects at the end of each chapter. Many of the
projects come from SIMIODE (https://www.simiode.org6). SIMIODE pro-
vides a rich environment for learning and teaching differential equations through
modeling. SIMIODE was founded by Dr. Brian Winkel, Emeritus Professor
of Mathematics, United States Military Academy, West Point NY USA in
2013. Some of the projects may require a basic knowledge of programming.
All of these exercises and projects are more substantial in nature and allow the
exploration of new results and theory.

Another great source of problems and projects is the CODEE Journal,
a peer-reviewed, open-access publication, distributed by the CODEE (Com-

1abstract.pugetsound.edu/index.html
2pretextbook.org
3runestone.academy
4sagemath.org
5cocalc.com
6www.simiode.org
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munity of Ordinary Differential Equations Educators) and published by the
Claremont Colleges Library (https://scholarship.claremont.edu/codee/7). The
goal of the CODEE Journal is to advance the teaching and learning of ODEs
through the dissemination of materials that will be useful to both educators
and education researchers.

Each section in The Ordinary Differential Equations Project contains read-
ing questions. Reading questions should be answered by students before they
come to class. The questions serve two purposes: students will have a general
knowledge of the section to be covered in class before the actual class and
instructors will have a better idea of what their students actually know. If
instructors use Runestone, students can answer the reading questions in the
textbook, where instructors can read and grade the student responses.

The Ordinary Differential Equations Project contains classroom activities
in each section. The classroom activities can used in a variety of ways. I divide
my class into groups of three or four and have each group work on the activities
on the board. This allows me to efficiently comment on student work. Groups
can also easily present their work to the rest of the class.

Thomas W. Judson
Stephen F. Austin State University
Nacogdoches, Texas 75962

7scholarship.claremont.edu/codee/

https://scholarship.claremont.edu/codee/
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Chapter 1

A First Look at Differential
Equations

1.1 Modeling with Differential Equations

Objectives
• To understand that a differential equation is an equation relating a

function to one or more of its derivatives and that an initial value
problem is a differential equation

dx

dt
= f(t, x),

where the initial condition, x(t0) = x0, is specified.

• To understand and be able to apply the three principle steps in modeling
any phenomenon with differential equations.

◦ Discovering the differential equation or equations that best describe
a specified physical situation.

◦ Finding—either exactly or approximately—the appropriate solution
of the equation or equations.

◦ Interpreting the solution in terms of the phenomenon.

• To understand and be able to apply the differential equations that model
exponential growth and logistic growth.

• To understand that some phenomenon are best modeled by higher order
differential equations or systems of differential equations.

Calculus tells us that the derivative of a function measures how the function
changes. An equation relating a function to one or more of its derivatives is
called a differential equation. The subject of differential equations is one of
the most interesting and useful areas of mathematics. We can describe many
interesting natural phenomena that involve change using differential equations.
In addition, the theory of the subject has broad and important implications.

1



CHAPTER 1. A FIRST LOOK AT DIFFERENTIAL EQUATIONS 2

1.1.1 Exponential Growth
We begin our study of ordinary differential equations by modeling some real
world phenomena. For a particular situation that we might wish to investigate,
our first task is to write an equation (or equations) that best describes the
phenomenon. Suppose that we wish to study how a population P (t) grows with
time t. We might make the assumption that a constant fraction of population is
having offspring at any particular time. If we also assume that the population
has a constant death rate, the change in the population ∆P during a small
time interval ∆t will be

∆P ≈ kbirthP (t)∆t− kdeathP (t)∆t,

where kbirth is the fraction of the population having offspring during the inter-
val and kdeath is the fraction of the population that dies during the interval.
Equivalently, we can write

∆P

∆t
≈ kP (t),

where k = kbirth − kdeath. Since the derivative of P is
dP

dt
= lim

∆t→0

∆P

∆t
,

the rate of change of the population is proportional to the size of the population,
or

dP

dt
= kP. (1.1.1)

The equation
dP

dt
= kP

is one of the simplest differential equations that we will consider. The equation
tells us that the population grows in proportion to its current size. It is not
too difficult to see that P (t) = Cekt is a solution to this equation, where C is
an arbitrary constant. Indeed, if we differentiate P (t), we obtain

d

dt
P (t) = kCekt = kP (t).

In addition, if we know the value of P (t), say when t = 0, we can also determine
the value of C. For example, if the population at the time t = 0 is P (0) = P0,
then

P0 = P (0) = Cek·0 = C

or P (t) = P0e
kt. The differential equation

P ′(t) = kP (t),

P (0) = P0

is an example of an initial value problem or IVP, and we say that P (0) = P0

is an initial condition. Since the solution to equation (1.1.1) is P (t) = Cekt,
we say that the population grows exponentially.

As an example, suppose that P (t) is a population of a colony of bacteria
at time t, whose initial population is 1000 at t = 0, where time is measured in
hours. Then

1000 = P (0) = Ce0 = C,

and our solution becomes P (t) = 1000ekt. If the population grows at three
percent per hour, then

1030 = P (1) = 1000ek,
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after one hour. Consequently,

k = ln 1.03 ≈ 0.0296

and the solution to our initial value problem is

P (t) = 1000e0.0296t.

Of course, it is important to realize that this is only a model. If t is small,
our model might be reasonably accurate. However, if we let t be very large,
our colony of bacteria could very well exceed the mass of the earth. The
growth rate of a population need not be positive. For example, both Germany
and Japan have experienced negative growth in recent years.1 The equation
dP/dt = kP can also be used to model phenomena such as radioactive decay
and compound interest—topics which we will explore later.

To summarize, we say that the function x(t) = Cekt is a general solution
of the equation x′ = kx, and x(t) = x0e

kt is a particular solution to the
differential equation. The general solution to our equation x(t) = Cekt graphs
as an infinite family of curves, which we will call integral curves or solution
curves (Figure 1.1.1).

In general, given a differential equation dx/dt = f(t, x), a solution to the
differential equation is a function x(t) such that x′(t) = f(t, x(t)). Furthermore,
if x(t) satisfies a given initial condition x(0) = x0, then x(t) is a solution to
the in initial value problem

x′(t) = f(t, x),

x(0) = x0.

2.0 1.5 1.0 0.5 0.5 1.0 1.5 2.0
t

300

200

100

100

200

300

x(t)

x(t) =Cekt

Figure 1.1.1 Integral curves

Activity 1.1.1 Verifying Solutions. Use direct substitution to verify that
x(t) is a solution of the given differential equation.
(a) y(t) = 4e−5t; y′ = −5y

(b) x(t) = 3e2t; x′ = 2x

(c) x(t) = 3e7t; x′ − 7x = 0, x(0) = 3

(d) x(t) = Ce2t − 5/2; x′ = 2x+ 5

1See data.worldbank.org.

https://data.worldbank.org
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(e) x(t) =
7

3
e3t

2/2 − 1

3
; x′ = 3tx+ t, x(0) = 2

1.1.2 Logistic Growth
Not all populations grow exponentially; otherwise, a bacteria culture in a petri
dish would grow unbounded and soon be much larger than the size of the labo-
ratory. To see what happens if there are limiting factors to population growth,
let us consider the population of fish in a children’s trout pond. The number
of trout will be limited by the available resources such as food supply as well
as by spawning habitat. A small population of fish might grow exponentially
if the pond is large and food is abundant, but the growth rate will decline
as the population increases and the availability of resources declines. We can
use the logistic equation to model population growth in a resource limited
environment.2

To see how the logistic model works, let us try to adjust our model of
exponential growth to account for the limited resources of the pond. We will
make the following assumptions.

• If the population of trout is small and the pond is large with abundant
resources, the rate of growth will be approximately exponential,

dP

dt
≈ kP.

• If N is the maximum population of trout that the pond can support,
then any population larger than N will decrease. In other words,

dP

dt
< 0

for P > N . We say that N is the carrying capacity for the population.

Our assumptions suggest that we might try an equation of the form

dP

dt
= kf(P )P,

where f(P ) is a function of P that is close to 1 if the population is small but
negative if the population is greater than N . The simplest function satisfying
these conditions is

f(P ) =

(
1− P

N

)
.

Thus, the logistic population model is given by the differential equation

dP

dt
= k

(
1− P

N

)
P.

Example 1.1.2 Suppose we have a pond that will support 1000 fish, and the
initial population is 100 fish. In order to determine the number of fish in the
lake at any time t, we must find a solution to the initial value problem

dP

dt
= k

(
1− P

1000

)
P

P (0) = 100.

2The logistic model was first used by the Belgian mathematician and physician Pierre
François Verhulst in 1836 to predict the populations of Belgium and France.
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It is easy to verify that P (t) = 1000/(9e−kt + 1) is the solution to our initial
value problem. Certainly P (0) = 100, and if we differentiate P , we will obtain
the righthand side of the differential equation,

dP

dt
=

d

dt

(
1000

9e−kt + 1

)
= 1000k

9e−kt

(9e−kt + 1)2

= k
9e−kt

(9e−kt + 1)
· 1000

9e−kt + 1

= k
(9e−kt + 1)− 1

(9e−kt + 1)
· 1000

9e−kt + 1

= k

(
1− 1000

1000(9e−kt + 1)

)
1000

9e−kt + 1

= k

(
1− P

1000

)
P.

In addition, if we know that the population is 200 fish after one year, then

200 = P (1) =
1000

9e−k + 1
,

and we can determine that

k = ln
(
9

4

)
≈ 0.8109.

Consequently, the solution to our intial-value problem is

P (t) =
1000

9e−0.8109t + 1
.

The graph of our solution certainly fits the situation that we are modeling
(Figure 1.1.3). We will learn how to solve initial value problems such as the
one described here in Section 1.2. For the time being, we will be satisfied with
being able to verify the fact that we have a solution.

2 4 6 8 10 12 14 16
t

200

400

600

800

1000

P(t)

Figure 1.1.3 Logistic growth
□
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Activity 1.1.2 Modeling a Population with a Threshhold. We can
modify the logistic growth model to understand how a population with a min-
imum threshold grows. The black rhinoceros, once the most numerous of all
rhinoceros species, is now critically endangered. The black rhino, native to
eastern and southern Africa, was estimated to have a population of about
100,000 around 1900. Because of hunting, habitat changes, competing species,
and most of all illegal poaching, the number of black rhinos today is estimated
to be below 3000. If the wild population becomes too low, the animals may not
be able to find suitable mates and the black rhino will become extinct. There
must be a minimum population for the species to survive. Suppose that this
minimum or threshold population for the black rhino is 1000 animals and that
remaining habitant in Africa will support no more that 20,000 rhinos. How
might we model the current population, P (t) of black rhinos?
(a) For what values of P is the rhino population increasing? What can be

said about the value of dP/dt for these values of P?

Hint. (a) The population is increasing if dP/dt > 0 and 1000 < P <
20000.

(b) For what values of P is the rhino population decreasing? What can be
said about the value of dP/dt for these values of P?

(c) For what values of P is the rhino population in equilibrium? What can
be said about the value of dP/dt for these values of P?

(d) Find a differential equation that models the population of rhinos at time
t.

1.1.3 A Spring-Mass Model
Sometimes it is necessary to consider the second derivative when modeling a
phenomenon. Suppose that we have a mass lying on a flat, frictionless surface
and that this mass is attached to one end of a spring with the other end of
the spring attached to a wall. We will denote displacement of the spring by x.
If x > 0, then the spring is stretched. If x < 0, the spring is compressed. If
x = 0, then the spring is in a state of equilibrium (Figure 1.1.4). If we pull
or push on the mass and release it, then the mass will oscillate back and forth
across the table.

mass

mass

wall

wall

Position at rest

Position x(t) at time t

Figure 1.1.4 A spring-mass system
We can construct a differential equation that models our oscillating mass.

First, we must consider the restorative force on the spring. We will make the
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assumption that this force depends on the displacement of the spring, F (x).
Using Taylor’s Theorem from calculus, we can expand F to obtain

F (x) = F (0) + F ′(0)x+
1

2
F ′′(0)x2 + · · ·

= −kx+
1

2
F ′′(0)x2 + · · · ,

where F ′(0) = −k and F (0) = 0. If the displacement is not too large, then xn
will be small for n ≥ 2, and we can ignore higher ordered terms. Thus, we can
consider the restorative force on the spring to be proportional to displacement
of the spring from its equilibrium length,

F = −kx.

This equation is known as Hooke’s Law. We can test this law experimentally,
and it is reasonably accurate if the displacement of the spring is not too large.

By Newton’s second law of motion, the force on the mass m must be

F = ma = m
d2x

dt2
= mx′′,

where a is the acceleration. Setting the two forces equal, we have a second-
order differential equation,

mx′′ = −kx,

which describes our oscillating mass. The spring-mass system is an example of
a harmonic oscillator. Harmonic oscillators are useful for modeling simple
harmonic motion in mechanics.
Example 1.1.5 Suppose that we have a spring-mass system where m = 1 and
k = 1. If the initial velocity of the spring is one unit per second and the initial
position is at the equilibrium point, then we have the following initial value
problem,

x′′ + x = 0

x(0) = 0

x′(0) = 1.

Since x′′(t) = −x(t) for both the sine and cosine functions, we might guess
that a general solution of our differential equation has the form

x(t) = A cos t+B sin t.

Noting that
x′(t) = −A sin t+B cos t,

and using our initial conditions, we can determine that A = 0 and B = 1 or

x(t) = sin t.

The graph of the position of the mass as a function of time is given in Fig-
ure 1.1.6.
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5 10 15 20 25 30
t

1.5

1.0

0.5

0.5

1.0

1.5
x(t)

Figure 1.1.6 A undamped spring-mass system
□

Now let us add a damping force to our system. For example, we might add
a dashpot, a mechanical device that resists motion, to our system. Think of a
dashpot as that small cylinder that keeps your screen door from slamming shut.
The simplest assumption would be to take the damping force of the dashpot to
be proportional to the velocity of the mass, x′(t). In other words, the harder
you try to slam the screen door, the more resistance you will feel. Thus, we
have an additional force,

F = −bx′

acting on our mass, where b > 0. Our new equation for the spring-mass system
is

mx′′ = −bx′ − kx.

or
mx′′ + bx′ + kx = 0,

where m, b, and k are all positive constants. The equation

mx′′ + bx′ + kx = 0

models a simple damped harmonic oscillator.
Example 1.1.7 Suppose that we have a spring-mass system governed by the
equation

x′′ + 3x′ + 2x = 0.

Here we let m = 1, b = 3, and k = 2, We will learn how to solve equations of
the form mx′′ + bx′ + kx = 0 in Chapter 4, but let us assume that the solution
is of the form x(t) = ert for now. In this case,

x′′ + 3x′ + 2x = r2ert + 3rert + 2ert

= ert(r2 + 3r + 2)

= ert(r + 2)(r + 1)

= 0.

Since ert is never zero, it must be the case that r = −2 or r = −1, if x(t) = ert

is to be a solution to our equation. Thus, we might guess that

x(t) = Ae−t +Be−2t

is a general solution to our equation. If the initial velocity of our mass is one
unit per second and the initial position is zero, then we have the initial value
problem

x′′ + 3x′ + 2x = 0

x(0) = 0
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x′(0) = 1.

Using the fact that x′(t) = −Ae−t − 2Be−2t, our initial conditions give us the
following system of linear equations,

A+B = 0

−A− 2B = 1.

Thus, A = 1 and B = −1, and our spring-mass system is modeled by the
function

x(t) = e−t − e−2t.

Notice that the additional damping negates any oscillation in the system. In
this case, we say that the harmonic oscillator is over-damped (Figure 1.1.8).

2 4 6 8 10
t

0.10
0.05

0.05
0.10
0.15
0.20
0.25
0.30
x(t)

Figure 1.1.8 An over-damped spring-mass system
Of course, if we have a very strong spring and only add a small amount

of damping to our spring-mass system, the mass would continue to oscillate,
but the oscillations would become progressively smaller. In other words, our
harmonic oscillator would be under-damped. For example, our spring-mass
system might be described by the initial value problem

x′′ + 2x′ + 50x = 0

x(0) = 0

x′(0) = 1.

It is easy to verify that
x(t) =

1

7
e−t sin 7t

is a solution to the initial value problem (Figure 1.1.9).

2 4 6 8 10
t

0.10

0.05

0.05

0.10

0.15
x(t)

Figure 1.1.9 An under-damped spring-mass system
□

We will revisit harmonic oscillators and second-order differential equations
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more fully in Chapter 4.

1.1.4 A Predator-Prey System
Some situations require more than one differential equation to model a partic-
ular phenomenon. We might use a system of differential equations to model
two interacting species, say where one species preys on the other.3 For ex-
ample, we can model how the population of Canadian lynx (lynx canade-
nis) interacts with a the population of snowshoe hare (lepus americanis) (see
https://www.youtube.com/watch?v=ZWucOrSOdCs).

We have good historical data for the populations of the lynx and snowshoe
hare from the Hudson Bay Company, the oldest company in North America.
This large Canadian retail company, which owns and operates a large number
of retail stores in North America and Europe, including Saks Fifth Avenue,
was originally founded in 1670 as a fur trading company. The Hudson Bay
Company kept accurate records on the number of lynx pelts that were bought
from trappers from 1821 to 1940. The company noticed that the number of
pelts varied from year to year and that the number of lynx pelts reached a peak
about every ten years [11]. The ten year cycle for lynx can be best understood
using a system of differential equations.

The primary prey for the Canadian lynx is the snowshoe hare. We will
denote the population of hares by H(t) and the population of lynx by L(t),
where t is the time measured in years. We will make the following assumptions
for our predator-prey model.

• If no lynx are present, we will assume that the hares reproduce at a rate
proportional to their population and are not affected by overcrowding.
That is, the hare population will grow exponentially,

dH

dt
= aH.

• Since the lynx prey on the hares, we can argue that the rate at which
the hares are consumed by the lynx is proportional to the rate at which
the hares and lynx interact. Thus, the equation that predicts the rate of
change of the hare population becomes

dH

dt
= aH − bHL.

We are thinking of HL as the number of possible interactions between
the lynx and the hare populations.

• If there is no food, the lynx population will decline at a rate proportional
to itself,

dL

dt
= −cL.

• The lynx receive benefit from the hare population. The rate at which
lynx are born is proportional to the number of hares that are eaten, and
this is proportional to the rate at which the hares and lynx interact.
Consequently, the growth rate of the lynx population can be described
by

dL

dt
= −cL+ dHL.

3The predator-prey model was discovered independently by Lotka (1925) and Volterra
(1926).

https://www.youtube.com/watch?v=ZWucOrSOdCs
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We now have a system of differential equations that describe how the two
populations interact,

dH

dt
= aH − bHL,

dL

dt
= −cL+ dHL.

We will learn how to analyze and find solutions of systems of differential equa-
tions in subsequent chapters; however, we will give a graphical solution in
Figure 1.1.10 to the system

dH

dt
= 0.4H − 0.01HL,

dL

dt
= −0.3L+ 0.005HL.

Our graphical solution is obtained using a numerical algorithm (see Section 1.4
and Section 2.3). Notice that the predator population, L, begins to grow and
reaches a peak after the prey population, H reaches its peak. As the prey
population declines, the predator population also declines. Once the predator
population is smaller, the prey population has a chance to recover, and the
cycle begins again.4

0 20 40 60 80 100
t

30

40

50

60

70

80

H(t), L(t)

H(t)
L(t)

Figure 1.1.10 The predator-prey relationship between the lynx and the snow-
shoe hare

1.1.5 Modeling the HIV-1 Virus
The interaction of the HIV-1 virus with the body’s immune system can be
modeled by a system of differential equations similar to a predator-prey system.
After an individual is infected with the HIV-1 virus, the amount of the virus in
the bloodstream rises dramatically and the person will often suffer from flu-like
symptoms. However, these symptoms will disappear after a period of weeks or
months as the body begins to manufacture antibodies against the virus. Tests
have been developed to determine the presence of HIV-1 antibodies. If an
individual has such antibodies, then they are said to be HIV-1 positive. Once
infected with the HIV-1 virus, it can be years before an HIV-positive patient
exhibits the full symptoms of AIDS. The body’s immune system fights the
HIV-1 virus with white blood cells. The CD4-positive T-helper cell, a specific

4An excellent account of the actual lynx and snowshoe hare data and model can be found
in [5].
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type of white blood cell, is especially important since it helps other cells fight
the virus. However, the HIV-1 virus use the CD4-positive T-helper cells to
create more virions, destroying the CD4-positive T-helper cells in the process.

We can develop a system of differential equations to better understand the
dynamics of the HIV-1 virus [20]. Let V = V (t) be the population of the HIV-1
virus at time t. We will assume that the virus concentration is governed by
the following differential equation,

dV

dt
= P − cV.

The first term, P is some function of t that determines the rate at which new
viral particles are created. The term −cV is the death rate for the virions. If
someone discovers a drug that blocks the creation of new HIV-1 virions, then
P would be zero and the virions would clear the body at the following rate,

dV

dt
= −cV,

and V (t) = V0e
−ct, where V0 is the initial viral population.

Now let us consider a model for the concentration T = T (t) of (uninfected)
CD4-positive T-helper cells,

dT

dt
= s+ pT

(
1− T

Tmax

)
− dTT.

The constant s represents the rate at which T-cells are created from sources
in the body, such as the thymus. New CD4-positive T-helper cells can also be
created from the proliferation of existing CD4-positive T-helper cells, and the
second term in the equation represents the logistic growth of the T-cells, where
p is the maximum proliferation rate and Tmax is the T-cell population density
where proliferation ceases. Finally, dT is the death rate of the T cells.

Like the influenza virus, the HIV-1 virus is an RNA virus. An RNA virus
cannot reproduce on its own and must use the DNA from a host cell. To do this,
the virus attaches itself to a CD4-positive T-helper cell and injects its RNA
into the cell. This way the virus can use the T-cell’s DNA to replicate itself
using a process called reverse transcription, where a DNA copy of the virus’s
RNA is made. New virus particles are created, and the T-cell eventually bursts
releasing the virions into the body. If we let T ∗ be the concentration of infected
T-cells, we can model this process with the following system of equations,

dT ∗

dt
= kTV − δT ∗

dV

dt
= NδT ∗ − cV,

where δ is the rate of loss of the virus producing T-cells and N is the number
of virions produced per infected T-cell during its lifetime. The term kTV tells
us the rate at which the HIV-1 virus infects T-cells. This is the same idea as
modeling how predators interact with prey in a predator-prey model. Thus,
our complete model becomes

dT

dt
= s+ pT

(
1− T

Tmax

)
− dTT − kTV

dT ∗

dt
= kTV − δT ∗

dV

dt
= NδT ∗ − cV.
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One class of drugs that HIV infected patients receive are reverse transcrip-
tase (RT) inhibitors. RT inhibitors block the action of reverse transcription
and prevent the virus from duplicating. If one could find the perfect RT in-
hibitor, then k = 0 and our system becomes

dT

dt
= s+ pT

(
1− T

Tmax

)
− dTT

dT ∗

dt
= −δT ∗

dV

dt
= NδT ∗ − cV.

Unfortunately, no one has discovered a perfect RT inhibitor, so we will need
to modify the system to account for the effectiveness of the RT inhibitor. We
can accomplish this by adding an effectiveness factor, 1− η, to the kV T term.
Our system now becomes

dT

dt
= s+ pT

(
1− T

Tmax

)
− dTT − k(1− η)TV

dT ∗

dt
= k(1− η)TV − δT ∗

dV

dt
= NδT ∗ − cV.

If η = 1, then the RT inhibitor is completely effective. On the other hand, if
η = 0, then the RT inhibitor is completely ineffective. We now have a model
for how the HIV-1 virus interacts with the immune system. Researchers can
use data to estimate the parameters and see exactly what types of solutions
are possible.

1.1.6 Some Questions for Thought
In this section we have provided a general notion of what a differential equation
is as well as several modeling situations where differential equations are useful;
however, we have left many questions unanswered.

• Can we find a more rigorous definition of a differential equation?

• What is the proper way to define a system of differential equations?

• Does a differential equation or a system of differential equations always
have a solution?

• Are solutions to differential equations unique?

• If a unique solution to a differential equation exists, can we find it? If
it is not possible to find a precise solution algebraically, can we estimate
the solution numerically? If neither is possible, can we still say anything
useful about the solution?

Of course, other questions will come to mind as we continue our study of
differential equations.

1.1.7 Important Lessons
• A differential equation is an equation relating a function to one or

more of its derivatives.
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• An initial value problem is a differential equation

dx

dt
= f(t, x),

where the initial condition, x(t0) = x0, is specified.

• The three principle steps in modeling any phenomenon with differential
equations are:

◦ Discovering the differential equation or equations that best describe
a specified physical situation.

◦ Finding—either exactly or approximately—the appropriate solution
of the equation or equations.

◦ Interpreting the solution in terms of the phenomenon.

• A population that is not affected by overcrowding can be modeled by the
differential equation P ′ = kP and is said to grow exponentially.

• A population that must compete for limited resources can be modeled
by the logistic equation,

dP

dt
= k

(
1− P

N

)
P,

where N is the carrying capacity of the population.

• Some phenomenon, such as the relationship between a population of
predators and a population of prey, are best modeled by systems of dif-
ferential equations.

1.1.8 Reading Questions
Textbooks are designed to be read. If you are student enrolled in a course, you
should read each section before class. To help your understanding, answer the
section’s reading questions as preparation for class. If you communicate your
answers to your instructor, it will aid your instructor when preparing for your
class.

1. Explain what a differential equation is using your own words.
2. What does it mean to be a solution to a differential equation?

1.1.9 Exercises
1. Baking a Potato (Part 1). Suppose that you bake a potato in your

microwave. When you remove the potato from the microwave oven, you
record the temperature every two minutes (see Table 1.1.11). If room
temperature is 73 degrees, write a differential equation that models the
temperature of the potato, T (t), at time t.
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Table 1.1.11 Temperatures for a Baked Potato

t (minutes) T (t) (temperature in degrees Fahrenheit)
0 197.2
2 191.6
4 187.1
6 182.8
8 178.7

Verifying Solutions. Use direct substitution to verify that y(t) is a solution
of the given differential equation in Exercise Group 1.1.9.2–9.

2. y(t) = e4t; y′ = 4y 3. y(t) = 3e−2t; y′ = −2y

4. y(t) = 3e5t; y′ − 5y = 0 5. y(t) = e3t − 2; y′ = 3y + 6

6. y(t) = −7et
2 − 1

2
; y′ = 2ty + t 7. y(t) = (t8 − t4)1/4;

y′ =
2y4 + t4

ty3

8. y(t) = t; y′′ − ty′ + y = 0 9. y(t) = et + e2t;
y′′ − 4y′ + 4y = et

Finding Solutions. Many differential equations have solutions of the form
y(t) = eat, where a is some constant. For example, y(t) = e3t is a solution to
the equation y′ = 3y. Find all values of a such that y(t) = eat is a solution to
the given equation in Exercise Group 1.1.9.10–15.

10. y′ = −2y 11. y′ + 7y = 0

12. y′′ − 3y′ + 2y = 0 13. y′′ + 4y′ − 12y = 0

14. y′′′ − y′′ − 4y′ + 4y = 0 15. y(5) − 5y′′′ + 4y′ = 0

Initial Value Problems. Use direct substitution to verify that y(t) is a
solution of the given differential equation in Exercise Group 1.1.9.16–21. Then
use the initial conditions to determine the constants C or c1 and c2.

16. y′ = 4y, y(0) = 2, y(t) = Ce4t

17. y′ + 7y = 0, y(0) = 2, y(t) = Ce−7t

18. y′′ + 4y = 0, y(0) = 1, y′(0) = 0, y(t) = c1 cos 2t+ c2 sin 2t

19. y′′ − 5y′ + 4y = 0, y(0) = 1, y′(0) = 0, y(t) = c1e
t + c2e

4t

20. y′′ + 4y′ + 13y = 0, y(0) = 1, y′(0) = 0, y(t) = c1e
−2t cos 3t +

c2e
−2t sin 3t

21. y′′ − 4y′ + 4y = 0, y(0) = 1, y′(0) = 0, y(t) = c1e
2t + c2te

2t

Boundary Value Problems. Use direct substitution to verify that y(t) is a
solution of the given differential equation in Exercise Group 1.1.9.22–25. Then
use the boundary conditions to determine the constants c1 and c2 (if possible).

22. y′′ + 4y = 0, y(0) = 1, y(π) = 0, y(t) = c1 cos 2t+ c2 sin 2t

23. y′′ − 5y′ + 4y = 0, y(0) = 1, y(1) = 0, y(t) = c1e
t + c2e

4t

24. y′′ + 4y′ + 13y = 0, y(0) = 1, y(π) = 0, y(t) = c1e
−2t cos 3t +

c2e
−2t sin 3t

25. y′′ − 4y′ + 4y = 0, y(0) = 1, y(1) = 0, y(t) = c1e
2t + c2te

2t

26. Consider the differential equation y′ = y(2− y).
(a) Verify that y(t) = 2/(1 + Ce−2t) is a solution to this equation.
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(b) Sketch solution curves for C = 1, 2, . . . , 5.

(c) Verify that y = 0 is a solution to the differential equation in part
(a). Can you find a value for C such that

y(t) =
2

1 + Ce−2t
= 0?

27. Consider the differential equation y′′ + 9y = 0.
(a) Verify that y(t) = c1 cos 3t+ c2 sin 3t is a solution to this equation.

(b) Sketch solution curves for c1 = 1 and c2 = 1, 2, . . . , 5.
28. The growth of a population of rabbits with unlimited resources and space

can be modeled by the exponential growth equation, dP/dt = kP .
(a) Write a differential equation to model a population of rabbits with

unlimited resources, where hunting is allowed at a constant rate α.

(b) Write a differential equation to model a population of rabbits with
unlimited resources, where hunting is allowed at a rate proportional
to the population of rabbits.

(c) Write a differential equation to model a population of rabbits with
limited resources, where hunting is allowed at a constant rate α.

(d) Write a differential equation to model a population of rabbits with
limited resources, where hunting is allowed at a rate proportional to
the population of rabbits.

29. Given the equation x′ + ax = q(t), where a is a constant and q(t) is a
continuous function defined on an interval I, show that

x(t) = Ce−at + e−at

∫ t

t0

easq(s) ds

is a solution of this equation, where c is any constant and t0 ∈ I.
Hint. Rewriting the differential equation as x′+ax−q(t) = 0 and using
the fact that

x′(t) = −aCe−at − ae−at

∫ t

t0

easq(s) ds+ b(t),

we see that

x′(t) + ax(t)− q(t) = −aCe−at − ae−at

∫ t

t0

easq(s) ds+ q(t)

+ aCe−at + ae−at

∫ t

t0

easq(s) ds− q(t)

= 0.

30. Radiocarbon Dating. Carbon 14 is a radioactive isotope of carbon, the
most common isotope of carbon being carbon 12. Carbon 14 is created
when cosmic ray bombardment changes nitrogen 14 to carbon 14 in the
upper atmosphere. The resulting carbon 14 combines with atmospheric
oxygen to form radioactive carbon dioxide, which is incorporated into
plants by photosynthesis. Animals acquire carbon 14 by eating plants.
When an animal or plant dies, it ceases to take on carbon 14, and the
amount of isotope in the organism begins to decay into the more common
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carbon 12. Carbon 14 has a very long half-life, about 5730 years. That is,
given a sample of carbon 14, it will take 5730 years for half of the sample
to decay to carbon 12. The long half-life is what makes carbon 14 dating
very useful in dating objects from antiquity.

(a) Consider a sample of material that contains A(t) atoms of carbon
14 at time t. During each unit of time a constant fraction of the
radioactive atoms will spontaneously decay into another element or a
different isotope of the same element. Thus, the sample behaves like
a population with a constant death rate and a zero birth rate. Make
use of the model of exponential growth to construct a differential
equation that models radioactive decay for carbon 14.

(b) Solve the equation that you proposed in (a) to find an explicit for-
mula for A(t).

(c) The Chauvet-Pont-d’Arc Cave in the Ardèche department of south-
ern France contains some of the best preserved cave paintings in the
world. Carbon samples from torch marks and from the paintings
themselves, as well as from animal bones and charcoal found on the
cave floor, have been used to estimate the age of the cave paintings.
If a particular sample taken from the Cauvet Cave contains 2% of
the expected carbon 14, what is the approximate age of the sample?

31. Consider the following predator-prey systems of differential equations

dx

dt
= −x

2
+

xy

2 + y
,

dy

dt
= y(1− y)− xy

2 + y
.

(a) Which equation models the prey population and which equation
models the predator population?

(b) How does the prey population grow if there are no predators present?

(c) What happens if there are a lot of prey present?

Hint. Think about the limit of the interaction term as the number of
prey becomes very large.

1.1.10 An Introduction to Sage
Technology can prove very useful when studying differential equations. Soft-
ware packages such Maple, Mathematica, and Matlab each have their advan-
tages and disadvantages. We will use Sage, a readily available open source
computer algebra system, as our choice of software. Sage can be run on an
individual computer or over the Internet on a server. You can even access Sage
from your smart phone. For our purposes, Sage cells are embedded into the
textbook, so there is nothing to install on your computer. Simply, evaluate
the cell. You can even change the preloaded commands in the cell if you wish.
For example, let us evaluate the derivative of f(x) = x2 cosx.

x = var( ' x ' ) #declare x as a variable
y = x^2* cos(x) #set y equal to x^2*cos(x)
solution = diff(y, x) #differentiate y with respect to x
solution.show() #display the solutions in a nice format
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-x^2*sin(x) + 2*x*cos(x)

Note that anything following a pound sign # is a comment.
We can use Sage to plot functions. For example, we can plot the function

f(x) = x2 cosx as well as its derivative on the same graph.

x = var( ' x ' )
y = x^2* cos(x)
yprime = diff(y, x)
p = plot(y, (x, -2, 2), color = ' blue ' , legend_label= ' $f$ ' ,

legend_color= ' blue ' )
p += plot(yprime , (x, -2, 2), color= ' red ' ,

legend_label= ' $df/dx$ ' , legend_color= ' red ' )
p

We can use Sage to solve differential equations. Suppose that we wish to
solve the initial value problem

dP

dt
= kP

P (0) = 1000.

We can use the following commands.

k,t = var( 'k,␣t ' ) #declare variables k and t
P = function( ' P ' )(t) #declare P to be a function of t
de = diff(P, t) == k*P #differential equation
#solve specifying initial conditions
#and independent variable solution
solution = desolve(de, P, ivar=t, ics=[0, 1000])
solution.show()

1000*e^(k*t)

We will provide abundant examples of how to use Sage to solve and analyze
differential equations throughout the book, and we encourage the reader to
experiment by altering the Sage commands inside the individual Sage cells. If
you make a mistake, you can simply reload the webpage and start again.

The reader will find plenty of resources to learn how to use Sage. A good
place to start is www.sagemath.org/help.html, [1], or the UTMOST Sage Cell
Repository (utmost-sage-cell.org), which contains several hundred Sage cells
that can be excuted right from the repository website. Although we will be
using Sage as the technology of choice, much of this book can be read indepen-
dently of Sage. Finally, we would like to emphasize once again that the reader
who chooses not to use some sort of technology will be at a disadvantage.

Sage Exercises

1. In the Sage cell below enter 2 + 2 and then evaluate the cell. Your answer
should be 4 of course. Next try entering 2^1000. You should see a very
large number.

http://www.sagemath.org/help.html
http://utmost-sage-cell.org
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1.2 Separable Differential Equations

Objectives
• To understand that a differential equation of order n is an equation that

can be put in the form

F (t, x, x′, x′′, . . . , x(n)) = 0,

where F is a function of n+2 variables, and to understand that a solution
to the equation on an interval I = (a, b) is a function u = u(t) such that
the first n derivatives of u are defined on I, and

F (t, u, u′, u′′, . . . , u(n)) = 0.

• To understand that a first-order differential equation is an equation
that can be written in the form

dx

dt
= f(t, x).

• To understand that a differential equation is separable if it can be writ-
ten in the form

dy

dx
=M(x)N(y),

and by rewriting the equation in the form

g(y) dy = f(x) dx

the equation can be solved by integrating both sides.

We will define a differential equation of order n to be an equation that
can be put in the form

F (t, x, x′, x′′, . . . , x(n)) = 0,

where F is a function of n + 2 variables. A solution to this equation on an
interval I = (a, b) is a function u = u(t) such that the first n derivatives of u
are defined on I, and

F (t, u, u′, u′′, . . . , u(n)) = 0.

We will concentrate on first-order differential equations in this chapter. That
is, we will consider equations of the form

dx

dt
= f(t, x).

1.2.1 Separable Differential Equations
In general, we cannot generally find such a formula for an arbitrary first-order
differential equation. We can, however, solve a differential equation y′ = f(x, y)
if we can write the equation in the form

f(x) + g(y)
dy

dx
= 0.
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Such equations are called separable. We can solve separable equations by
integrating the first term with respect to x and the second term with respect
to y.
Example 1.2.1 Suppose that we wish to solve the initial value problem

dy

dx
= xy

y(0) = 1.

We can rewrite this equation in the form

1

y

dy

dx
= x

or in the alternate form
1

y
dy = x dx.

Integrating both sides of the equation, we have

ln |y| = 1

2
x2 + C,

where C is an arbitrary constant. Using the initial condition, y(0) = 1 to find
C, we see that

0 = ln |1| = 0 + C.

Thus, the solution to our initial value problem can be given implicitly by ln y =
x2/2. In this example, we can actually write down an explicit solution that is
defined everywhere,

y = ex
2/2.

The Sage commands for solving our initial value problem are below.

x = var( ' x ' ) #declare x as a variable
y = function( ' y ' )(x) #declare y as a function of x
de = diff(y, x) == x*y #write the differential equation
solution = desolve(de, y, ics=[0, 1]) #find the solution
solution

e^(1/2*x^2)

□
If we ask Sage to solve a differential equation that it cannot solve analyti-

cally, the computation will return an error. Sage will not solve the initial value
problem

dy

dx
= sin(xy)

y(0) = 1.

x = var( ' x ' )
y = function( ' y ' )(x)
de = diff(y, x) == sin(x*y)
solution = desolve(de, y, ics=[0, 1])
solution
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Example 1.2.2 Consider the initial value problem

dy

dt
=

t

y − t2y

y(0) = 4.

First, we separate the variables of the equations and write

y dy =
t

1− t2
dt.

Integrating both sides of the equation, we have

1

2
y2 = −1

2
ln |1− t2|+ C or y2 = − ln |1− t2|+ C.

Using the initial condition, y(0) = 4, we can determine the value of C,

y2 = 16− ln |1− t2| or y =
√

16− ln |1− t2|.

Notice that the solution does not make sense for all values of t. In fact, the
solution is only defined on the interval −1 < t < 1, if we require that our
solution be continuous. Let us see what Sage has to say.

t = var( ' t ' )
y = function( ' y ' )(t)
de = diff(y, t) == t/(y - t^2*y)
solution = desolve(de, y, ics=[0, 4])
solution

-1/2*y(t)^2 == -1/2*I*pi + 1/2* log(t + 1) + 1/2* log(t - 1) -
8

Sage does return a solution even if it looks a bit different than the one that
we arrived at above. Notice that we have an imaginary term in our solution,
where i2 = −1. We will examine the role of complex numbers and how useful
they are in the study of ordinary differential equations in a later chapter, but
for the moment complex numbers will just muddy the situation. □
Example 1.2.3 The initial value problem in Example 1.1.2 is a good example
of a separable differential equation,

dP

dt
= k

(
1− P

1000

)
P

P (0) = 100.

Using partial fractions, we can rewrite this equation as

1000

P (1000− P )
dP =

(
1

P
+

1

1000− P

)
dP = k dt. (1.2.1)

Integrating both sides of (1.2.1), we obtain

ln |P | − ln |1000− P | = ln
∣∣∣∣ P

1000− P

∣∣∣∣ = kt+ C.

Taking the exponential of both sides yields

P

1000− P
= ekt+C = ekteC .
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Since C is an arbitrary constant, we know that eC is an arbitrary positive
constant, which we will also call C. So we can rewrite this last equation as

P = Cekt(1000− P ) = 1000Cekt − CektP.

Solving for P yields

P =
1000Cekt

Cekt + 1
=

1000

Ce−kt + 1
.

Using our initial condition P (0) = 100, we can determine that C = 9. □
Activity 1.2.1 Solving Separable Differential Equations. Solve each of
the following differential equations using the separation of variables technique.
(a) dy/dx = y/x

(b) (x2 + 1)y′ = xy

(c) dx/dt = ex
√
t

(d) dx

dt
=

sec2 t+ 2t

2x
, x(0) = −2

(e) dy/dx =
√
xy, y(1) = 3

1.2.2 Newton’s Law of Cooling
Separable equations arise in a wide range of application problems. One does
not have to watch too many crime dramas to realize that the time of death of a
murder victim is an important question in many criminal investigations. How
does a forensic scientist or a medical examiner determine the time of death?
Human beings have a temperature of 98.6◦F. If the surrounding temperature is
cooler, then the body will cool down after death. Eventually, the temperature
of the body will match the temperature of the environment. We should not
expect the body to cool at a constant rate either. Think of how a hot cup
of coffee or tea cools. The liquid will cool quite quickly during the first few
minutes but will remain relatively warm for quite a long period.

The answer to our forensic question can be found by using Newton’s law
of cooling, which tells us that the rate of change of the temperature of an
object is proportional to the difference between the temperature of the object
and the temperature of the surrounding medium. Newton’s law of cooling can
be easily stated as a differential equation,

dT

dt
= k(T − Tm),

where T is the temperature of the object, Tm is the temperature of the sur-
rounding medium, and k is the proportionality constant.

Suppose that the temperature of the surrounding environment is 70◦F, and
we know from experience that a body under these conditions cools off approx-
imately 2◦F during the first hour after death. In order to determine a formula
for the time of death, we must solve the initial value problem

dT

dt
= k(T − 70)

T (0) = 98.6,

where T (1) = 96.6. If we rewrite the equation
dT

dt
= k(T − 70)
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as
1

T − 70

dT

dt
= k,

we see that this equation is separable. Integrating both sides of the last equa-
tion, we obtain ln |T − 70| = kt + C. Since we are assuming that T > 70, we
can write T − 70 instead of |T − 70|. Thus, we have

ln(T − 70) = kt+ C or T − 70 = ekt+C = ekteC .

Letting D = eC , the solution becomes

T (t) = Dekt + 70.

The initial condition, T (0) = 98.6, tells us that D = 28.6. Thus,

T (t) = 28.6ekt + 70.

Since
96.6 = T (1) = 28.6ek·1 + 70,

we can determine the constant k to be

k = ln
(
26.6

28.6

)
≈ −0.0725.

and
T (t) = 28.6e−0.0725t + 70.

The graph of the T seems appropriate to our model (Figure 1.2.4).
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Figure 1.2.4 Newton’s law of cooling
Let us solve our differential equation using Sage.

k,t = var( 'k,t ' )
T = function( ' T ' )(t)
de = diff(T,t) == k*(T - 70)
solution = desolve(de, T, ivar=t)
solution.show()

(c + 70*e^(-k*t))*e^(k*t)

We can use Sage to plot our solution.

t = var( ' t ' )
T(t) = 28.6 * exp ( -0.0725 * t) + 70
plot(T, (t, 0, 24))
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Activity 1.2.2 Coffee Temperature. The brewing temperature of the
water used is very important. It should be between 195◦F and 205◦F. The
closer to 205◦F the better. Boiling water (212◦F) should never be used, as it will
burn the coffee. Water that is less than 195◦F will not extract properly. On the
other hand, coffee that has a temperature of 205◦F is too hot to drink.1 Coffee
is best when it is served at a temperature of 140◦F to 155◦F (the Goldilocks
range).
(a) Suppose coffee is initially brewed at 205◦F. If room temperature is 70◦F,

set up an initial value problem to model the temperature of the coffee at
time t, where t is the time in minutes after brewing has finished.

(b) Solve the initial value problem from Task 1.2.2.a

(c) If the temperature of the coffee drops from 205◦F to 200◦F in the first two
minutes after brewing, how long before the coffee reaches a temperature
of 155◦F?

1.2.3 Mixing Problems
There is a large class of problems in modeling known as mixing problems.
These problems refer to situations where two or more substances are mixed
together in a container or containers. For example, we might wish to model how
chemicals are mixed together in a refinery, how pollutants are mixed together
in a pond or a lake, how ingredients are mixed together when brewing beer, or
even how various greenhouse gases mix together across different layers of the
atmosphere.
Example 1.2.5 Suppose that we have a large tank containing 1000 gallons of
pure water and that water containing 0.5 pounds of salt per gallon flows into
the tank at a rate of 10 gallons per minute. If the tank is also draining at a
rate of 10 gallons per minute, the water level in the tank will remain constant.
We will assume that the water in the tank is constantly stirred so that the
mixture of salt and water is uniform in the tank.

We can model the amount of salt in the tank using differential equations.
If x(t) is the amount of salt in the tank at time t, then the rate at which the
salt is changing in the tank is the difference between the rate at which salt is
flowing into the tank and the rate at which it is leaving the tank, or

dx

dt
= rate in − rate out. (1.2.2)

Of course, the salt flows into the tank at the rate of 10 · 0.5 = 5 pounds of
salt per minute. However, the rate at which the salt leaves the tank depends
on x(t), the amount salt in the tank at time t. At time t, there is x(t)/1000
pounds of salt in one gallon. Therefore, salt flows out of the tank at a rate of
10x(t)/1000 = x(t)/100 pounds per minute. Equation (1.2.2) now becomes

dx

dt
= 5− x

100
x(0) = 0.

This equation is separable,

dx

500− x
=

dt

100
.

1Google the famous MacDonald’s lawsuit.
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Integrating both sides of the equation, we have

− ln |500− x| = t

100
+ k

or
ln |500− x| = − t

100
− k.

Consequently,
500− x = Ce−0.01t,

where C = e−k. From our initial condition, we can quickly determine that
C = 500 and

x(t) = 500− 500e−0.01t

models the amount of salt in the tank at time t. Notice that x(t) → 500 as
t→ ∞, as expected. □
Activity 1.2.3 A Brewery Problem. The vast majority of beers from
around the world have alcohol contents of 4 to 6 percent alcohol by volume
(for example, Heineken Lager Beer has a 5 percent alcohol content). Suppose
a local brewery has produced two beers with different alcohol contents, one 4
percent and one 7 percent. The master brewer would like to add some of the
7 percent beer to the 4 percent beer to obtain a beer with 5 percent alcohol.

(a) A vat contains 500 gallons of 4% alcohol (by volume). Beer with 7%
alcohol is pumped into the tank at a rate of 5 gallons per minute. Beer is
also pumped out of the vat at a rate of 5 gallons per minute, so there is
always 500 gallons in the tank. Set up an initial value problem to model
the percentage of alcohol in the vat at time t, where t is the elapsed time
in minutes.

(b) Solve the initial value problem from Task 1.2.3.a

(c) What is the percentage of alcohol in the vat after one hour?

(d) At what time will the beer reach 5% alcohol?

1.2.4 A Retirement Model
Differential equations have many applications in economics and finance. For
example, Dr. J., a college professor, wisely started saving for his retirement
as soon as he entered the workforce, and he now has $500,000 in a retirement
account earning an interest of 5% compounded continuously. The initial value
problem,

dP

dt
= 0.05P

P (0) = 500

provides a nice model of Dr. J.’s investment, where P (t) is the amount in
thousands of dollars in the fund at time t. The solution to our initial value
problem is

P (t) = 500e0.05t.

If Dr. J. plans to retire in 10 years, he can expect a nest egg of P (10) ≈
824.360635350064 or about $824,360.

Of course, Dr. J. still plans to make contributions to his retirement fund
during his next ten years of employment. His annual contribution will be
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$5,000, which his employer will generously match. If we assume that these con-
tributions will spread out evenly over the course of the year, we can incorporate
this information into our original initial value problem,

dP

dt
= 0.05P + 10

P (0) = 500

This differential equation is separable, so we have∫
dP

0.05P + 10
=

∫
dt.

Integrating both sides of this equation, we have

20 ln |0.05P + 10| = t+ k,

where k is an arbitrary constant. Since 0.05P + 10 > 0, we have

20 ln(0.05P + 10) = t+ k.

This last equation is equivalent to

0.05P + 10 = e0.05(t+k) = e0.05te0.05k.

If we let C = e0.05k and solve for P , we obtain

P = 20Ce0.05t − 200.

Using our initial condition,

500 = P (0) = 20Ce0.05·0 − 200 = 20C − 200,

we have C = 35. Thus, the solution that we seek is

P (t) = 700e0.05t − 200.

Dr. J.’s nest egg is now P (10) ≈ 954.104889490090 or about $954,105.
Once Dr. J. retires, he will need to begin withdrawing money from his

account. He estimates that he will need to withdraw $60,000 a year for living
expenses if he wishes to travel and enjoy his golden years. Of course, whatever
remains in his account at any given time will still collect interest. We describe
J.’s retirement situation with the initial value problem,

dP

dt
=

{
0.05P + 10, t ≤ 10

0.05P − 60, t > 10

P (0) = 500.

If P = 954, then
dP

dt
= 0.05P − 60 ≈ −12.3 < 0.

Hence, the rate of withdrawal exceeds the rate at which Dr. J.’s account is
earning interest. Eventually, Dr. J.’s retirement fund will disappear. This may
pose a problem, if Dr. J. plans to retire early and live a long life.

Again, the differential equation dP/dt = 0.05P − 60 is separable, and we
have ∫

dP

0.05P − 60
=

∫
dt.



CHAPTER 1. A FIRST LOOK AT DIFFERENTIAL EQUATIONS 27

Intergrating both sides of this equation yields

20 ln |0.05P − 60| = t+ k.

Since 0.05P − 60 < 0,

|0.05P − 60| = 60− 0.05P,

and
20 ln(60− 0.05P ) = t+ k.

Consequently,
60− 0.05P = e(t+k)/20,

or
P = 1200− Ce0.05t,

where C = 20ek/20. Now, we can apply our initial condition P (10) = 954 to
determine that C ≈ 149.21. Therefore,

P = 1200− 149.21e0.05t

describes how much money Dr. J.has after he retires (t ≥ 10).
If Dr. J. wants to know how long his retirement fund will last, he must

solve the equation
1200− 149.21e0.05t = 0.

In this case,
t = 20 ln

(
1200

149.21

)
≈ 41.7.

This means that if Dr. J. retires in 10 years at the early age of 55, he can
expect his retirement to last into his mid 90s.

1.2.5 Some Theory
We now give a theoretical basis for solving first-order separable differential
equations. A differential equation y′ = F (x, y) is called separable if it can be
written in the form

f(x) + g(y)
dy

dx
= 0. (1.2.3)

We now will prove that such an equation can be solved by integrating the first
term with respect to x and the second term with respect to y. If

h1(s) =

∫
f(s) ds

h2(s) =

∫
g(s) ds,

then we can rewrite equation (1.2.3) as

h′1(x) + h′2(y)
dy

dx
= 0.

Applying the chain rule to the second term, we obtain

h′2(y)
dy

dx
=

d

dx
[h2(y)].
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Hence, equation (1.2.3) now becomes

d

dx
(h1(x) + h2(y)) = 0.

Integrating, we obtain
h1(x) + h2(y) = C,

where C is any arbitrary constant.
Now suppose that y(x0) = y0 is an initial condition for

f(x) + g(y)
dy

dx
= 0.

Then h1(x0) + h2(y0) = C. By the Fundamental Theorem of Calculus

h1(x)− h1(x0) =

∫ x

x0

f(s) ds,

h2(y)− h2(y0) =

∫ y

y0

g(s) ds.

Consequently, we can replace equation (1.2.3) with the integral equation∫ x

x0

f(s) ds+

∫ y

y0

g(s) ds = 0.

In other words, we simply need to integrate each term to solve the differential
equation.

1.2.6 What Can Go Wrong
Example 1.2.6 It is not always possible to explicitly solve a separable differ-
ential equation. Consider the equation

dy

dx
=

y(1 + y2)

y2 + y + 1
.

This equation can be rewritten in the form(
1

1 + y2
+

1

y

)
dy = dx

Integrating both sides of the equation, we have

arctan y + ln |y| = x+ C.

However, we have no method of solving this last equation explicitly for y. □
Example 1.2.7 Another difficulty arises if we consider the equation

y′ = te−y2

.

This equation is separable since we can rewrite it in the form

ey
2

dy = t dt.

Although the Fundamental Theorem of Calculus guarantees that every contin-
uous function has an antiderivative, we cannot find an antiderivative for the
function ey2 in terms of elementary functions. Thus, we are forced to write our
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solution as ∫ y

0

es
2

ds =
1

2
t2 + C.

□
Example 1.2.8 Even if we have a separable differential equation, we are not
guaranteed a unique solution. Consider the initial value problem y′ = y1/3

with y(0) = 0 and t ≥ 0. Separating the variables,

y−1/3 dy = dt.

Thus,
3

2
y2/3 = t+ C

or

y =

(
2

3
(t+ C)

)3/2

.

If C = 0, the initial condition is satisfied and

y =

(
2

3
t

)3/2

is a solution for t ≥ 0. However, we can find at least two additional solutions
for t ≥ 0:

y = −
(
2

3
t

)3/2

,

y ≡ 0.

In Section 1.5 we will learn sufficient conditions for a first-order initial value
problem to have a unique solution. □
Example 1.2.9 Suppose that y′ = y2 with y(0) = 1. Separating the variables,

1

y2
dy = dt,

we see that
y = − 1

t+ C
or

y =
1

1− t
.

Therefore, a continuous solution also exists on (−∞, 1) if y(0) = 1. In the case
that y(0) = −1, the solution is

y = − 1

t+ 1
,

and a continuous solution exists on (−1,∞). □

1.2.7 Important Lessons
• A differential equation of order n is an equation that can be put in the

form
F (t, x, x′, x′′, . . . , x(n)) = 0,
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where F is a function of n+2 variables. A solution to the equation on an
interval I = (a, b) is a function u = u(t) such that the first n derivatives
of u are defined on I, and

F (t, u, u′, u′′, . . . , u(n)) = 0.

• A first-order differential equation is an equation that can be written
in the form

dx

dt
= f(t, x).

• A differential equation is separable if it can be written in the form

dy

dx
=M(x)N(y).

In this case we can rewrite the equation in the form

f(x) + g(y)
dy

dx
= 0

or
g(y) dy = f(x) dx

and solve by integrating both sides.

1.2.8 Reading Questions
1. Does a differential equation always have a solution? Explain.
2. Is the differential equation

dy

dt
= y2 + t2

separable? Why or why not?

1.2.9 Exercises
1. Baking a Potato (Part 2). Solve the differential equation that you

used to model the temperature of a baked potato in Exercise 1.1.9.1.

Finding General Solutions. Find the general solution for each equation
in Exercise Group 1.2.9.2–11.

2. x dx− y2 dy = 0 3. dy

dx
=
y

x

4. (t2 + 1) dt+ (x2 + x) dx = 0 5. dx

dt
= x2 − 6x+ 14

6. y′ =
x2

y(2 + x3)
7. dy

dx
=

sinx
y

8. xy′ =
√

1− y2 9. dy

dt
=

4t− t3

4 + y3

10. y′ =
1

ty + 2t+ y + 2
11. dx

dt
= xet + 3et + x− 3

Solving Initial Value Problems. Solve the initial value problems in Exer-
cise Group 1.2.9.12–21.
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12. x dx− y2 dy = 0, y(0) = 1 13. dy

dx
=
y

x
, y(1) = −2

14. (t2 + 1) dt+ (x2 + x) dx = 0,
x(0) = −1

15. dx

dt
= x2 − 6x+ 14, x(0) = 3

16. y′ =
x2

y(2 + x3)
, y(0) = −2 17. dy

dx
=

sinx
y

, y(0) = 2

18. xy′ =
√

1− y2, y(1) = 0 19. dy

dt
=

4t− t3

4 + y3
, y(0) = 1

20. y′ =
1

ty + 2t+ y + 2
,

y(0) = −3

21. dx

dt
= xet + 3et + x− 3,

x(0) = 0

22. Solve the initial value problems in Exercise Group 1.2.9.12–21 using Sage.

23. Homogeneous Equations. A first-order differential equation, y′ = f(x, y),
is homogeneous if f(x, y) = f(tx, ty).

(a) Show that the equation

dy

dx
=
x2 + y2

2xy

is homogeneous.

(b) Let y = xv and show that the equation in part (a) can be written
as

v + x
dv

dx
=
x2 + v2x2

2vx2
.

Use the fact that this new equation is separable to solve for y.

(c) Show that any homogeneous equation y′ = f(x, y) can be trans-
formed into a separable differential equation by making the substi-
tution y = vx.

(d) A function f is said to homogeneous of degree n if f(tx, ty) =
tnf(x, y) for n = 1, 2, . . .. Show that differential equation

P (x, y)dx+Q(x, y)dy = 0,

where P and Q are both homogeneous of degree n, can be trans-
formed into a separable differential equation using the substitution
y = vx.

(e) Solve the differential equation

x2y′ = 2y2 − x2.

24. Mr. Ratchett, an elderly American, was found murdered in his train com-
partment on the Orient Express at 7 AM. When his body was discovered,
the famous detective Hercule Poirot noted that Ratchett had a body tem-
perature of 28 degrees. The body had cooled to a temperature of 27
degrees one hour later. If the normal temperature of a human being is 37
degrees and the air temperature in the train is 22 degrees, estimate the
time of Ratchett’s death using Newton’s Law of Cooling.

25. You are starting a new position, and your employer has a generous retire-
ment plan. If you put $500 a month into a 401(k) plan, your employer
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will match your contributions.
(a) Assume that you are 25 years old and plan to retire at age 65, how

large can you expect your 401(k) pension to be when you retire?
Assume that your 401(k) plan will collect interest at a rate of 5%.

(b) If you begin withdrawing $60,000 every year at age 65, how long will
your retirement fund last?

1.2.10 Sage—Quick Start Guide to Solving Ordinary Dif-
ferential Equations

Sage has powerful algorithms for finding exact and numerical solutions of dif-
ferential equations. In addition, we can plot solutions and direction fields.
Although some differential equations have an exact solution and can be solved
using analytic techniques with calculus, many differential equations can only
be solved using numerical techniques. This should not be too surprising if we
consider how we solve polynomials. It is quite easy to find the roots of any
equation of the form ax2+bx+c = 0 by either factoring or using the quadratic
equation, but solving an equation such as

5x7 − 6x4 + 3x3 − 23x2 + 3x− 17 = 0

is a much more difficult problem. Unlike the situation for quadratic equations,
there does not exist a general formula for solving seventh degree equations.
We can even encounter difficulties when using a numerical method such as the
Newton-Raphson algorithm.

In general, Sage needs three things to solve a differential equation:

1. An abstract function

2. A differential equation

3. A Sage command to solve the equation.

Suppose we wish to solve the equation

dy

dx
= x+ y.

We can use the following sequence of Sage commands.

y = function( ' y ' )(x)
de = diff(y,x) == x + y
solution = desolve(de, y)
solution.show()

-((x + 1)*e^(-x) - _C)*e^x

The first command defines the abstract function. The second describes
the actual differential equation. Finally, we use the Sage command desolve
to find the actual solution. Try replacing the h command with show(h) or
show(expand(h)).

We can also specify an initial condition for our differential equation, say
y(0) = 1.

y = function( ' y ' )(x)
de = diff(y,x) == x + y
solution = desolve(de, y, ics =[0 ,1])
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solution.show()

h

There are many other commands and packages to solve ordinary differ-
ential equations using Sage. For more information, see www.sagemath.org/doc/

reference/calculus/sage/calculus/desolvers.html. An empty Sage cell is below
for practice and exploration.

1.3 Geometric and Quantitative Analysis

Objectives
• To understand that direction fields are a useful way of analyzing a

differential equation from a geometric point of view, especially since not
all differential equations can be solved analytically.

• To understand that an autonomous equation is a differential equa-
tion of the form y′ = f(y) and that phase lines can be used to analyze
autonomous differential equations.

• To understand equilibrium solutions to a differential equation y′ =
f(y). are those solutions given by f(y) = 0 for all y. In particular, an
equilibrium solution is either a sink, source, or node.

If we view the differential equation y′ = f(t, y) as a formula for the slope of
a tangent line to a solution curve, we can approximate the graph of a solution
curve. For example, if we consider the equation y′ = t + y, then a solution
curve will have a slope of 2 at the point (1, 1). We can use this information to
obtain a geometric description of the solutions to the equation.

1.3.1 RC Circuits
Suppose that we wish to analyze how an electric current flows through a circuit.
An RC circuit is a very simple circuit might contain a voltage source, a
capacitor, and a resistor (Figure 1.3.1). A battery or generator is an example
of a voltage source. The glowing red heating element in a toaster or an electric
stove is an example of something that provides resistance in a circuit. A
capacitor stores an electrical charge and can be made by separating two metal
plates with an insulating material. Capacitors are used to power the electronic
flashes for cameras. Current, I(t), is the rate at which a charge flows through
this circuit and is measured in amperes or amps (A). We assign a direction to
the current. A current flowing in the opposite direction will be given negative
values.

http://www.sagemath.org/doc/reference/calculus/sage/calculus/desolvers.html
http://www.sagemath.org/doc/reference/calculus/sage/calculus/desolvers.html
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E(t)

+

−

R

CI(t)

Figure 1.3.1 An RC circuit
The source voltage, E(t), is measured in volts (V). Kirchhoff’s Second

Law tells us that the impressed voltage in a closed circuit is equal to the sum
of the voltage drops in the rest of the circuit. Thus, we need only compute the
voltage drop across the resistor, ER, and the voltage drop across the capacitor,
EC . According to Kirchhoff’s Law, this is

ER + EC = E.

Resistance, R, to the current is measured in ohms (Ω). Ohm’s Law tells
us that the voltage drop across a resistor is given by

ER = IR. (1.3.1)

Finally, capacitance, C, is measured in farads (F). Coulomb’s Law tells us
how current flows across a capacitor,

I = C
dEC

dt
. (1.3.2)

Thus, if we combine the equations (1.3.1) and (1.3.2), our equation ER+EC =
E becomes

RC
dEC

dt
+ EC = E(t). (1.3.3)

We will now investigate how our circuit reacts under different voltage
sources. For example, we might have a zero voltage source (the capacitor could
still hold a charge). We could also have a constant nonzero source of voltage
such as a battery or a fluctuating source of voltage such as a generator. We
might even have a series of pulses of voltage where the current is periodically
turned on and off. We would like to be able to understand the solutions to the
equation (1.3.3) for different voltage sources E(t). If we view the differential
equation (1.3.3) as an expression for computing how fast current is flowing
across the capacitor, we can analyze our circuit from a geometric point of view
and can actually say a great deal about circuits without solving a differential
equation.

1.3.2 Direction Fields
Any differential equation

dy

dt
= f(t, y)

can be viewed as a formula for the slope of a function y = y(t). Geometrically,
the equation tells us that, at any point (t0, y0), the slope of a solution curve
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is given by f(t0, y0). Suppose that our differential equation is defined on the
rectangle R = [a, b]× [c, d], and let y(t) be a solution curve for y′ = f(t, y) that
passes through the point (t0, y0). Then the differential equation tells us the
slope of this solution curve at (t0, y0). We can indicate this on the (t, y)-plane
by drawing a short line segment at the point (t, y) with slope f(t0, y0). Thus,
we can obtain a direction field or slope field for the differential equation. A
solution curve must be tangent to its direction field at every point.

For example, consider the differential equation y′ = y2/2− t. The direction
field for this equation is given in Figure 1.3.2 along with several solution curves.
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t

4

2
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6

8

10

y(
t)

Figure 1.3.2 The direction field for y′ = y2/2− t

Although direction fields can be tedious to compute using pencil and paper,
we can easily generate direction fields for any differential equation with the
use of computer software. Most computer algebra systems, including Sage,
have facilities for generating and graphing direction fields. For example, the
following Sage cell will generate the direction field for y′ = y2/2− t using the
command plot_slope_field. We will learn how to add solution curves at the
end of this section.

t, y = var( 't,␣y ' )
f(t, y) = y^2/2 - t
plot_slope_field(f, (t, -1, 5), (y, -5, 10),

headaxislength =3, headlength =3,
axes_labels =[ ' $t$ ' , ' $y(t)$ ' ])

Activity 1.3.1 Plotting Direction Fields. Plot the direction field and the
solution curves for each of the following initial conditions.
(a) y′ = y − 2x, y(0) = 4, y(0) = 1.

(b) y′ = y(1 + x), y(0) = 1, y(0) = 0, y(0) = −1.

(c) dx

dt
+ 2tx = x, x(0) = 5.

(d) dy

dt
= 2y(1− y/4), y(0) = 1, y(0) = 4, y(0) = 5.

(e) y′ = −1− y4, y(0) = 4, y(0) = 0, y(0) = −4.

In each case comment on anything that you notice about the direction field
and the solutions.
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1.3.3 RC Circuits Revisited
Now let us return to our RC circuit and consider different functions E(t) for
the differential equation

dEC

dt
=
E(t)− EC

RC
,

with R = 1 and C = 1. First suppose that there is no voltage source in the
circuit. If we let E(t) = 0 for all t ≥ 0, we will get the direction field of given
in Figure 1.3.3. The direction field agrees with our analytic solution

EC(t) = v0e
−t,

where v0 = EC(0).

0 2 4 6 8 10
t

10

5

0

5

10
E

(t
)

Figure 1.3.3 The direction field for no current
If we assume that we have a nonzero constant source of voltage, E(t) =

K, in our circuit such as a battery, then we obtain the separable differential
equation

dEC

dt
= K − EC .

The direction field for this differential equation for K = 10 is given in Fig-
ure 1.3.4.
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Figure 1.3.4 The direction field for a constant current
If we attach a battery to our circuit at time t = 0 and then disconnect the

battery at t = 4, then we obtain a different solution. For example, if

E(t) =

{
10 0 ≤ t ≤ 4,

0 t > 4,
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we will obtain a different direction field (Figure 1.3.5).

a direction field of slope arrows and three curves following the arrows with the
curves approaching ten and then to zero once the time is four
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)

Figure 1.3.5 The direction field for a single pulse
If our voltage source emits a series of pulses, say

E(t) =


10 0 ≤ t < 4,

0 4 ≤ t < 8,

10 8 ≤ t < 12,
...

then the direction field for our differential equation is given in Figure 1.3.6.
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Figure 1.3.6 The direction field for a series of pulses
Finally, if we use a generator for a voltage source, the voltage source might

be given by a function such as E(t) = sin(πt/2). The direction field for this
circuit is given in Figure 1.3.7.
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Figure 1.3.7 The direction field for an oscillating voltage

1.3.4 Plotting Direction Fields with Sage
The Sage interact below will help you plot direction fields for a given initial
value problem. A Sage interact is a menu driven Sage applet. All of the Sage
code is “under the hood.” You can then change each field in the cell output to
solve a particular initial value problem.

Figure 1.3.8 A Sage applet for plotting direction fields
Of course, it is quite easy to give the interact an initial value problem that

yield unitelligible results.

1.3.5 Autonomous Differential Equations
An autonomous differential equation is one of the form

dx

dt
= f(x).

In other words, a differential equation is autonomous if the variable t does not
appear on the righthand side of the equation. Since an autonomous differential
equation dx/dt = f(x) only depends on the variable x, its direction field is
particularly easy to graph. The slope only depends on x and is the same for
all values of t.
Example 1.3.9 A Logistic Model with Harvesting. Let us consider a
trout pond that has a carrying capacity of 200 fish. Suppose that the trout
population can be modeled according to the logistic equation

dP

dt
= P

(
1− P

200

)
,

where t is the time in years. If we allow the fish to be harvested at a constant
rate of 32 per year, our equation becomes

dP

dt
= P

(
1− P

200

)
− 32.

The direction field for this equation is given in Figure 1.3.10.
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Figure 1.3.10 Logistic growth with harvesting
One of the basic questions that we can ask of our model is whether or not

we have a sustainable population in our trout pond given this harvest rate. If
so, under what conditions for sustainablility? □

Since

dP

dt
= P

(
1− P

200

)
− 32 = − 1

200
(P − 40)(P − 160)

is an autonomous differential equation, the direction field does not depend on
t. Consequently, we need only keep track of what happens on the vertical axis.
We can do this with a phase line. Instead of drawing the entire direction field,
we can draw a single line containing the same information (Figure 1.3.11).

P = 160 is a sink

P = 40 is a source

Figure 1.3.11 Phase line diagram
Notice that dP/dt = 0 when P = 40 or P = 160. Thus, the two constant

solutions P (t) = 40 and P (t) = 160 are the same for all values of the inde-
pendent variable t. We say that such a solution is an equilibrium solution.
Equilibrium solutions graph as horizontal lines on the direction field. We can
identify equilibrium solutions by setting the derivative of the function equal
to zero. On our phase line we will represent these solutions as equilibrium
points. For values of P between 40 and 160, we know that dP/dt > 0. Thus,
any solution curve must be increasing. We denote this property on the phase
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line by drawing an upward pointing arrow. On the other hand, we know that
dP/dt < 0 when P < 40 or P > 160. In this case any solution curve will be
decreasing, and we will indicate this by a downward pointing arrow.

Let y′ = f(y) and suppose that y = y0 is an equilibrium solution. We say
this solution is a sink if for any solution y(t) with initial condition sufficiently
close to y0, we have

lim
t→∞

y(t) = y0.

We say that an equilibrium point is a source if all solutions that start suffi-
ciently close to y0 tend toward y0 as t→ −∞. An equilibrium solution that is
neither a sink or a source is called a node (Figure 1.3.11). When P = 40, we
have a source, and when P = 160, we have a sink.

An equilibrium solution is stable if a small change in the initial conditions
gives a solution which tends toward the equilibrium as the independent variable
tends towards positive infinity. An equilibrium solution is unstable if a small
change in the initial conditions gives a solution which veers away from the
equilibrium as the independent variable tends towards positive infinity.

Consider the differential equation

dy

dt
= y4 − 4y2 = y2(y + 2)(y − 2). (1.3.4)

The graph of f(y) = y4 − 4y2 is given in Figure 1.3.12. If y = −2, we have a
sink. If y = 2, we have a source. Finally, if y = 0, we have a node.

3 2 1 1 2 3
y

4

2

2
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6
dy/dt

Figure 1.3.12 Sinks, sources, and nodes
It is easy to generate a phase line diagram for equation (1.3.4) from the

graph of f(y) = y2(y + 2)(y − 2) (Figure 1.3.12). If the graph is above the y-
axis, then y is increasing. If the graph is below the y-axis, then y is decreasing.
Therefore, the phase line is easy to sketch (Figure 1.3.13).
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y = 0 is a node

y = 2 is a source

y = −2 is a sink

Figure 1.3.13 Phase line diagram for y′ = y2(y + 2)(y − 2)

Activity 1.3.2 Autonomous Equations and Phase Lines. For each of the
differential equations below, draw the phase line and classify each equilibrium
solution as a sink, a source, or a node.
(a) y′ = y(y − 2)(y + 3).

(b) y′ = y2(y − 2)(y + 3).

(c) y′ = cos y.

(d) y′ = cos2 y.

In each case comment on anything that you notice about the phase line and
the equilibrium solutions.

One of the reasons why autonomous equations are so important is Taylor’s
theorem, which tells us that any function f(x) can be approximated near a
point x0 by an nth degree polynomial,

f(x) ≈ f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 + · · ·+ f (n)(x0)

n!
(x− x0)

n

near x0. For example, if

dx

dt
= f(x) = cos(x2 + π)

with x(0) = x0, then we may approximate this initial value problem near x0
with

dx

dt
= f(x0) + f ′(x0)(x− x0) = cos(x20 + π) + 2x0 sin(x20 + π)(x− x0)

x(0) = x0.

Of course, this strategy might not work very well if f(x0) = cos(x20 + π) = 0
or f ′(x0) = 2x0 sin(x20 + π) = 0.
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1.3.6 Important Lessons
• Direction fields and phase lines are a useful way of analyzing a differ-

ential equation from a geometric point of view, especially since not all
differential equations can be solved analytically.

• An autonomous equation is a differential equation of the form y′ = f(y).
We can use a phase line to analyze autonomous differential equations.

• Equilibrium solutions to a differential equation y′ = f(y) are those so-
lutions given by f(y) = 0 for all y. In this case, any solution must be
constant. We can classify equilibrium solutions according to whether they
are stable or unstable. In particular, an equilibrium solution is either a
sink, source, or node.

1.3.7 Reading Questions
1. Explain why solution curves to a differential equation cannot intersect.
2. Explain in your own words what an autonomous differential equation is.

1.3.8 Exercises

Plotting direction fields by hand. For each of the differential equations
in Exercise Group 1.3.8.1–6, plot the direction field on the integer coordinates
(t, x) of the rectangle −2 < t < 2 and −2 < x < 2 by drawing a short line of
the appropriate slope.

1. x′ = x+ t 2. x′ = xt

3. x′ = x2 + t2 4. x′ = t+ tan(x)
5. x′ = (x+ t)/(x2 + t2) 6. x′ = x− t+ 1

7. Use Sage to plot the direction fields of each differential equation in Exercise
Group 1.3.8.1–6.

t, x = var( 't,␣x ' )
f(t,x) = x + t
plot_slope_field(f, (t, -2, 2), (x, -2, 2),

headaxislength =3, headlength =3,
axes_labels =[ ' $t$ ' , ' $x(t)$ ' ])

Equilibrium solutions and phase lines. Find the equilibrium solutions
for each of the differential equations in Exercise Group 1.3.8.8–13. Draw the
phase line for each equation and classify each equilibrium solution as a sink, a
source, or a node.

8. y′ = 2y − 5 9. dx

dt
= (x− 1)(x+ 2)

10. dx

dt
= (x2 − 1)(x− 2) 11. dy

dx
= sin 2y

12. x′ = (x2 + 1)(x− 1) 13. x′ = x2 + x+ 1

Sketching solutions. Each of the differential equations in Exercise Group 1.3.8.14–
19 has several initial conditions specified. Sketch the solution curves that sat-
isfy the initial conditions. Sketch your solutions for each equation on the same
pair of axes.
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14. y′ = 2y − 5, y(0) = 4, y(0) = 2, y(0) = 0.

15. dx

dt
= (x− 1)(x+ 2), x(0) = 2, x(0) = 1, x(0) = 0.

16. dx

dt
= (x2 − 1)(x− 2), x(0) = 1, x(0) = 0, x(0) = −1.

17. dy

dx
= sin 2y, y(0) = 2, y(0) = 1, y(0) = 0.

18. x′ = (x2 + 1)(x− 1), x(0) = 2, x(0) = 1, x(0) = 0.
19. x′ = x2 + x+ 1, x(0) = 1, x(0) = 0, x(0) = −1.

Phase lines from graphs of the derivative. Consider the differential
equation y′ = f(y), where the graph of f(y) is given in Exercise Group 1.3.8.20–
23. Draw the phase line for each equation and classify each equilibrium solution
as a sink, a source, or a node.

20.
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21.
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23.
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24. What happens if we increase the harvest rate to 100 in Example 1.3.9?
What should be our strategy to maintain a viable population in the trout
pond and still permit fishing?

1.3.9 Sage—Plotting Direction Fields and Solutions
1.3.9.1 Plotting direction fields

If we wish to plot a direction field for a differential equation, we can use the
command plot_slope_field. Let us plot the direction field for the equation
y′ = y2/2− t.

t, y = var( 't,␣y ' )
f(t, y) = y^2/2 - t
v = plot_slope_field(f, (t,-1,5), (y,-5,10),

headaxislength =3, headlength =3,
axes_labels =[ ' $t$ ' , ' $y(t)$ ' ])

v

There are a few extra commands to specify the size of the arrows in the
plot and to label the axes. Try changing or omitting these commands and see
what happens.

t, y = var( 't,␣y ' )
f(t, y) = y^2/2 - t
v = plot_slope_field(f, (t,-1,5), (y,-5,10),

headaxislength =3, headlength =3,
axes_labels =[ ' $t$ ' , ' $y(t)$ ' ])
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v

For more examples and options, see doc.sagemath.org/html/en/reference/

plotting/sage/plot/plot_field.html

1.3.9.2 Plotting solutions

Now let us find a numerical solution to the equation using the command
desolve_rk4. This is a fourth-order Runge-Kutta method, and returns a nu-
merical solution (a table of values). Here, we must supply the dependent
variable and initial conditions.

t, y = var( 't,␣y ' )
f(t, y) = y^2/2 - t
p = desolve_rk4(f, y, ics=[-1,0], ivar=t, output= ' plot ' ,

end_points =[-1,5], thickness =2)
p

Of course, we can combine the two plots.

t, y = var( 't,␣y ' )
f(t, y) = y^2/2 - t
p = plot_slope_field(f, (t,-1,5), (y,-5,10),

headaxislength =3, headlength =3,
axes_labels =[ ' $t$ ' , ' $y(t)$ ' ], fontsize =12)

p += desolve_rk4(f, y, ics=[-1,0], ivar=t, output= ' plot ' ,
end_points =[-1,5], thickness =2)

p.show(xmin = -1, xmax = 5, ymin = -5, ymax = 10) #set the
size of the plot window

There are many other commands and packages to solve ordinary differ-
ential equations using Sage. For more information, see www.sagemath.org/doc/

reference/calculus/sage/calculus/desolvers.html. Below is an empty Sage cell,
where you can practice.

1.3.9.3 Sage Exercises
1. Suppose that the population of a trout pond can be accurately modeled

by the logistic equation

dp

dt
= 0.4p

(
1− p

500

)
.

At time t = 30, a disease is introduced into the population that kills
10% of the population per year. To see how the disease affects the fish
population, we will change our original model to the following:

dp

dt
=

0.4p
(
1− p

500

)
for 0 ≤ t < 30;

0.4p
(
1− p

500

)
− 0.1p for t > 30.

(a) Plot the direction field for this equation using Sage.

http://doc.sagemath.org/html/en/reference/plotting/sage/plot/plot_field.html
http://doc.sagemath.org/html/en/reference/plotting/sage/plot/plot_field.html
http://www.sagemath.org/doc/reference/calculus/sage/calculus/desolvers.html
http://www.sagemath.org/doc/reference/calculus/sage/calculus/desolvers.html
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(b) Plot the graphs of two or three representative solutions to this equa-
tion on the direction field.

(c) Find formulas for the solutions of this equation for initial conditions
p(0) = 30.

(d) Give a qualitative description of how the disease affects the popula-
tion.

1.4 Analyzing Equations Numerically

Objectives
• To understand that numerical algorithms such as Euler’s method allow

the approximation of solutions to the initial value problems and that
there are more efficient algorithms than Euler’s method such as those
algorithms that use the Runge-Kutta methods.

• To understand that Taylor’s Theorem is a very useful tool for studying
differential equations.

• To understand that error analysis of the rate of convergence is very im-
portant for any numerical algorithm.

Just as numerical algorithms are useful when finding the roots of poly-
nomials, numerical methods will prove very useful in our study of ordinary
differential equations. Consider the polynomial f(x) = x2−2. We do not need
a numerical algorithm to see that the roots of this polynomial are x =

√
2

and x = −
√
2. However, a numerical method such as the Newton-Raphson

Algorithm is very useful for approximating
√
2 as a decimal.1 Similarly, it may

be easier to generate a numerical solution for differential equations if our goal
is simply to plot a solution. In addition, there will be differential equations for
which it is impossible to find a solution in terms of elementary functions such
as polynomials, trigonometric functions, and exponential functions.

1.4.1 Euler’s Method
Suppose that we wish to solve the initial value problem

y′ = f(t, y) = y + t, (1.4.1)
y(0) = 1. (1.4.2)

The equation y′ = y + t is not separable, which currently is the only analytic
technique at our disposal. However, we can try to find a numerical approxima-
tion for the solution. A numerical approximation is simply a table (possibly
very large) of t and y values.

We will attempt to find a numerical solution for (1.4.1)–(1.4.2) on the
interval [0, 1]. Even with the use of a computer, we cannot approximate the
solution at every single point on an interval. For the initial value problem

y′ = f(t, y)

y(t0) = y0,

1See any calculus text for a description of the Newton-Raphson Algorithm.
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we might be able to find approximations at a = t0, t1, t2, . . . , tN = b in [a, b] at
best. If we choose t1, t2, . . . , tN to be equally spaced on [a, b], we can write

tk = t0 + kh,

where h = 1/N and k = 1, 2, . . . , N . We say that h is the step size for our
approximation.

Given an approximation Yk for the solution yk = y(tk), the question is
how to find an approximate solution Yk+1 at tk+1. To generate the second
approximation, we will construct a tangent line to the solution at y(t0) = y0.
If we use the slope of the solution curve at t0, then

y′(t0) = f(t0, y0).

Making use of the fact that

y(t0 + h)− y(t0)

h
≈ y′(t0, y(t0)) = y′(t0, y0)

or equivalently
y(t0 + h) = y(t1) ≈ y(t0) + hy′(t0, y0),

the estimate for our solution at t1 = t0 + h is

Y1 = Y0 + hf(t0, Y0).

Similarly, the approximation at t2 = t0 + 2h will be

Y2 = Y1 + hf(t1, Y1).

Our general algorithm is

Yk+1 = Yk + hf(tk, Yk).

The idea is to compute tangent lines at each step and use this information to
get our next approximation.

The algorithm that we have described is known as Euler’s method. Let
us estimate a solution to (1.4.1)–(1.4.2) on the interval [0, 1] with step size
h = 0.1. Since y(0) = 1, we can make our first approximation exact,

Y0 = y(0) = 1.

To generate the second approximation, we will construct a tangent line to the
solution at y(0) = 1. If we use the slope of the solution curve at t0 = 0,

y′(0) = f(y(0), 0) = y(0) + 0 = 1 + 0 = 1,

and make use of the fact that

y(h)− y(0)

h
≈ y′(0, y(0)) or y(h) ≈ y(0) + hy′(0, y(0)),

the estimate for our solution at t = 0.1 is

Y1 = Y0 + hf(t0, Y0)

= Y0 + h[Y0 + t0]

= 1 + (0.1)[1 + 0]

= 1.1000.
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Similarly, the approximation at t = 0.2 will be

Y2 = Y1 + hf(t1, Y1)

= Y1 + h[Y1 + t1]

= 1.1000 + (0.1)[1.1000 + 0.1]

= 1.2200.

Our general algorithm is

Yk+1 = Yk + hf(tk, Yk) = Yk + h[Yk + tk] = (1.1)Yk + (0.01)k.

The initial value problem (1.4.1)–(1.4.2) is, in fact, solvable analytically
with solution y(t) = 2et − t − 1. We can compare our approximation to the
exact solution in Table 1.4.1. We can also see graphs of the approximate
and exact solutions in Figure 1.4.2. Notice that the error grows as we get
further away from our initial value. In fact, the graph of the approximation
for h = 0.001 is obscured by the graph of the exact solution. In addition, a
smaller step size gives us a more accurate approximation (Table 1.4.3).

Table 1.4.1 Euler’s approximation for y′ = y + t

k tk Yk yk |yk − Yk| Percent Error
0 0.0 1.0000 1.0000 0.0000 0.00%
1 0.1 1.1000 1.1103 0.0103 0.93%
2 0.2 1.2200 1.2428 0.0228 1.84%
3 0.3 1.3620 1.3997 0.0377 2.69%
4 0.4 1.5282 1.5836 0.0554 3.50%
5 0.5 1.7210 1.7974 0.0764 4.25%
6 0.6 1.9431 2.0442 0.1011 4.95%
10 1.0 3.1875 3.4366 0.2491 7.25%
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1.0

1.5

2.0

2.5

3.0

3.5 h= 0.1
h= 0.02
h= 0.001
yexact

Figure 1.4.2
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Table 1.4.3 Step sizes for Euler’s approximation

tk h = 0.1 h = 0.02 h = 0.001 Exact Solution
0.1 1.1000 1.1082 1.1102 1.1103
0.2 1.2200 1.2380 1.2426 1.2428
0.3 1.3620 1.3917 1.3993 1.3997
0.4 1.5282 1.5719 1.5831 1.5836
0.5 1.7210 1.7812 1.7966 1.7974
0.6 1.9431 2.0227 2.0431 2.0442
0.7 2.1974 2.2998 2.3261 2.3275
0.8 2.4872 2.6161 2.6493 2.6511
0.9 2.8159 2.9757 3.0170 3.1092
1.0 3.1875 3.3832 3.4238 3.4366

Activity 1.4.1 Euler’s Method and Error. Consider the initial value
problem

y′ = x+ xy

y(0) = 1.

(a) Use separation of variables to solve the initial value problem.

(b) Compute y(x) for x = 0, 0.2, 0.4, . . . , 1.

(c) Use Euler’s method to approximate solutions to the initial value problem
for x = 0, 0.2, 0.4, . . . , 1.

(d) Compare the exact values of the solution (Task 1.4.1.b) to the approxi-
mate values of the solution (Task 1.4.1.c) and comment on what happens
as x varies from 0 to 1.

1.4.2 Finding an Error Bound
To fully understand Euler’s method, we will need to recall Taylor’s theorem
from calculus.
Theorem 1.4.4 If x > x0, then

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 + · · ·+ f (n)(ξ)

n!
(x− x0)

n,

where ξ ∈ (x0, x).
Given the initial value problem

y′ = f(t, y),

y0 = y(t0),

choose t1, t2, . . . , tN to be equally spaced on [t0, a], we can write

tk = t0 + kh,

where h = (a− t0)/N and k = 1, 2, . . . , N . Taylor’s Theorem tells us that

y(tk+1) = y(tk + h) = y(tk) + y′(tk)h+
y′′(tk)

2!
h2 + · · · .

If we know the values of y and its derivatives at tk, then we can determine the
value of y at tk+1.
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The simplest approximation can be obtained by taking the first two terms
of the Taylor series. That is, we will use a linear approximation,

yk+1 = y(tk+1) ≈ y(tk) + y′(tk)h = y(tk) + f(tk, yk)h.

This gives us Euler’s method,

Y0 = y(t0)

Y1 = Y0 + hf(t0, Y0)

Y2 = Y1 + hf(t1, Y1)

...
Yk+1 = Yk + hf(tk, Yk).

The terms that we are omitting, all contain powers of h of at least degree two.
If h is small, then hn for n = 2, 3, . . . will be very small and these terms will
not matter much.

We can actually estimate the error incurred by Euler’s method if we make
use of Taylor’s Theorem.
Theorem 1.4.5 Let y be the unique solution to the initial value problem

y′ = f(t, y),

y(a) = α,

where t ∈ [a, b]. Suppose that f is continuous and there exists a constant L > 0
such that

|f(t, y1)− f(t, y2)| ≤ L|y1 − y2|,

whenever (t, y1) and (t, y2) are in D = [a, b]×R. Also assume that there exists
an M such that

|y′′(t)| ≤M

for all t ∈ [a, b]. If Y0, . . . , YN are the approximations generated by Euler’s
method for some positive integer N , then

|y(ti)− Yi| ≤
hM

2L
[eL(ti−a) − 1].

The condition that there exists a constant L > 0 such that

|f(t, y1)− f(t, y2)| ≤ L|y1 − y2|,

whenever (t, y1) and (t, y2) are inD = [a, b]×R is called a Lipschitz condition.
Many of the functions that we will consider satisfy such a condition. If the
condition is satisfied, we can usually say a great deal about the function.
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Table 1.4.6 Error bound and actual error

k tk Yk yk = y(tk) |yk − Yk| Estimated Error
0 0.0 1.0000 1.0000 0.0000 0.0000
1 0.1 1.1000 1.1103 0.0103 0.0286
2 0.2 1.2200 1.2428 0.0228 0.0602
3 0.3 1.3620 1.3997 0.0377 0.0951
4 0.4 1.5282 1.5836 0.0554 0.1337
5 0.5 1.7210 1.7974 0.0764 0.1763
6 0.6 1.9431 2.0442 0.1011 0.2235
7 0.7 2.1974 2.3275 0.1301 0.2756
8 0.8 2.4872 2.6511 0.1639 0.3331
9 0.9 2.8159 3.1092 0.2033 0.3968
10 1.0 3.1875 3.4366 0.2491 0.4671

We can now compare the estimated error from our theorem to the actual
error of our example. We first need to determine M and L. Since

|f(t, y1)− f(t, y2)| = |(y1 + t)− (y2 + t)| = |y1 − y2|,

we can take L to be one. Since y′′ = 2et, we can bound y′′ on the interval [0, 1]
by M = 2e. Thus, we can bound the error by

|y(ti)− Yi| ≤
hM

2L
[eL(ti−a) − 1] = 0.1e(eti − 1)

for h = 0.1. Our results are in Table 1.4.6.

1.4.3 Improving Euler’s Method
If we wish to improve upon Euler’s method, we could add more terms of Taylor
series. For example, we can obtain a more accurate approximation by using a
quadratic Taylor polynomial,

y(t1) ≈ y0 + f(t0, y0)h+
y′′(t0)

2
h2.

However, we need to know y′′(t0) in order to use this approximation. Using
the chain rule from multivariable calculus, we can differentiate both sides of
y′ = f(t, y) to obtain

y′′ =
∂f

∂t

dt

dt
+
∂f

∂y

dy

dt
= ft + ffy.

Thus, our approximation becomes

y(t1) ≈ y0 + f(t0, y0)h+
1

2
(ft(t0, y0) + f(t0, y0)fy(t0, y0))h

2.

The problem is that some preliminary analytic work must be done. That
is, before we can write a program to compute our solution, we must find ∂f/∂t
and ∂f/∂y, although this is less of a problem with the availability of computer
algebra systems such as Sage.

Around 1900, two German mathematicians, Carle Runge and Martin Kutta,
independently invented several numerical algorithms to solve differential equa-
tions. These methods, known as Runge-Kutta methods, estimate the higher-
order terms of the Taylor series to find an approximation that does not depend
on computing derivatives of f(t, y).
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If we consider the initial value problem

y′ = f(t, y),

y(t0) = y0,

then
y(t1) = y(t0) +

∫ t1

t0

f(s, y(s)) ds

or
y1 − y0 = y(t1)− y(t0) =

∫ t1

t0

f(s, y(s)) ds (1.4.3)

by the Fundamental Theorem of Calculus. In Euler’s method, we approximate
the right-hand side of (1.4.3) by

y1 − y0 = f(t0, y0)h.

In terms of the definite integral, this is simply a left-hand sum. In the im-
proved Euler’s method or the second-order Runge-Kutta method we
will estimate the right-hand side of (1.4.3) using the trapezoid rule from calcu-
lus,

y(t1)− y(t0) =

∫ t1

t0

f(s, y(s)) ds

≈ (f(t0, y0) + f(t1, y1))
h

2
.

Thus, our algorithm becomes

y1 = y0 + (f(t0, y0) + f(t1, y1))
h

2
. (1.4.4)

However, we have a problem since y1 appears in the right-hand side of our
approximation. To get around this difficulty, we will replace y1 in the right-
hand side of (1.4.4) with the Euler approximation for y1. Thus,

y1 = y0 + (f(t0, y0) + f(t1, y0 + f(t0, y0)h))
h

2
.

To understand that the second-order Runge-Kutta method is actually an
improvement over the traditional Euler’s method, we will need to use the Taylor
approximation for a function of two variables. Let us assume that f(x, y) is
defined on some rectangle and that all of the derivatives of f are continuously
differentiable. Then

f(x+ h, y + k) = f(x, y) + h
∂

∂x
f(x, y) + k

∂

∂y
f(x, y)

+
1

2!

(
h2

∂2

∂2x
f(x, y) + hk

∂2

∂x∂y
f(x, y) + k2

∂2

∂2y
f(x, y)

)
+

1

3!

(
h3

∂3

∂3x
f(x, y) + 3h2k

∂3

∂2x∂y
f(x, y)

+ hk2
∂3

∂x∂2y
f(x, y) + k3

∂3

∂3y
f(x, y)

)
+ · · · .

As in the case of the single variable Taylor series, we can write a Taylor poly-
nomial if the Taylor series is truncated,

f(x+ h, y + k) =

N∑
n=0

1

n!

(
h
∂

∂x
+ k

∂

∂y

)n

f(x, y)
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+
1

(N + 1)!

(
h
∂

∂x
+ k

∂

∂y

)N+1

f(x, y),

where the second term is the remainder term and (x, y) lies on the line segment
joining (x, y) and (x+ h, y + k).

In the Improved Euler’s Method, we adopt a formula

y(t+ h) = y(t) + w1F1 + w2F2,

where

F1 = hf(t, y)

F2 = hf(t+ αh, y + βF1).

That is,

y(t+ h) = y(t) + w1hf(t, y) + w2hf(t+ αh, y + βhf(t, y)). (1.4.5)

The idea is to choose the constants w1, w2, α, and β as accurately as possible
in order to duplicate as many terms as possible in the Taylor series

y(t+ h) = y(t) + hy′(t) +
h2

2!
y′′(t) +

h3

3!
y′′(t) + · · · . (1.4.6)

We can make equations (1.4.5) and (1.4.6) agree if we choose w1 = 1 and
w2 = 0. Since y′ = f , we obtain Euler’s method.

If we are more careful about choosing our parameters, we can obtain agree-
ment up through the h2 term. If we use the two variable Taylor series to
expand f(t+ αh, y + βhf), we have

f(t+ αh, y + βhf) = f + αhft + βhffy +O(h2),

where O(h2) means that of the subsequent terms have a factor of hn with
n ≥ 2. Using this expression, we obtain a new form for (1.4.5),

y(t+ h) = y(t) + (w1 + w2)hf + αw2h
2ft + βw2h

2ffy +O(h3). (1.4.7)

Since y′′ = ft + fyf by the chain rule, we can rewrite (1.4.6) as

y(t+ h) = y(t) + hf +
h2

2!
(ft + ffy) +O(h3). (1.4.8)

We can make equations (1.4.7) and (1.4.8) agree up through the quadratic
terms if we require that

w1 + w2 = 1,

αw2 =
1

2
,

βw2 =
1

2
.

If we choose α = β = 1 and w1 = w2 = 1/2, these equations are satisfied, and
we obtain the improved Euler’s method

y(t+ h) = y(t) +
h

2
f(t, h) +

h

2
f(t+ h, y + hf(t, y)).

The improved Euler’s method or the second-order Runge-Kutta method is
a more sophisticated algorithm that is less prone to error due to the step size h.
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Euler’s method is based on truncating the Taylor series after the linear term.
Since

y(t+ h) = y(t) + hy′(t) +O(h2),

we know that the error depends on h. On the other hand, the error for the
improved Euler’s method depends on h2, since

y(t+ h) = y(t) + hy′(t) +
h2

2!
y′′(t) +O(h3).

If we use Simpson’s rule to estimate the integral in

y(t1)− y(t0) =

∫ t1

t0

f(s, y(s)) ds,

we can improve our accuracy up to h4. The idea is exactly the same, but the
algebra becomes much more tedious. This method is known as the Runge-
Kutta method of order 4 and is given by

y(t+ h) = y(t) +
1

6
(F1 + 2F2 + 2F3 + F4),

where

F1 = hf(t, y)

F2 = hf

(
t+

1

2
h, y +

1

2
F1

)
F3 = hf

(
t+

1

2
h, y +

1

2
F2

)
F4 = hf(t+ h, y + F3).

1.4.4 Important Lessons
• We can use Euler’s method to find an approximate solution to the initial

value problem

y′ = f(t, y),

y(a) = α

on an interval [a, b]. If we wish to find approximations at N equally
spaced points t1, . . . , tN , where h = (b − a)/N and ti = a + ih, our
approximations should be

Y0 = α,

Y1 = Y0 + hf(α, Y0),

Y2 = Y1 + hf(t1, Y1, )

...
Yk+1 = Yk + hf(tk, Yk),

YN = YN−1 + hf(tN−1, YN−1).

In practice, no one uses Euler’s method. The Runge-Kutta methods are
better algorithms.
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• Taylor’s Theorem is a very useful tool for studying differential equations.
If x > x0, then

f(x) = f(x0)+f
′(x0)(x−x0)+

f ′′(x0)

2!
(x−x0)2+ · · ·+ f (n)(ξ)

n!
(x−x0)n,

where ξ ∈ (x0, x).

• Error analysis rate of convergence is very important for any numerical
algorithm. Our approximation is more accurate for smaller values of h.
Under reasonable conditions we can also bound the error by

|y(ti)− Yi| ≤
hM

2L
[eL(ti−a) − 1],

where y is the unique solution to the initial value problem

y′ = f(t, y),

y(a) = α.

• The condition that there exists a constant L > 0 such that

|f(t, y1)− f(t, y2)| ≤ L|y1 − y2|,

whenever (t, y1) and (t, y2) are in D = [a, b] × R is called a Lipschitz
condition.

• Using Taylor series, we can develop better numerical algorithms to com-
pute solutions of differential equations. The Runge-Kutta methods are
an important class of these algorithms.

• The improved Euler’s method is given by

y(t+ h) = y(t) +
h

2
f(t, h) +

h

2
f(t+ h, y + hf(t, y))

with the error bound depending on h2.

• The Runge-Kutta method of order 4 is given by

y(t+ h) = y(t) +
1

6
(F1 + 2F2 + 2F3 + F4),

where

F1 = hf(t, y)

F2 = hf

(
t+

1

2
h, y +

1

2
F1

)
F3 = hf

(
t+

1

2
h, y +

1

2
F2

)
F4 = hf(t+ h, y + F3)

with the error bound depending on h4.

1.4.5 Reading Questions
1. We can use Taylor polynomials to approximate a function f(x) near a

point x0. Explain why this approximation can only be expected to be
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accurate near x0.
2. Should we always use Euler’s method when approximating a solution to

an initial value problem? Why or why not?

1.4.6 Exercises

Finding Solutions. For each of the initial value problem

y′ = f(t, y),

y(t0) = y0

in Exercise Group 1.4.6.1–6,

(a) Write the Euler’s method iteration Yk+1 = Yk + hf(tk, Yk) for the given
problem, identifying the values t0 and y0.

(b) Using a step size of h = 0.1, compute the approximations for Y1, Y2, and
Y3.

(c) Solve the problem analytically if possible. If it is not possible for you to
find the analytic solution, use Sage.

(d) Use the results of (c) and (d), to construct a table of errors for Yi − yi
for i = 1, 2, 3.

1. y′ = −2y, y(0) = 0 2. y′ = ty, y(0) = 1

3. y′ = y3, y(0) = 1 4. y′ = y, y′(0) = 1

5. y′ = y + t, y′(0) = 2

Hint. This equation is a
first-order linear equation
(Section 1.5), but it is
possible to find the analytic
solution using Sage
(Subsection 1.2.10).

6. y′ = 1/y, y′(0) = 2

7. Consider the differential equation

dy

dt
= 3y − 1

with initial value y(0) = 2.
(a) Find the exact solution of the initial value problem.

(b) Use Euler’s method with step size h = 0.5 to approximate the solu-
tion to the initial value problem on the interval [0, 2] Your solution
should include a table of approximate values of the dependent vari-
able as well as the exact values of the dependent variable. Make
sure that your approximations are accurate to four decimal places.

(c) Sketch the graph of the approximate and exact solutions.

(d) Use the error bound theorem (Theorem 1.4.5) to estimate the error
at each approximation. Your solution should include a table of ap-
proximate values of the dependent variable the exact values of the
dependent variable, the error estimates, and the actual error. Make
sure that your approximations are accurate to four decimal places.
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8. In this series of exercises, we will prove the error bound theorem for Euler’s
method (Theorem 1.4.5).

(a) Use Taylor’s Theorem to show that for all x ≥ −1 and any positive
m,

0 ≤ (1 + x)m ≤ emx.

(b) Use part (1) and geometric series to prove the following statement: If
s and t are positive real numbers, and {ai}ki=0 is a sequence satisfying

a0 ≥ − t

s
ai+1 ≤ (1 + s)ai + t, for i = 0, 1, 2, . . . , k,

then
ai+1 ≤ e(i+1)s

(
t

s
+ a0

)
− t

s
.

(c) When i = 0, y(t0) = Y0 = α and the theorem is true. Use Euler’s
method and Taylor’s Theorem to show that

|yi+1 − Yi+1| ≤ |yi − Yi|+ h|f(ti, yi)− f(ti, Yi)|+
h2

2
|y′′(ξi)|

where ξi ∈ (ti, ti+1) and yk = y(tk).

(d) Show that

|yi+1 − Yi+1| ≤ |yi − Yi|(1 + hL) +
Mh2

2
.

(e) Let aj = |yj − Yj | for j = 0, 1, . . . , N , s = hL, and t = Mh2/2 and
apply part (2) to show

|yi+1 − Yi+1| ≤ e(1+i)hL

(
|y0 − Y0|+

Mh2

2hL

)
− Mh2

2hL
.

and derive that

|yi+1 − Yi+1| ≤
Mh

2L

(
e(ti+1−a)L − 1

)
for each i = 0, 1, . . . , N − 1.

Hint. Hints for part (2):
• For fixed i show that

ai+1 ≤ (1 + s)ai + t

≤ (1 + s)[(1 + s)ai−1 + t] + t

≤ (1 + s){(1 + s)[(1 + s)ai−2 + t] + t}+ t

...
≤ (1 + s)i+1a0 + [1 + (1 + s) + (1 + s)2 + · · ·+ (1 + s)i]t.

• Now use a geometric sum to show that

ai+1 ≤ (1 + s)i+1a0 +
t

s
[(1 + s)i+1 − 1] = (1 + s)i+1

(
t

s
+ a0

)
− t

s
.

• Apply part (1) to derive

ai+1 ≤ e(i+1)s

(
t

s
+ a0

)
− t

s
.
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1.4.7 Sage—Numerical Routines for solving ODEs
Not all differential equations can be solved using algebra and calculus even if we
are very clever. If we encounter an equation that we cannot solve or use Sage
to solve, we must resort to numerical algorithms like Euler’s method or one
of the Runge-Kutta methods, which are best implemented using a computer.
Fortunately, Sage has some very good numerical solvers. Sage will need to
know the following to solve a differential equation:

• An abstract function,

• A differential equation, including an initial condition,

• A Sage command to solve the equation.

Suppose we wish to solve the initial value problem dy/dx = x+y, y(0) = 1.
We can use Sage to find an algebraic solution.

y = function( ' y ' )(x)
de = diff(y,x) == x + y
solution = desolve(de, y, ics = [0,1])
solution.show()
plot(solution , x, 0, 5)

We can also use Euler’s method to find a solution for our initial value
problem.

x,y = PolynomialRing(RR, 2, "xy").gens() #declare x, y as
generators of a polynomial ring

eulers_method(x + y, 0,1, 0.5, 5)

The syntax of eulers_method for the inital value problem

y = f(x, y)

f(x0) = y0

with step size h on the interval [x0, x1] is eulers_method(f, x0, y0, h, x1)
Notice that we obtained a table of values. However, we can use the line
command from Sage to plot the values (x, y).

x,y = PolynomialRing(RR, 2, "xy").gens()
pts = eulers_method(x + y, 0, 1, 1/2, 4.5, algorithm="none")
p = list_plot(pts , color="red")
p += line(pts)
p

As we pointed out, eulers_method is not very sophisticated. We have to
use a very small step size to get good accuracy, and the method can generate
errors if we are not careful. Fortunately, Sage has much better algorithms
for solving initial value problems. One such algorithm is desolve_rk4, which
implements the fourth order Runge-Kutta method.

x,y = var( ' x␣y ' )
desolve_rk4(x + y, y, ics=[0, 1], end_points = 5, step = 0.5)

Again, we just get a list of points. However, desolve_rk4 has some nice
built-in graphing utilities.
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x,y = var( ' x␣y ' )
p = desolve_rk4(x + y, y, ics = [0,1], ivar = x, output =

' slope_field ' , end_points = [0, 5], thickness = 2, color
= ' red ' )

p

Write the Sage commands to compare the graphs obtained using eulers_method
and desolve with the exact solution.

Not only is desolve_rk4 more accurate, it is much easier to use. For
more information, see www.sagemath.org/doc/reference/calculus/sage/calculus/

desolvers.html.

1.5 First-Order Linear Equations

Objectives
• To understand that any first-order linear differential equation

y′ + p(x)y = g(x)

can be solved by multiplying each side of the equation by an integrating
factor.

• To understand the existence and uniqueness of solutions to first-order
initial value problems.

A first-order differential equation is an equation of the form

dx

dt
+ p(t)x = q(t). (1.5.1)

This equation will not be separable if p(t) is not a constant. We shall have
to find a new approach to solving such an equation. We could, of course,
use a numerical algorithm to solve (1.5.1); however, we can always find an
algebraic solution to a first-order linear differential equation. Moreover, the
fact that we can obtain such a solution analytically will prove very useful when
we investigate more complicated equations and systems of equations.

1.5.1 Mine Tailings
In any mining operation, tailings are what is left after everything of value has
been extracted. For example, in a hard rock mining operation, ore is often
pulverized and then processed using chemicals to extract certain minerals of
value. Soft rock mining operations such as coal mining or extracting oil from
tar sands might use solvents or water to extract any commodity of value. The
material that is left over after the minerals, coal, or oil is extracted can often
present huge environmental challenges. There are different ways of processing
mine tailings, but one way is to store them in a pond, especially if water is used
in the mining operation. This method allows any particles that are suspended
in the water to settle to the bottom of the pond. The water can then be treated
and recycled.

Suppose that we have a gold mining operation and we are storing our
tailings in a pond that has an initial volume of 20,000 cubic meters. When we

http://www.sagemath.org/doc/reference/calculus/sage/calculus/desolvers.html
http://www.sagemath.org/doc/reference/calculus/sage/calculus/desolvers.html
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begin our operation, the tailings pond is filled with clean water. The pond has
a stream flowing into it, and water is also pumped out of the pond. Chemicals
are used in processing gold ore. These chemicals such as sodium cyanide can
be highly poisonous and dangerous to the environment, and the water must be
treated before it is released into the watershed. Suppose that 1000 cubic meters
per day flow into the pond from stream and 1000 cubic meters are pumped
from the pond each day to be processed and recycled. Thus, the water level of
the pond remains constant.

At time t = 0, the water from stream becomes contaminated with chemicals
from the mining operation, say at a rate of 5 kilograms of chemicals per 1000
cubic meters. We will assume that water in our tailings pond is well mixed
so that the concentration of chemicals through out the pond is fairly uniform.
In addition, any particulate matter pumped into the pond from the stream
settles to the bottom of the pond at a rate of 50 cubic meters per day. Thus,
the volume of our tailings pond is reduced by 50 cubic meters each day, and
our tailings pond will become full after 400 days of operation. We shall assume
that the particulate matter and the chemicals are included in the 1000 cubic
meters that flow into the pond from the stream each day.

We wish to find a differential equation that will model the amount of chem-
icals in the tailings pond at any particular time. Let x(t) be the amount of
chemicals in the pond at time t. Then dx/dt is the difference between the
rate at which the chemicals are entering the pond and the rate at which the
chemicals leave the pond.

dx

dt
= rate in − rate out.

Since water flows into the pond from the stream at a rate of 1000 cubic meters
per day, the rate at which the chemicals enter the pond is 5 kilograms per day.
On the other hand, the rate at which the chemicals leave the pond will depend
on the amount of chemicals in the pond at time t. The volume of the pond is
decreasing due to sediment, and at time t it is V (t) = 20000− 50t. Thus, the
concentration of chemicals in the pond at time t is x/(20000 − 50t), and the
rate at which the chemicals are flowing out of the pond to be recycled is

1000

(
x

20000− 50t

)
=

20x

400− t
.

Hence, the differential equation that models the amount of chemical in the
tailings pond at time t is

dx

dt
= 5− 20x

400− t
. (1.5.2)

Of course, we will have to cease mining operations once the pond is full, since
there will only be water in the pond if V (t) = 20000 − 50t ≥ 0; that is, when
0 ≤ t < 400.

Notice that equation (1.5.2) is not autonomous. In fact, it is not even
separable. We will have to use a different approach to find a solution. First,
we will rewrite the equation in the form

dx

dt
+

20

400− t
x = 5.

If we multiply both sides of this equation by (400− t)−20, we obtain

(400− t)−20 dx

dt
+ 20(400− t)−21x = 5(400− t)−20. (1.5.3)
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We now make the crucial observation that the product rule applies to the
lefthand side of our equation,

(400− t)−20 dx

dt
+ 20(400− t)−21x =

d

dt

(
(400− t)−20x

)
.

Thus, equation (1.5.3) becomes

d

dt

(
(400− t)−20x

)
= 5(400− t)−20.

Integrating both sides of this equation, we have

(400− t)−20x = 5

∫
(400− t)−20 dt =

5(400− t)−19

19
+ C,

where C is an arbitrary constant. Solving for x, we obtain

x(t) =
5

19
(400− t) + C(400− t)20.

Since x(0) = 0, we can quickly determine that C = −(5/19)400−19 and that
the solution to our initial value problem is

x(t) =
5

19
(400− t)

[
1−

(
400− t

400

)19
]
.

The graph of the solution to our differential equation (Figure 1.5.1) fits the
situation. Initially, there are no chemicals in the pond, but x(t) quickly in-
creases. However, the amount of chemicals decreases as the pond begins to fill
with sediment. Eventually, there are no chemicals at t = 400.

50 100 150 200 250 300 350 400
t

20

40

60

80

x(t)

Figure 1.5.1 Chemical waste in a tailings pond

1.5.2 First-Order Linear Equations
The differential equation

dx

dt
+

20

400− t
x = 5



CHAPTER 1. A FIRST LOOK AT DIFFERENTIAL EQUATIONS 61

is an example of a first-order linear differential equation. More specifically, a
first-order linear differential equation is an equation that can be written
in the form

dx

dt
+ p(t)x = q(t).

Let us first show how to solve first-order linear equations when the coefficient
functions are constant. If

dx

dt
+ px = q,

x(t0) = x0,

then we first multiply both sides of the equation by ept to obtain

ept
dx

dt
+ eptpx = qept.

The left-hand side of the equation is exact. That is,

ept
dx

dt
+ eptpx =

d

dt

(
x(t)ept

)
.

If we integrate both sides of

d

dt

(
x(t)ept

)
= qept,

then
x(t)ept =

q

p
ept + C.

If we apply the initial condition, we can determine C,

C =

(
x0 −

q

p

)
ept0 .

Thus, the solution that we seek is

x(t) =
q

p
+

(
x0 −

q

p

)
ep(t0−t).

Example 1.5.2 Suppose we wish to solve the initial value problem

dx

dt
− 2x = 3, (1.5.4)

x(0) = 1. (1.5.5)

Multiplying both sides of equation (1.5.4) by e−2t, we obtain

d

dt

(
e−2tx

)
= e−2t dx

dt
− 2e−2tx = 3e−2t.

Integrating both sides of this last equation, gives us the following

e−2tx = 3

∫
e−2t dt+ C = −3

2
e−2t + C.

Applying the initial condition x(0) = 1, we can conclude that C = 5/2, and

x(t) =
5

2
e2t − 3

2
.

□
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Example 1.5.3 Now let us solve a first-order linear differential equation where
the coefficients are not constant. Suppose that

y′ + 2xy = e−x2

,

where y(0) = 1. We will multiply both sides of the equation by ex
2 and use

the product rule to obtain

d

dx

(
ex

2

y
)
= ex

2

y′ + 2xex
2

y = ex
2

e−x2

= 1.

Integrating both sides, we get

ex
2

y =

∫
dx+ C.

Thus, the general solution is

y = (x+ C)e−x2

.

Using the initial condition to solve for C, we find that C = 1 and

y = (x+ 1)e−x2

.

We can use Sage to check our solution. □

x = var( ' x ' )
y = function( ' y ' )(x)
de = diff(y, x) + 2*x*y == exp(-x^2)
solution = desolve(de, y, ics = [0, 1])
solution.show()

(x + 1)*e^(-x^2)

Surprisingly, the strategy in Example 1.5.3 will always work. Suppose that

x′ + p(t)x = q(t). (1.5.6)

If we choose P (t) such that P ′(t) = p(t) and multiply both sides of the equation
by eP (t), then (

eP (t)x
)′

= eP (t)(x′(t) + p(t)x(t)) = eP (t)q(t).

Integrating both sides,

eP (t)x =

∫
eP (t)q(t) dt+ C

or
x =

1

eP (t)

(∫
eP (t)q(t) dt+ C

)
.

The Fundamental Theorem of Calculus tells us that P (t) =
∫
p(t) dt. We say

that
µ(t) = e

∫
p(t) dt = exp

(∫
p(t) dt

)
is an integrating factor for the differential equation (1.5.6).
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Example 1.5.4 Consider the initial value problem

dy

dx
− 2

x
y = 2x2

y(−2) = 4.

Our integrating factor is

µ(x) = exp
(
−
∫

2

x
dx

)
= e−2 ln x = eln x−2

= x−2.

Multiplying both of our differential equation by µ(x) = x−2, we obtain

x−2

(
dy

dx
− 2

x
y

)
= 2

or
d

dx

(
x−2y

)
= x−2 dy

dx
− 2x−3y = 2.

We can now integrate this equation to get

x−2y = 2x+ C.

The initial condition y(−2) = 4 allows us to find C = 5. Therefore, the solution
to our initial value problem is

y = 2x3 + 5x2.

□
Activity 1.5.1 Finding Solutions to First-Order Linear Differential
Equations. Solve each of the following initial value problems.
(a) y′ = 3y + t; y(0) = 1

(b) x′ = tx+ 2t; x(1) = 2

(c) y′ = 2x− 3y + e−x; y(0) = 1

(d) du

dt
=
t− 1

t
u+ t2; u(1) = 0

(e) y′ = sinx− y; y(0) = 1

1.5.3 Mixing Models
Many applications involve the mixing of two or more substances together. As
we mentioned previously, we can model how petroleum products are mixed
together in a refinery, how various ingredients are mixed together in a brewery,
or how greenhouse gases move across various layers of the earth’s atmosphere.
Example 1.5.5 Suppose that a 100-gallon tank initially contains 50 gallons
of salt water containing five pounds of salt. A brine mixture containing one
pound of salt per gallon flows into the top of the tank at a rate of 5 gallons per
minute. A well mixed solution leaves the tank at rate of 4 gallons per minute.
We wish to know how much salt is in the tank, when the tank is full.

To construct our model, we will let t be the time (measured in minutes)
and set up a differential equation that will measure how fast the amount of
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salt at time t, x(t), is changing. We have the initial condition x(0) = 5, and

dx

dt
= rate of salt flowing in − rate of salt flowing out

= 5︸︷︷︸
in flow

− 4
x

V (t)︸ ︷︷ ︸
out flow

,

where V (t) is the volume at time t. The expression x/V (t) is the amount of
salt in one gallon at time t. We have V (t) = 50 + t, since the tank starts with
50 gallons and five gallons are pumped into the tank per minute while four
gallons leave the tank during the same time interval. Thus, our differential
equation becomes

dx

dt
= 5− 4

50 + t
x.

Our equation is linear since we can rewrite it as

dx

dt
+

4

50 + t
x = 5. (1.5.7)

An integrating factor for this differential equation is

µ(t) = exp
(∫

4

50 + t
dt

)
= e4 ln(50+t) = (50 + t)4.

Therefore, if we multiply both sides of equation (1.5.7) by µ(t), we get

(50 + t)4
dx

dt
+ 4(t+ 50)3x = 5(50 + t)4.

We can now apply the product rule to obtain

d

dt
[(50 + t)4x] = 5(50 + t)4.

Integrating both sides and simplifying gives us

x = t+ 50 +
C

(t+ 50)4
.

Our initial condition, x(0) = 5 tells us that C = −281,250,000 and

x(t) = t+ 50− 281250000

(t+ 50)4
.

Thus, when the tank is full, t = 50 and the amount of salt in the tank is
x(50) = 97.188 pounds. We can use Sage to easily check the solution of our
initial value problem. □

t = var( ' t ' )
x = function( ' x ' )(t)
de = diff(x, t) + 4*x/(50 + t) == 5
solution(t) = desolve(de, x, ics=[0, 5])
solution (50).n(digits = 5)

97.188
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Activity 1.5.2 A Mixing Problem. Suppose that a tank contains 1000
gallons of a solution consisting of 200 pounds of salt dissolved in water. Pure
water is pumped into the tank at a rate of 6 gallons per minute. At the same
time, the tank is drained at the same rate. Assume that the brine mixture is
kept well stirred.
(a) Set up an initial value problem to model the amount of salt in the tank

at time t.

(b) How long will it take until there is only 20 pounds of salt left in the tank?.

1.5.4 Finance Models
There are a number of problems in finance that can be modeled using differ-
ential equations. Let P (t) be the balance of an account at time t and suppose
that the account pays interest at a rate of r percent per year compounded con-
tinuously. Suppose that we also allow withdrawals of W dollars per year. The
net increase in the balance between times t and t +∆t can now be described
as

P (t+∆t)− P (t) ≈ rP∆t−W∆t

Thus,
P ′(t) = lim

∆t→0

P (t+∆t)− P (t)

∆t
= rP −W.

We can solve the equation

P ′ = rP −W

by multiplying both sides of the equation by the integrating factor

µ(t) = exp
(
−
∫
r dt

)
= e−rt.

to obtain
d

dt
[e−rtP ] = −We−rt.

Integrating both sides of this equation, we have

e−rtP =
W

r
e−rt + C

or
P =

W

r
+ Cert.

If we know the initial balance in the account, say P (0) = P0, we can determine
C. That is,

P0 =
W

r
+ C

or
C = P0 −

W

r
.

Thus, the solution to our initial value problem is

P =
W

r
+

(
P0 −

W

r

)
ert.

Example 1.5.6 Suppose that your parents have established a money market
account with a balance of $50,000 that they will use to help you pay for your
college education. The account receives an average annual interest of 4%. You
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estimate that your tuition, room and board, and other college expenses to be
$20,000 per year.

We model this financial situation with the differential equation

dP

dt
= 0.04P − 20000

P (0) = 50000.

Rewriting the differential equation as dP/dt−0.04P = −20000, our integrating
factor becomes µ(t) = e−0.04t, and

e−0.04t dP

dt
− 0.04e−0.04tP =

d

dt
[e−0.04tP ] = −20000e−0.04t.

Thus,
e−0.04tP =

20000

0.04
e−0.04t + C = 500000e−0.04t + C.

The solution to this initial value problem is

P (t) =
20000

0.04
+

(
50000− 20000

0.04

)
e0.04t = 500000− 450000e0.04t.

Your parents have been quite generous but have told you that you must be
responsible for the balance of the cost of your education. □
Activity 1.5.3 Paying for College. Suppose that new parents want to
start a college fund for their child. They are willing to invest $2000 per year
at a rate of 4%.
(a) Find an initial value problem that models the parents’ investment.

(b) How much will be in the college fund when their child turns 18?

(c) What would they need to invest per year to have $80,000 in the college
fund when their child turns 18?

1.5.5 Existence and Uniqueness of Solutions
Several questions about the existence and uniqueness of solutions to first-order
linear differential equations now arise.

• Does an initial value problem always have a solution?

• Is the solution unique?

• Is the solution globally defined or does it only hold for a small interval?
We can use the following theorem to answer these questions.
Theorem 1.5.7 If

y′ + p(t)y = g(t)

is a differential equation such that y(t0) = y0, and p(t) and g(t) are continuous
on the open interval I = (α, β), then there exists a unique function y = ϕ(t)
satisfying the differential equation and the initial condition on I.
Proof. If

µ(t) = exp
(∫

p(t) dt

)
,

then
d

dt
(µ(t)y) = µ(t)

(
dy

dt
+ p(t)y

)
= µ(t)g(t).
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Integrating both sides of this equation and solving for y, we have

y =
1

µ(t)

(∫
µ(t)g(t) dt+ C

)
.

Since y(t0) = y0, the constant C is uniquely determined. Notice that we have
used continuity to guarantee that the integrals exist. ■

1.5.6 Important Lessons
• Any first-order linear differential equation

y′ + p(x)y = g(x)

can be solved by multiplying each side of the equation by an integrating
factor

µ(s) = e
∫
p(x) dx.

In this case, we get(
eP (x)y

)′
= eP (x)(y′(x) + p(x)y(x)) = eP (x)g(x).

Integrating both sides,

eP (x)y =

∫
eP (x)g(x) dx

or
y =

1

eP (x)

∫
eP (x)g(x) dx.

• If
y′ + p(t)y = g(t)

is a differential equation such that y(t0) = y0, and p(t) and g(t) are
continuous on the open interval I = (α, β), then there exists a unique
function y = ϕ(t) satisfying the differential equation and the initial con-
dition on I.

1.5.7 Reading Questions
1. Explain in your own words what a first-order linear differential equation

is.
2. What important rule from differential calculus do we use when solving a

first-order differential equation?

1.5.8 Exercises

Finding General Solutions. Find the general solution for each equation
in Exercise Group 1.5.8.1–10.

1. dy

dx
+ 5y = 0

2. x′ − 7x = 0

3. y′ + 2xy = 0 4. dx

dt
− t2x = 0

5. y′ +
2

x
y = 0 6. dy

dx
− 5y = ex
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7. y′ − 5y = 10x 8. dx

dt
− 5x = sin 2t

9. y′ − 3

x2
y =

1

x2
10. dy

dx
+

2

x
y =

sinx
x2

Solving Initial Value Problems. Solve the initial value problems in Exer-
cise Group 1.5.8.11–20.

11. dy

dx
+ 5y = 0, y(0) = 2

12. x′ − 7x = 0, x(0) = 1

13. y′ + 2xy = 0, y(0) = 3 14. dx

dt
− t2x = 0, x(0) = −1

15. y′ +
2

x
y = 0, y(1) = −3 16. y′ = − 2y

x+ 1
+ 2x, y(0) = 2

Hint. y =
3x4 + 8x3 + 6x2 + 12

6(x+ 1)2

17. y′ = − 2y

1 + x
+ ex, y(0) = 1

Hint. y = (ex + 1)/(x+ 1)2

18. dx

dt
− 5x = sin 2t, x(0) = π

19. y′ = y tanx+
ex

cosx , y(0) = 1

Hint. y = ex secx

20. y′ = − y

x+ 2
+

cosx
x+ 2

,
y(0) = 1

Hint. y = sinx/(x+ 2)

21. A 600-liter tank initially contains 200 liters of water containing 10 kilo-
grams of salt. Supposed that water containing 0.1 kilograms of salt flows
into the top of the tank at a rate of 10 liters per minute. The water in
the tank is kept well mixed, and 5 liters per minute are removed from the
bottom of the tank. How much salt is in the tank when the tank is full?
Hint. If x(t) is the amount of salt in the tank at time t, we know that
x(0) = 10. The volume of the tank is V = 200 + 5t. We can model the
amount of salt in the tank at time t with a differential equation,

dx

dt
= rate in − rate out

= 10(0.1)− 5
x

V

= 1− 5
x

200 + 5t

= 1− x

40 + t
.

The resulting equation
dx

dt
+

1

40 + t
x = 1

is a first order linear differential equation. An integrating factor for this
equation is given by

µ(t) = exp
(∫

1

40 + t
dt

)
= 40 + t.

Multiplying both sides of the differential equation by µ(t), we have

d

dt
[(40 + t)x] = (40 + t)

dx

dt
+ x = (40 + t)

(
dx

dt
+

1

40 + t
x

)
= 40 + t.
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Integrating both sides of this equation, we obtain

(40 + t)x = 40t+
t2

2
+ C.

Using the intial condition x(0) = 10, we can determine that C = 400 or

x(t) =
t2 + 80t+ 800

2t+ 80
.

The tank is full at time t = 400/5 = 80, and the tank contains x(80) =
170/3 ≈ 56.67 kilograms of salt when the tank is full.

22. A manager in a communications company contributes $2400 per year into
her retirement fund by making many small deposits throughout the year.
The fund grows at a rate of 3.5% per year compounded continuously.
After 35 years, she retires and begins and begins withdrawing from the
retirement fund at a rate of $3500 per month. If she does not make any
deposits after she retires, how long will her retirement fund last? [Hint:
Divide the problem into two smaller problems—one that deals with the
situation before retirement and one that deals with the problem after
retirement.]

23. Lake Baikal, located in southern Siberia, is only the seventh largest lake in
the world in terms of surface area; however, it is the world’s deepest lake.
The lake has a depth of 1,642 meters, and the bottom lies 1,186.5 meters
below sea level. Lake Baikal has a volume of 23,600 cubic kilometers
and contains 20% of the world’s unfrozen fresh water. In contrast, Lake
Superior, the largest of the Great Lakes, has a volume of only 12,100 cubic
kilometers. Although 544 rivers flow into Lake Baikal, there is only a
single outlet, the Angara River. The outflow of the lake is pretty constant
at 60.4 cubic kilometers per year.

Pollution is an increasing concern in Lake Baikal. One of the major pol-
luters has been Baykalsk Pulp and Paper Mill. The mill was constructed
in 1966 on the shoreline of Lake Baikal and regularly discharged waste
into the lake. The plant was closed in November 2008 due to unprofitabil-
ity, but production resumed in January 2010. The mill underwent a final
bankruptcy in September 2013, but the longterm fate of the mill is still
undecided.1

Suppose that we wish to understand how the pollution level changes
in Lake Baikal over a period of years. Hypothetically, let us assume that
the Baykalsk Pulp and Paper Mill has been responsible for most of the
pollution in Lake Baikal for the last several decades. Suppose that at
t = 0 years the mill ceases operation and there are no longer any pollutants
discharged into the lake from the mill although there are still other sources
of pollution. Let us assume that the lake is currently 6 times more polluted
than these other sources of contaminants. We wish to know how long it
will take for the pollution level to reduce to half of its current level of lake.
Lake Baikal’s waters are well-mixed and well-oxygenated in spite of its
great depth, so we can model this situation as a simple mixing problem.

(a) The volume of water in Lake Baikal is V = 23, 600 km3, and

rin = rout = r = 60 km3/year

be the rates of inflow from the numerous rivers that feed the lake and
outflow to the Angara River. Assume that C = Cin is the pollutant
concentration flowing into Lake Baikal and Cout is the concentration
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of the outflow into the Angara River (measured in metric tons per
cubic km). If x(t) is the amount of solute at time t in Lake Baikal,
then

x0 = x(0) = 6CV

is the initial amount of solute in the lake. Estimate ∆x during the
time interval [t, t+∆t], where ∆t > 0 is small.

(b) From your estimate of ∆x in part (1), write an initial value problem
that describes the amount of pollutants in the lake at time t.

(c) The equation that you found in part (2) is a first-order linear equa-
tion. Solve this equation.

(d) Using part (3), predict how many years it will take to reduce the
pollution in Lake Baikal to half of its current level.

24. Variation of Parameters. Consider the following method of solving the
general linear equation of the first order,

y′ + p(t)y = g(t). (1.5.8)

(a) If g(t) is identically zero, show that the solution is

y = A exp
[
−
∫
p(t) dt

]
,

where A is a constant.

(b) If g(t) is not identically zero, assume that the solution is of the form

y = A(t) exp
[
−
∫
p(t) dt

]
, (1.5.9)

where A is now a function of t. By substituting for y in the given
differential equation (1.5.8), show that A(t) must satisfy the condi-
tion

A′(t) = g(t) exp
[∫

p(t) dt

]
. (1.5.10)

(c) Find A(t) from Equation (1.5.10). Then substitute for A(t) in equa-
tion (1.5.9) and determine y. Verify that the solution obtain in this
manner agrees with the solution given in the proof of Theorem The-
orem 1.5.7. That is, show that this solution is equivalent to the
solution

y =
1

µ(t)

(∫
µ(t)g(t) dt+ C

)
,

where
µ(t) = exp

(∫
p(t) dt

)
.

This technique is know as variation of parameters, which we will revisit
when we study second order linear differential equations.

1Levy, Clifford J. (November 8, 2010). “Last Gasp for Factory Bequeathed by Soviets.”
The New York Times. Retrieved March 14, 2014 from www.nytimes.com/2010/11/09/
world/europe/09baikal.html.

http://www.nytimes.com/2010/11/09/world/europe/09baikal.html
http://www.nytimes.com/2010/11/09/world/europe/09baikal.html
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25. Bernoulli’s equation is an equation of the form

y′ = a(t)y + f(t)yn,

where n ̸= 0 or 1. Bernoulli’s equation is nonlinear and cannot be solved
by the techniques that we have used to solve first order linear equations.2

(a) Using the substitution z = y1−n, show that we can transform Bernoulli’s
equation into the linear equation

z′ = (1− n)a(t)z + (1− n)f(t).

(b) Solve the equation xy′ + y = x4y3.
26. The first-order nonlinear differential equation

y′ = p(t) + q(t)y + r(t)y2 (1.5.11)

is known as the Ricatti equation and has some useful applications in
control theory. If one solution y1(t) of the Ricatti equation is known, then
a more general solution containing an arbitrary constant can be found by
substituting y = y1(t) + 1/v(t) into equation (1.5.11) to find a first-order
linear equation in v and t, which we can solve to find a general solution
to the Ricatti equation.

(a) Show that this first-order linear equation is v′+[q(t)+2r(t)y1(t)]v =
−r(t).

(b) Find the solution to the Ricatti equation

y′ = − 1

t2
− 1

t
y + y2

given the particular solution y1 = 1/t.

(c) Find the solution to the Ricatti equation

y′ = cos t− y tan t+ y2 sec t

given the particular solution y1 = sin t.

(d) Find the solution to the Ricatti equation

y′ = 2− 3y + y2

given the particular solution y1 ≡ 2.

Hint.

(a) If y = y1 + 1/v, then y′ = y′1 − v′/v2. Substituting into our original
equation, we obtain

y′ = y′1 −
v′

v2
= p+ qy1 + ry21 −

v′

v2
.

On the other hand,

y′ = p+ q

(
y1 +

1

v

)
+ r

(
y1 +

1

v

)2

2Polking p. 63
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= p+ qy1 +
q

v
+ ry21 +

2ry1
v

+
r

v2

= y′1 +
q

v
+

2ry1
v

+
r

v2
.

Therefore,
− v′

v2
=
q

v
+

2ry1
v

+
r

v2
,

which is just the first-order linear equation

v′ + [q(t) + 2r(t)y1(t)]v = −r(t).

(b)
y = t+

1

C − t

(c)
y(t) =

1

C cos t− sin t + sin t

(d)
y(t) = 2 +

1

Cet − 1

27. Suppose that we have a population that not only grows logistically but
also requires a minimum threshold population to survive. For example,
the case of the North Pacific right whale, a species now very much on the
endangered list. If the population drops too low, whales might not be able
to find suitable mates and the species will eventually go extinct. In other
words, the population will die out if it drops below a certain threshold.
We can model this with the following equation,

dP

dt
= k

(
1− P

N

)
(P − aN), (1.5.12)

where P is the population of the whales at time t and N is the carrying
capacity. The constants k and a are positive with a < 1.

(a) Find the equilibrium solutions of this equation.

(b) Since equation (1.5.12) is autonomous, we can find a solution using
separation of variables. Find this solution.

(c) Equation (1.5.12) is also a Ricatti equation (1.5.11). Since we know
an equilibrium solution from part (1), we can use the method of the
previous problem to find a general solution to (1.5.12). Find the
general solution using the fact that we have a Ricatti equation and
show that your solution agrees with the solution that you found in
part (2).

28. The differential equation

dy

dt
= y − 4t+ y2 − 8yt+ 16t2 + 4.

is not autonomous, separable, or linear; however, we can solve this equa-
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tion with a change of variable.
(a) Transform this equation into a new differential equation of the form

du

dt
= f(u)

by letting u = y − 4t.

(b) Sketch the phase line for this new equation, u′ = f(u), and sketch
several solutions.

(c) Find the solutions of the original differential equation that corre-
spond to the equilibrium solutions of u′ = f(u). Graph these solu-
tions in ty-plane. Also, sketch the graphs of the solutions that you
plotted in part (b).

(d) Solve the differential new equation and use this information to solve
the original differential equation.

1.6 Existence and Uniqueness of Solutions

Objectives
• To understand that the existence and uniqueness of solutions of differen-

tial equations have important implications.

If x′ = f(t, x) and x(t0) = x0 is a linear differential equation, we have
already shown that a solution exists and is unique. We will now take up the
question of existence and uniqueness of solutions for all first-order differential
equations. The existence and uniqueness of solutions will prove to be very
important—even when we consider applications of differential equations.

1.6.1 The Existence and Uniqueness Theorem
The following theorem tells us that solutions to first-order differential equations
exist and are unique under certain reasonable conditions.

Theorem 1.6.1 Existence and Uniqueness Theorem. Let x′ = f(t, x)
have the initial condition x(t0) = x0. If f and ∂f/∂x are continuous functions
on the rectangle

R = {(t, x) : 0 ≤ |t− t0| ≤ a, 0 ≤ |x− x0| ≤ b} ,

there exists a unique solution u = u(t) for x′ = f(t, x) and x(t0) = x0 on some
interval |t− t0| < h contained in the interval |t− t0| < a.

Let us examine some consequences of the existence and uniqueness of solu-
tions.
Example 1.6.2 Consider the initial value problem

x′(t) =
sin(tx)
x2 + t2

,

x(0) = 1.

In this case f(t, x) = sin(tx)/(x2 + t2) is continuous at (0, 1) as is
∂f

∂x
=
t cos(tx)
t2 + x2

− 2x sin(tx)
(t2 + x2)

2 .
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Therefore, a solution to the initial value problem must exist. However, finding
such a solution in terms of elementary functions may be quite difficult if not
impossible. □

Example 1.6.3 Consider the initial value problem y′ = y1/3 with y(0) = 0
and t ≥ 0. Separating the variables,

y−1/3 dy = dt.

Thus,
3

2
y2/3 = t+ C

or

y =

(
2

3
(t+ C)

)3/2

.

If C = 0, the initial condition is satisfied and

y =

(
2

3
t

)3/2

is a solution for t ≥ 0. However, we can find two additional solutions for t ≥ 0:

y = −
(
2

3
t

)3/2

,

y ≡ 0.

This is especially troubling if we are looking for equilibrium solutions. Although
y′ = y1/3 is an autonomous differential equation, there is no equilibrium solu-
tion at y = 0. The problem is that

∂

∂y
y1/3 =

1

3
y−2/3

is not defined at y = 0. □
Example 1.6.4 Suppose that y′ = y2 with y(0) = 1. Since f(t, y) = y2 and
∂f/∂y = 2y are continuous everywhere, a unique solution exists near t = 0.
Separating the variables,

1

y2
dy = dt,

we see that
y = − 1

t+ C
or

y =
1

1− t
.

Therefore, a solution also exists on (−∞, 1) if y(0) = −1. In the case that
y(0) = −1, the solution is

y = − 1

t+ 1
,

and a solution exists on (−1,∞). Solutions are only guaranteed to exist on an
open interval containing the initial value and are very dependent on the initial
condition. □
Remark 1.6.5 Solutions Curves Cannot Cross. The Existence and
Uniqueness Theorem tells us that the integral curves of any differential equation
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satisfying the appropriate hypothesis, cannot cross. If the curves did cross,
we could take the point of intersection as the initial value for the differential
equation. In this case, we would no longer be guaranteed a unique solution to
a differential equation.
Activity 1.6.1 Applying the Existence and Uniqueness Theorem.
Which of the following initial value problems are guaranteed to have a unique
solution by the Existence and Uniqueness Theorem (Theorem 1.6.1)? In each
case, justify your conclusion.
(a) y′ = 4 + y3, y(0) = 1

(b) y′ =
√
y, y(1) = 0

(c) y′ =
√
y, y(1) = 1

(d) x′ =
t

x− 2
, x(0) = 2

(e) x′ =
t

x− 2
, x(2) = 0

(f) y′ = x tan y, y(0) = 0

(g) y′ =
1

t
y + 2t, y(0) = 1

1.6.2 Picard Iteration
It was Emile Picard (1856–1941) who developed the method of successive ap-
proximations to show the existence of solutions of ordinary differential equa-
tions. He proved that it is possible to construct a sequence of functions that
converges to a solution of the differential equation. One of the first steps
towards understanding Picard iteration is to realize that an initial value
problem can be recast in terms of an integral equation.

Theorem 1.6.6 The function u = u(t) is a solution to the initial value problem

x′ = f(t, x)

x(t0) = x0,

if and only if u is a solution to the integral equation

x(t) = x0 +

∫ t

t0

f(s, x(s)) ds.

Proof. Suppose that u = u(t) is a solution to

x′ = f(t, x)

x(t0) = x0,

on some interval I containing t0. Since u is continuous on I and f is continuous
on R, the function F (t) = f(t, u(t)) is also continuous on I. Integrating both
sides of u′(t) = f(t, u(t)) and applying the Fundamental Theorem of Calculus,
we obtain

u(t)− u(t0) =

∫ t

t0

u′(s) ds =

∫ t

t0

f(s, u(s)) ds

Since u(t0) = x0, the function u is a solution of the integral equation.
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Conversely, assume that

u(t) = x0 +

∫ t

t0

f(s, u(s)) ds.

If we differentiate both sides of this equation, we obtain u′(t) = f(t, u(t)).
Since

u(t0) = x0 +

∫ t0

t0

f(s, u(s)) ds = x0,

the initial condition is fulfilled. ■
To show the existence of a solution to the initial value problem

x′ = f(t, x)

x(t0) = x0,

we will construct a sequence of functions, {un(t)}, that will converge to a
function u(t) that is a solution to the integral equation

x(t) = x0 +

∫ t

t0

f(s, x(s)) ds.

We define the first function of the sequence using the initial condition,

u0(t) = x0.

We derive the next function in our sequence using the right-hand side of the
integral equation,

u1(t) = x0 +

∫ t

t0

f(s, u0(s)) ds.

Subsequent terms in the sequence can be defined recursively,

un+1 = x0 +

∫ t

t0

f(s, un(s)) ds.

Our goal is to show that un(t) → u(t) as n → ∞. Furthermore, we need to
show that u is the continuous, unique solution to our initial value problem.
We will leave the proof of Picard’s Theorem to a series of exercises (Exercise
Group 1.6.5.5–13), but let us see how this works by developing an example.

Example 1.6.7 Consider the exponential growth equation,
dx

dt
= kx

x(0) = 1.

We already know that the solution is x(t) = ekt. We define the first few terms
of our sequence {un(t)} as follows:

u0(t) = 1,

u1(t) = 1 +

∫ t

0

ku0(s) ds

= 1 +

∫ t

0

k ds

= 1 + kt,

u2(t) = 1 +

∫ t

0

ku1(s) ds
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= 1 +

∫ t

0

k(1 + ks) ds

= 1 + kt+
(kt)2

2
.

The next term in the sequence is

u3(t) = 1 + kt+
(kt)2

2
+

(kt)3

2 · 3
,

and the nth term is

un(t) = 1 + 1 +

∫ t

0

kun−1(s) ds

= 1 +

∫ t

0

k

(
1 + ks

(kt)2

2!
+

(kt)3

3!
+ · · ·+ (kt)n−1

(n− 1)!

)
ds

= 1 + kt+
(kt)2

2!
+

(kt)3

3!
+ · · ·+ (kt)n

n!
.

However, this is just the nth partial sum for the power series for u(t) = ekt,
which is what we expected. □

1.6.3 Important Lessons
• Existence and uniqueness of solutions of differential equations has impor-

tant implications. Let x′ = f(t, x) have the initial condition x(t0) = x0.
If f and ∂f/∂x are continuous functions on the rectangle

R = {(t, x) : 0 ≤ |t− t0| < a, 0 ≤ |x− x0| < b} ,

there exists a unique solution u = u(t) for x′ = f(t, x) and x(t0) = x0
on some interval |t − t0| < h contained in the interval |t − t0| < a. In
particular,

◦ Solutions are only guaranteed to exist locally.
◦ Uniqueness is especially important when it comes to finding equilib-

rium solutions.
◦ Uniqueness of solutions tells us that the integral curves for a differ-

ential equation cannot cross.

• The function u = u(t) is a solution to the initial value problem

x′ = f(t, x)

x(t0) = x0,

if and only if u is a solution to the integral equation

x(t) = x0 +

∫ t

t0

f(s, x(s)) ds.

• Existence and uniqueness of solutions is proved by Picard iteration. This
is of particular interest since the proof actually tells us how to construct
a sequence of functions that converge to our solution.

1.6.4 Reading Questions
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1. Explain Theorem 1.6.1 in your own words.
2. The differential equations y′ = 5

√
y and y(0) = 0 has two solutions, y(t) ≡

0 and y(t) = 5y6/5/6. Why does this not contradict Theorem 1.6.1?

1.6.5 Exercises
1. Which of the following initial value problems are guaranteed to have a

unique solution by the Existence and Uniqueness Theorem (Theorem 1.6.1)?
In each case, justify your conclusion.

(a) y′ = y2 + y3, y(0) = 1

(b) y′ = 4
√
y, y(1) = 0

(c) y′ = 4
√
y, y(1) = 1

(d) x′ =
t

x2 − 4
, x(0) = 2

(e) x′ =
t

x2 − 4
, x(2) = 0

(f) y′ = x sin y, y(0) = 0

(g) y′ =
1

t− 1
y + 2t, y(1) = 1

Hint.

(a) There exists a unique solution to y′ = y2 + y3, y(0) = 1, since
f(t, y) = y2 + y3 and ∂f(t, y)/∂y = 2y + 3y2 are continuous at the
point (0, 1).

(b) The Existence and Uniqueness Theorem does not apply to y′ = 4
√
y,

y(1) = 0, since f(t, y) = 4
√
y is not continuous at (1, 0).

(c) There exists a unique solution to y′ = 4
√
y, y(1) = 1, since f(t, y) =

4
√
y and ∂f(t, y)/∂y = y−3/4/4 are both continuous at the point

(1, 1).

(d) The Existence and Uniqueness Theorem does not apply to x′ =
t/(x2 − 4), x(0) = 2, since f(t, x) = t/(x2 − 4) is not continuous at
(0, 2).

(e) There exists a unique solution to x′ = t/(x2 − 4), x(2) = 0, since
f(t, x) = t/(x2 − 4) and ∂f(t, x)/∂x = −2tx/(x2 − 4)2 are both
continuous at the point (2, 0).

(f) There exists a unique solution to y′ = x sin y, y(0) = 0, since
f(x, y) = x sin y and ∂f(x, y)/∂y = x cos y are both continuous at
the point (0, 0).

(g) The Existence and Uniqueness Theorem does not apply to y′ =
1/(t − 1)y + 2t, y(1) = 1, since f(t, y) = 1/(t − 1)y + 2t is not
continuous at (1, 1).

2. Find an explicit solution to the initial value problem

y′ =
1

(t− 1)(y + 1)
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y(0) = 1.

Use your solution to determine the interval of existence.
3. Consider the initial value problem

y′ = 3y2/3

y(0) = 0.

(a) Show that the constant function, y(t) ≡ 0, is a solution to the initial
value problem.

(b) Show that

y(t) =

{
0, t ≤ t0

(t− t0)
3, t > t0

is a solution for the initial value problem, where t0 is any real number.
Hence, there exists an infinite number of solutions to the initial value
problem.

(c) Explain why this example does not contradict the Existence and
Uniqueness Theorem.

Hint. (b) Make sure that the derivative of y(t) exists at t = t0.
4. Consider the initial value problem

y′ = 2ty + t

y(0) = 1.

(a) Use the fact that y′ = 2ty + t is a first-order linear differential
equation to find a solution to the initial value problem.

(b) Let ϕ0(t) = 1 and use Picard iteration to find ϕn(t).

(c) Show that the sequence {ϕn(t)} converges to the exact solution that
you found in part (a) as n→ ∞.

Proof of the Existence and Uniqueness Theorem. In Exercise Group 1.6.5.5–
13, prove the Existence and Uniqueness Theorem for first-order differential
equations.

5. Use the Fundamental Theorem of Calculus to show that the function
u = u(t) is a solution to the initial value problem

x′ = f(t, x)

x(t0) = x0,

if and only if u is a solution to the integral equation

x(t) = x0 +

∫ t

t0

f(s, x(s)) ds.

6. If ∂f/∂x is continuous on the rectangle

R = {(t, x) : 0 ≤ |t− t0| < a, 0 ≤ |x− x0| < b} ,

prove that there exists a K > 0 such that

|f(t, x1)− f(t, x2)| ≤ K|x1 − x2|
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for all (t, x1) and (t, x2) in R.
7. Define the sequence {un} by

u0(t) = x0,

un+1 = x0 +

∫ t

t0

f(s, un(s)) ds, n = 1, 2, . . . .

Use the result of the previous exercise to show that

|f(t, un(t))− f(t, un−1(t))| ≤ K|un(t)− un−1(t)|.
8. Show that there exists an M > 0 such that

|u1(t)− x0| ≤M |t− t0|.
9. Show that

|u2(t)− u1(t)| ≤
KM |t− t0|2

2
.

10. Use mathematical induction to show that

|un(t)− un−1(t)| ≤
Kn−1M |t− t0|n

n!
.

11. Since

un(t) = u1(t) + [u2(t)− u1(t)] + · · ·+ [un(t)− un−1(t)],

we can view un(t) as a partial sum for the series

u0(t) +

∞∑
n=1

[un(t)− un−1(t)].

If we can show that this series converges absolutely, then our sequence
will converge to a function u(t). Show that

∞∑
n=1

|un(t)− un−1(t)| ≤
M

K

∞∑
n=1

(K|t− t0|)n

n!
≤ M

K

(
eK|h| − 1

)
,

where h is the maximum distance between (t0, x0) and the boundary
of the rectangle R. Since |un(t) − un−1(t)| → 0, we know that un(t)
converges to a continuous function u(t) that solves our equation.1

12. To show uniqueness, assume that u(t) and v(t) are both solutions to

x(t) = x0 +

∫ t

t0

f(s, x(s)) ds.

Show that
|u(t)− v(t)| ≤ K

∫ t

t0

|u(s)− v(s)| ds.

13.
(a) Define2

ϕ(t) =

∫ t

t0

|u(s)− v(s)| ds,

1We must a theorem from advanced calculus here to ensure uniform continuity (see Ex-
ercise 1.6.5.14). Any sequence of functions that converges uniformly, must converge to a
continuous function.
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then ϕ(t0) = 0 and ϕ(t) ≥ 0 for t ≥ t0. Show that

ϕ′(t) = |u(t)− v(t)|.

(b) Since

|u(t)− v(t)| −K

∫ t

t0

|u(s)− v(s)| ds ≤ 0,

we know that
ϕ′(t)−Kϕ(t) ≤ 0.

Use this fact to show that

d

dt

[
e−Ktϕ(t)

]
≤ 0.

Conclude that

ϕ(t) =

∫ t

t0

|u(s)− v(s)| ds = 0

for t ≥ t0 or for all t ≥ t0 and u(t) = v(t).
14. Let ϕn(x) = xn for 0 ≤ x ≤ 1 and show that

lim
n→∞

ϕn(x) =

{
0, 0 ≤ x < 1

1, x = 1.

This is an example of a sequence of continuous functions that does not con-
verge to a continuous function, which helps explain the need for uniform
continuity in the proof of the Existence and Uniqueness Theorem.

1.7 Bifurcations

Objectives
• To understand that a one-parameter family of differential equations

dx

dt
= fλ(x)

has a bifurcation at λ = λ0 if a change in the number or type of equi-
librium solutions occurs.

• To understand that bifurcation diagrams are an effective way of represent-
ing the nature of the solutions of a one-parameter family of differential
equations.

Many of the equations that we have examined have a parameter, which
means that we actually have a family of differential equations. For example,

dx

dt
= kx

has the growth rate parameter k. The logistic equation

dP

dt
= kP

(
1− P

N

)
2A similar argument will work for t ≤ t0.
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has two parameters, k and N . In this section we will investigate how the
solutions of a differential equation vary as we change the value of a parameter.

1.7.1 The Logistic Model with Harvesting Revisited
Recall how we modeled logistic growth in a trout pond in Example 1.3.9 with
the equation

dP

dt
= P

(
1− P

200

)
.

If we allowed fishing in our pond at a rate of 32 fish per year, then the equation
became

dP

dt
= P

(
1− P

200

)
− 32.

There are two equilibrium solutions for this equation, P1 = 160 (a sink) and
P2 = 40 (a source). If the population of the pond falls below 40, then the fish
will die out unless the pond is restocked or fishing is banned (Figure 1.7.1).

0 2 4 6 8 10
t

0

50

100

150

200

P
(t

)

Figure 1.7.1 Harvesting with H = 32

Now let us see what happens when we allow more fishing in our pond, say
H = 100. Our differential equation now becomes

dP

dt
= P

(
1− P

200

)
− 100.

To determine the equilibrium solutions, we must solve

dP

dt
= P

(
1− P

200

)
− 100 = 0 (1.7.1)

for P . This last equation can be rewritten as P 2 − 200P + 20000 = 0. Thus,

P =
200±

√
2002 − 4 · 20000

2
= 100±

√
−10000,

which means that equation (1.7.1) has no real solutions and that we have no
equilibrium solutions. Furthermore, dP/dt < 0 for all values of P . This means
that no matter how many fish are in the pond initially, the trout population
will eventually die out due to overfishing (Figure 1.7.2).
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Figure 1.7.2 Harvesting with H = 100

Finally, we will let H = 50. In this case, we must solve
dP

dt
= P

(
1− P

200

)
− 50 = 0

in order to determine any equilibrium solutions. We now obtain a single equi-
librium solution at P = 100. In fact, P = 100 will be a node. For values of
P > 100 as well as values of P < 100, we have dP/dt < 0, and the number of
fish in the pond will decrease (Figure 1.7.3).
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Figure 1.7.3 Harvesting with H = 50

To better understand what is happening, we will generalize our model.
Suppose that a population with a limited carrying capacity N is modeled with
the logistic equation

dP

dt
= kP

(
1− P

N

)
.

If we allow harvesting at a constant rate H, our model now becomes
dP

dt
= kP

(
1− P

N

)
−H.

To analyze our model, we will first find the equilibrium solutions. If we will let

fH(P ) = kP

(
1− P

N

)
−H,

each equilibrium solution must satisfy fH(P ) = 0 or

−kP 2 + kNP −HN = 0.
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Therefore, our equilibrium solutions are given by

P =
−kN ±

√
k2N2 − 4kHN

−2k
=
N

2
±
√
N2

4
− HN

k
.

The explanation of how our model behaves lies in the discriminant,

N2

4
− HN

k
.

If
N2

4
− HN

k
< 0

or, equivalently if H > kN/4, there are no equilibrium solutions and

dP

dt
= fH(P ) < 0

for all values of P . In particular, all solutions of dP/dt = fH(P ) tend towards
negative infinity as t→ ∞. In this case, the population is doomed to extinction
no matter how large the initial population is. Since negative populations do
not make sense, we say that the population is extinct when P = 0.

On the other hand, if H < kN/4, we have equilibrium solutions at

P1 =
N

2
+

√
N2

4
− HN

k

and

P2 =
N

2
−
√
N2

4
− HN

k
.

The first equilibrium solution, P1 is a sink, while the second, P2 is a source.
Finally, if H = kN/4, then we will have exactly one equilibrium solution

at P = N/2. Although dP/dt < 0 for all P ̸= N/2, we see that P → N/2 as
t→ ∞ for all initial values of P greater than N/2. For initial values of P less
than N/2, solutions tend towards −∞ as t→ ∞. Thus, the initial population
of fish must be at least kN/4; otherwise, the fish will go extinct.

In our example, we have a family of differential equations—one for each
value of H,

dP

dt
= P

(
1− P

200

)
−H. (1.7.2)

A small change in H can have a dramatic effect on how the solutions of the
differential equation behave. Changing the value ofH from 50 to 50.1 will doom
the population of fish to extinction no matter what the initial population is.
As we increase the value of H, the number of equilibrium solutions changes
from two to one and then to none. This change occurs exactly at H = 50. We
say that a bifurcation occurs at H = 50 for equation (1.7.2).

Activity 1.7.1 Upland Bird Populations. The chukar partridge, or simply
chukar, is a upland gamebird in the pheasant family. Originally native to Asia
and ranging from the eastern Mediterranean to Himalayas, the chukar has been
widely introduced as an upland game bird with populations now established in
the United States, Canada, Chile, Argentina, New Zealand and Hawaii. One
particularly good area for hunting chukar is the western Great Basin area of
the U.S. (eastern Oregon and Washington and western Idaho).
(a) Suppose that the population of chukar on a private game ranch in eastern

Oregon grows logisitically. Estimates tell us that the one hundred square
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mile ranch and that the ranch can support at most 120 birds per square
mile. The growth rate of the chukar population is estimated to be 1.5
birds per year. Model the growth of the chukar population with an initial
value problem.

(b) Suppose that hunting on the ranch is restricted to guests and the average
guest harvest 10 chukars per visit. Modify the model in part (a) to take
into account the effect that hunting has on the chukar population.

(c) What is the maximum number of guests that the ranch can accommodate
and still maintain a healthy population of game birds? How many chukar
per square mile would be needed to allow this many guests?

1.7.2 One-Parameter Families
Let us consider the equation

dx

dt
= x2 − 4x+ λ (1.7.3)

as a family of differential equations indexed by the parameter λ. If we let
fλ(x) = x2 − 4x+ λ, then

dx

dt
= fλ(x)

is a called one-parameter family of differential equations. For each value of
λ, we obtain an autonomous differential equation, and for each value of λ, we
have a different phase line to examine.

For λ = 0, the differential equation

dx

dt
= f0(x) = x2 − 4x = x(x− 4),

there is a sink at x = 0 and a source at x = 4 (Figure 1.7.4).
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Figure 1.7.4 x′ = x2 − 4x+ λ for λ = 0

For λ = 4, the differential equation

dx

dt
= f4(x) = x2 − 4x+ 4 = (x− 2)2,
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we have exactly one equilibrium solution, a node at x = 2 (Figure 1.7.5).
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Figure 1.7.5 x′ = x2 − 4x+ λ for λ = 4

If λ = 8, then the differential equation

dx

dt
= f8(x) = x2 − 4x+ 8

has no equilibrium solutions (Figure 1.7.6).
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Figure 1.7.6 x′ = x2 − 2x+ λ for λ = 8

In fact, the number of equilibrium solutions for (1.7.3) changes at λ = 4.
We say that λ = 4 is a bifurcation value for the differential equation

dx

dt
= fλ(x) = x2 − 4x+ λ. (1.7.4)

For λ < 4, we have two equilibrium solutions.

x = 2±
√
4− λ.
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For values of λ > 4, there are no equilibrium solutions. We can record all of the
information for the various values in a graph called the bifurcation diagram.
The horizontal axis is λ and the vertical axis is x. Over each value of λ, we
will plot the corresponding phase line. The curve in the graph represents the
various equilibrium solutions for the different values of λ. The bifurcation
diagram for equation (1.7.4) is a parabola (Figure 1.7.7). We have a phase line
for each value of λ.

1 1 2 3 4 5
λ

1

1

2

3

4

5
x

Figure 1.7.7 Bifurcation diagram for x′ = x2 − 4x+ λ

Bifurcations for a one-parameter family of differential equations dx/dt =
fλ(x) are, in fact, rare. Let us consider a bifurcation where a sink changes to
a source as we vary the parameter λ. Suppose that for λ = λ0, we have a sink
at x0. Then

dx

dt
= fλ0

(x0) = 0.

Furthermore, the graph of fλ0
(x) must be decreasing for x near x0, since fλ0

(x)
must be postive for values of x < x0 and negative for values of x > x0. In other
words, f ′λ0

(x) < 0 for x near x0 with f ′λ0
(x0) < 0, then for all λ1 sufficiently

close to λ0, the differential equation

dx

dt
= fλ1

(x)

must have sink at a point x = x1 very close to x0. A similar situation holds
if x0 is a source and f ′λ0

(x0) > 0. Thus, bifurcations can only occur when
fλ0

(x0) = 0 and f ′λ0
(x0) = 0.

Example 1.7.8 Now consider the one-parameter family

dy

dt
= y3 − αy = y(y2 − α).

We will have an equilibrium solution at zero for all values of α and two addi-
tional equilibrium solutions at ±

√
α for α > 0. This type of bifurcation is a

pitch fork bifurcation (Figure 1.7.9).
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Figure 1.7.9 The bifurcation diagram for y′ = y3 − αy

□
Activity 1.7.2 Bifurcations. For each of the following parametrized fam-
ily of differential equations, plot phase lines for c = −2,−1, 0, 1, 2, find any
bifurcation values, and sketch the bifurcation diagram.
(a) y′ = (1− y)y + c

(b) y′ = (c− y2)y

Example 1.7.10 Let us find the bifurcation values of the one-parameter family

dy

dt
= y(y − 2)2 + λ. (1.7.5)

If gλ(y) = y(y − 2)2 + λ, then g′λ(y) = 3y2 − 8y + 4. The roots of g′λ(y) = 0
are y = 2 and y = 2/3. In order for λ to be a bifurcation value, we must have
gλ(2) = λ = 0 or

gλ(2/3) =
32

27
+ λ = 0

Thus, equation (1.7.5) has two bifurcation values, λ = −32/27 and λ = 0. The
bifurcation diagram for this one-parameter family is given in Figure 1.7.11.
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Figure 1.7.11 The bifurcation diagram for y′ = y(1− y)2 + λ

□

1.7.3 Important Lessons
• A one-parameter family of differential equations

dx

dt
= fλ(x)

has a bifurcation at λ = λ0 if a change in the number of equilibrium
solutions occurs.
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• Bifurcation diagrams are an effective way of representing the nature of
the solutions of a one-parameter family of differential equations.

• Bifurcations for a one-parameter family of differential equations dx/dt =
fλ(x) are rare. Bifurcations occur when fλ0

(x0) = 0 and f ′λ0
(x0) = 0.

1.7.4 Reading Questions
1. Explain what a bifurcation is in your own words.
2. Explain why a bifurcation is relatively rare for a one-parameter family of

differential equations.

1.7.5 Exercises

Bifurcations and Bifurcation Diagrams. For each of the following param-
etrized family of differential equations, plot phase lines for λ = −2,−1, 0, 1, 2,
find any bifurcation values, and sketch the bifurcation diagram.

1. y′ = λ− y2.
2. y′ = λy2 − 1 for λ ∈ R.
3. y′ = λ− 2y + y2.
4. y′ = (λ− 4y2)y.
5. y′ = (λ− y4)y.

6. Describe the phase line portraits for y′ = λy − sin y for λ > 2/π and how
it depends on the parameter λ. Draw the bifurcation diagram for this
equation.

1.8 Projects for First-Order Differential Equa-
tions

Project 1.8.1 Project—The Spruce Budworm. Choristoneura fumifer-
ana or the eastern spruce budworm is a species of moth native to the eastern
United States and Canada. The caterpillars feed on the needles of spruce and
fir trees. Populations can experience significant oscillations. The spruce bud-
worm population remains at a relatively low, constant level most of the time.
However, outbreaks have been recurring approximately every three decades,
and studies suggest the spruce budworm has been breaking out in eastern
North America for thousands of years.

Outbreaks of the spruce budworm have been responsible for some major
deforestations in Canada and the United States. The eastern spruce budworm
is considered one of the most destructive forest pests in North America.

You are acting as a consultant to the state department of forestry. Your
task is to explain how outbreaks occur and how often the state can expect
outbreaks.

The equation

x′ = r
(
1− x

K

)
x− c

x2

a+ x2
(1.8.1)

has been used to describe the dynamics of spruce budworm populations, where
the variable x denotes the population or density of the insect [16]. One ex-
planation that has been given for the occurrence of outbreaks is based on the
multiple bifurcations that occur with this differential equation.
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(a) Explain how (1.8.1) can be used to model the spruce budworm popula-
tion.

(b) If a = 0.01, c = 1, and K = 1, we have a family of differential equations
parameterized by r,

x′ = rx(1− x)− x2

0.01 + x2
.

Solve the equation

rx(1− x)− x2

0.01 + x2
= 0

and plot the result in the xr-plane for 0 ≤ r < 1.

(c) To find the bifurcation diagram for the spruce budworm equation, reflect
the graph obtained in part Task 1.8.1.b about the line r = x line.

(d) Estimate the two bifurcation values from your graph. Explain what hap-
pens to the population as r increases. That is, when does an outbreak
occur? What happens after an outbreak?

(e) Your Final Report.
Your final report should contain a one-page executive summary. The
executive summary should summarize your work in such a way that the
reader can rapidly become acquainted with the material. It should con-
tain a brief description of the problem, important background informa-
tion, a discussion of pertinent assumptions, a short description of your
methodology, concise analysis, and your main conclusions. Assume the
reader is familiar with the basics of calculus and differential equations,
so there is no need to walk through every step of your solution process or
include equations. However, you should still describe the processes and
mathematical techniques you used to reach your conclusions and explain
why you used them. Refer the reader to the appendices as needed.
Appendices should be neatly formatted and present information in a log-
ical manner. DO NOT simply print out Sage code. Consolidate your
results and provide a short explanation of what it is the reader is seeing
while also highlighting key pieces of information in the appendix.

• Appendix A—Answers and analysis
• Additional Appendices—Include additional appendices as necessary.

Project 1.8.2 Project—The Spread of an Oil Spill. Oil spills such
as the Deepwater Horizon in the Gulf of Mexico or the Amoco Cadiz off the
coast of Brittany can have disastrous consequences for society—economically,
environmentally, and socially. Even smaller spills such as the Exxon Valdez can
have have a huge impact on the surrounding environment due to the remoteness
of the site or the difficulty of mounting an emergency environmental response.
Cleanup and recovery from an oil spill is difficult and depends upon many
factors, including the type of oil spilled, the temperature of the water, and
the types of shorelines and beaches involved. Spills may take weeks, months or
even years to clean up. For this reason the timeliness of an emergency response
is critical.1

Suppose an oil spill occurs off the coast of Texas. From time to time, but
irregularly, a helicopter is dispatched by the Coast Guard to photograph the



CHAPTER 1. A FIRST LOOK AT DIFFERENTIAL EQUATIONS 91

oil slick. On each trip, the helicopter arrives over the slick, the pilot takes a
photo, waits 10 minutes, takes a second photo, and heads home. On each of
seven trips the size (in area) of the slick is measured from both photographs.
The data is given in Table 1.8.1
Table 1.8.1 Data on spread of an oil spill

Initial Observation 10 Minutes Later
1.047 1.139
2.005 2.087
3.348 3.413
5.719 5.765
7.273 7.304
8.410 8.426
9.117 9.127

(a) Build a model for the size of the oil slick at time t.

(b) Predict the future size of the oil slick, say at t = 10 min, t = 20 min,
t = 120 min.

(c) Plot your model of the size of the oil slick as a function of time.

(d) Find the time at which the oil slick is 8 square miles.

(e) Determine the time of each of the observations for the first, third, fifth,
and seventh initial observations.

(f) Your Final Report.
You have been retained as a consultant to the United States Coast Guard
(USCG) to analyze this data and submit a report of your findings. Your
final report should contain a one-page executive summary. The executive
summary should summarize your work in such a way that the reader can
rapidly become acquainted with the material. It should contain a brief
description of the problem, important background information, a discus-
sion of pertinent assumptions, a short description of your methodology,
concise analysis, and your main conclusions. Do not assume that the
reader knows anything about calculus or differential equations, but does
have experts that can verify your model and calculations, which should
appear in an appendix.
Appendices should be neatly formatted and present information in a logi-
cal manner. DO NOT simply print out Sage code or a series of equations.
Consolidate your results and provide a short explanation of what it is the
reader is seeing while also highlighting key pieces of information in the
appendix.

• Appendix A—Answers and analysis
• Additional Appendices—Include additional appendices as necessary.

Project 1.8.3 Project—Malaria Control. Your company has been con-
tracted to build a hospital in sub-Saharan Africa. The company is aware of the
malaria threat in the region and has asked you to analyze malaria preventive
measures for the employees that will be sent to build the hospital.2

1This project is adapted from Brian Winkel(2015), “1-005-S-OilSlick,” https://www.
simiode.org/resources/196.

https://www.simiode.org/resources/196
https://www.simiode.org/resources/196
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Malaria is a serious and sometimes fatal disease. In 2018, it was estimated
that 228 million people worldwide contracted malaria. The estimated number
of deaths was approximately 405,000 people. Children under the age of 5 years
are the most vulnerable group, and they accounted for 67% (272,000) of all
malaria deaths worldwide. Ninety-three percent of malaria cases are in Africa
with six countries accounting or more than half of all malaria cases worldwide:
Nigeria (25%), the Democratic Republic of the Congo (12%), Uganda (5%),
and Côte d’Ivoire, Mozambique and Niger (4% each).3

People who get malaria are typically very sick with high fevers, shaking
chills, and flu-like illness. Although malaria can be a deadly disease, illness
and death from malaria can usually be prevented. The disease is caused by a
parasite that infects red blood cells. The parasite is transmitted from person to
person through the bite of mosquitoes. Avoiding mosquito bites is the only sure
method to prevent malaria infection. Malaria can be cured with prescription
drugs. The type of drugs and length of treatment depend on the type of
malaria, where the person was infected, their age, whether they are pregnant,
and how sick they are at the start of treatment.4

(a) Pharmacokinetics of Malaria Chemoprophylaxis.
Your first task is to analyze the anti-malarial drug dosing regimen for
those building the hospital. The primary concerns are how soon to start
treatment before everyone arrives and the potential risks if employees
miss one or two of their scheduled doses. These questions require an
understanding of pharmacokinetics.
Pharmacokinetics is the study of what the body does to a drug. Specif-
ically, it refers to the movement of the drug into, through, and out of
the body. Understanding the pharmacokinetics of a drug allows med-
ical professionals to develop appropriate drug dosing regimens for their
patients. A complete understanding of the pharmacokinetics of a drug
requires information on the processes of absorption, distribution, metab-
olization, and excretion of the drug from the body. In order to simplify
this problem, we will assume that the anti-malarial medication is immedi-
ately absorbed into the blood stream and that everyone begins treatment
with zero anti-malarial medication in their body. After the drug is ab-
sorbed into the blood, the rate of elimination of the drug from the body
is proportional to the amount of drug currently in the blood. In other
words, the more of the drug in the blood stream, the faster it is removed
from the body. We will also assume that the rate of excretion of the drug
is the same for everyone.
Atovaquone/proguanil, sold under the trade names Malarone among oth-
ers, is a combination of two antimalarial medication atovaquone and
proguanil. It is used to treat and prevent malaria, including chloroquine-
resistant malaria. A standard adult pill of Malarone contains 250mg of
atovaquone and 100mg of proguanil. A typical dose is one pill taken at
the same time each day. An individual must maintain at least 300mg of
atovaquone and 30mg of proguanil in their blood at all times in order to
prevent contracting malaria. A typical adult eliminates atovaquone at
a rate that corresponds to a half-life (time to eliminate one half of the
original dose) of 48 hours. The half-life of proguanil is 12 hours.5

(i) At t = 0, a typical adult ingests one pill of Malarone. Write an
initial value problem (IVP) that models the mass (mg) of the drug
proguanil in the adult’s blood for t ≥ 0. Solve this IVP analytically.
After a person takes the first pill of Malarone, if they take no further
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medication, for how many hours can they expect to have enough
proguanil in his blood to prevent contracting malaria?

(ii) Approximate the solution to the IVP you developed in Task 1.8.3.a.i
over the next seven days (168 hours) by implementing Euler’s method
in Sage with two step sizes: h = 6 hours and h = 1 hour (see
utmost-sage-cell.org/diff-equations). Compute the error for both
step sizes by comparing your estimate to the analytic solution.

(iii) Approximate the solution to the IVP over the next seven days by
implementing the RK4 or classic Runge–Kutta method in Sage with
step size: h = 1 hour. Compute the error for both step sizes by com-
paring your estimate to the analytic solution (see utmost-sage-cell.

org/diff-equations).

(iv) Create a table summarizing the results of all numerical methods
(Task 1.8.3.a.ii and Task 1.8.3.a.iii). This table should include columns
for time, the actual mass of proguanil in each subject’s blood (from
Task 1.8.3.a.i), and the approximate values of the solution for all
methods and step sizes at t = 0, 24, 48, . . . , 168 only. Your table
should have a total of 5 columns. Include an additional entry at the
bottom of each of the last 3 columns providing the error for that
method and step size. Discuss your results. Your analysis should
include a comparison of error for different step sizes and for different
methods.

(v) Write an IVP that models the mass (mg) of the drug atovaquone in
a typical adult’s blood for t ≥ 0 if a person ingests only one pill of
Malarone at t = 0. Approximate the solution to this IVP using the
RK4 method in Sage with step size: h = 1 hour.

(vi) Using your solutions to parts Task 1.8.3.a.iii and Task 1.8.3.a.v, if
an adult ingests one pill of Malarone at the same time each day,
how long before your construction crew departure to Africa should
your crew begin taking their pills? In other words, how long until
everyone has enough proguanil AND atovaquone in their blood to
prevent contracting malaria? Illustrate your result using a graph or
table.

(vii) Assume a typical person reaches a “steady state” level of proguanil
and atovaquone in their body after their 8th dose of Malarone. If
after reaching “steady state” a person misses one dose, are they at
risk of contracting malaria? How about after missing two consecu-
tive doses? Explain.

(b) Mosquito Population Control.
Unfortunately anti-malarial drugs are not 100% effective at preventing
the spread of malaria. The only sure method to prevent contracting
malaria is to avoid mosquito bites. In light of this, you must look at
methods to control the mosquito population in the construction area
near the living quarters. Your objective is to reduce the mosquito pop-
ulation in both the short (less than 6 months) and long (greater than 6

http://utmost-sage-cell.org/diff-equations
http://utmost-sage-cell.org/diff-equations
http://utmost-sage-cell.org/diff-equations
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months) term while also minimizing the environmental impact and po-
tential health problems associated with the mosquito control measures
that are implemented.
There are two typical approaches to mosquito control. The first approach
is to directly kill mosquitoes using an insecticide spray. The effectiveness
of this method depends on the frequency of spraying and the concentra-
tion of the insecticide. However, frequent spraying of insecticide has po-
tential negative health effects on both humans and nearby wildlife. This
method is also temporary as the mosquito population will recover once
routine spraying has stopped. The second approach to mosquito pop-
ulation control is to eliminate the resources that support the mosquito
population. This is done through the destruction of mosquito breed-
ing grounds and involves everything from filling in small puddles to the
draining of swamps and marshes. Keeping in consideration manpower
and budget constraints, you must find the combination of these two ap-
proaches that best meets these objectives over the next six months.
Studies on mosquito control indicate that the rate of change of the mos-
quito population, P , (measured in millions of mosquitoes) in the area can
be accurately modeled using the following Initial Value Problem:

dP

dt
= kP

(
1− P

M

)
− EP, P (0) = P0,

where E is a constant that represents the effectiveness of insecticide spray-
ing efforts, M is the local carrying capacity and is affected by efforts to
reduce mosquito breeding grounds, k is the population growth constant,
P0 is the initial population, and time t is measured in months. Current
estimates suggest that there are approximately 10 million mosquitoes liv-
ing near the proposed site of the hospital. Data indicates that M = 11
million and k = 1.2 for this mosquito population.
Use the information provided and the RK4 method to evaluate the fol-
lowing three mosquito population scenarios. Recommend a scenario and
support your recommendation with mathematics. Be sure to include
other considerations (not just what your mathematical model tells you)
in your analysis. Tables, graphs, and other visual representations that
summarize and support your analysis and recommendation are encour-
aged and should be included in an appendix.

(i) Scenario A.
In this scenario, you would devote most of your available resources
for mosquito control to the use of insecticide. You would spray
highly concentrated and expensive insecticide in the employee living
areas daily. Due to the emphasis on the use of insecticide would be
limited to destroying small mosquito breeding grounds only on the
base camp. You estimate a value for E of EA (see Table 1.8.2) and
a new carrying capacity of MA million mosquitoes that would be in
effect immediately.
Table 1.8.2 Values for M and E

Scenario A Scenario B Scenario C
MA EA MB EB MC EC

Set 1 10.5 0.55 6.0 0.10 9.0 0.40
Set 2 10.0 0.60 5.5 0.10 8.5 0.45
Set 3 10.5 0.50 6.5 0.10 9.0 0.40
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(ii) Scenario B.
In this scenario, you would devote most of your resources towards
destroying mosquito breeding grounds. This would involve the per-
manent draining of a nearby marsh that is believed to be the primary
breeding ground for mosquitoes at the construction site. Draining
the marsh would take time to complete, delaying any impact on the
mosquito population by two months, but would lower the carrying
capacity to MB million mosquitoes. You would still spray insecti-
cide but less frequently and with less potency than in Scenario A. It
is estimated that spraying would immediately result in a value for
E of EB .

(iii) Scenario C.
This scenario seeks to balance the insecticide and breeding ground
destruction approaches. You would use the same, more potent, in-
secticide as Scenario A but spray less frequently. This would free
up manpower to destroy small mosquito breeding grounds. You es-
timate a new value for E of EC and a new carrying capacity of MC

million mosquitoes that would be in effect immediately.

(c) Your Final Report.
Your final report should contain a one-page executive summary. The
executive summary should summarize your work for Task 1.8.3.a and
Task 1.8.3.b in such a way that the reader can rapidly become acquainted
with the material. It should contain a brief description of the problem,
important background information, a discussion of pertinent assumptions,
a short description of your methodology, concise analysis, and your main
conclusions. Assume the reader is familiar with the basics of calculus
and differential equations, so there is no need to walk through every step
of your solution process or include equations. However, you should still
describe the processes and mathematical techniques you used to reach
your conclusions and explain why you used them. Refer the reader to the
appendices as needed.
Appendices should be neatly formatted and present information in a log-
ical manner. DO NOT simply print out Sage code. Consolidate your
results and provide a short explanation of what it is the reader is seeing
while also highlighting key pieces of information in the appendix.

• Appendix A—Answers and analysis for Task 1.8.3.a
• Appendix B—Provide a table that summarizes the results of your

analysis for all three scenarios in Task 1.8.3.b. Also include a copy
of all work you used to analyze your recommended scenario.

• Additional Appendices—Include additional appendices as necessary.

2This project is adapted from David Culver (2016), “1-024-S-MalariaControl,” www.
simiode.org/resources/1750.

3World Malaria Report 2019, World Health Organization, www.who.int/publications/
i/item/9789241565721.

4Malaria, Centers for Disease Control and Prevention, www.cdc.gov/parasites/
malaria/index.html.

5Malarone: Prescribing Information. US Food and Drug Administration. www.
accessdata.fda.gov/drugsatfda_docs/label/2008/021078s016lbl.pdf

https://www.simiode.org/resources/1750
https://www.simiode.org/resources/1750
https://www.who.int/publications/i/item/9789241565721
https://www.who.int/publications/i/item/9789241565721
https://www.cdc.gov/parasites/malaria/index.html
https://www.cdc.gov/parasites/malaria/index.html
https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/021078s016lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/021078s016lbl.pdf


Chapter 2

Systems of Differential Equa-
tions

2.1 Modeling with Systems

Objectives
• To understand and be able to create models using system of differential

equations

dx

dt
= f(x, y)

dy

dt
= g(x, y).

• To understand that solutions to the system

dx

dt
= f(x, y),

dy

dt
= g(x, y),

as parametric plots in the xy-plane.

• To understand that a second-order linear equation

a(t)x′′ + b(t)x′ + c(t)x = g(t)

can be written as a system of first-order equations by letting v(t) = x′(t).

• To understand that equilibrium solutions for a system of differential
equations

dx

dt
= f(x, y)

dy

dt
= g(x, y)

are those values of x and y such that both f(x, y) = 0 and g(x, y) = 0.

Many situations are best modeled with a system of differential equations
rather than a single equation. We have already derived a model that describes

96
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how a population of snowshoe hares interacts with one of their primary preda-
tors, the lynx (Section 1.1). We denoted the population of hares by H(t) and
the population of lynx by L(t), where t is the time measured in years and
derived the system of differential equations

dH

dt
= aH − bHL,

dL

dt
= −cL+ dHL.

Just as in first-order differential equations, we can examine the equilibrium
solutions of a system. More specifically, we define an equilibrium solution
for a system of differential equations

dx

dt
= f(x, y)

dy

dt
= g(x, y)

to be those values of x and y such that f(x, y) = 0 and g(x, y) = 0. That is,
an equilibrium solution is a solution where neither x(t) or y(t) is changing.

2.1.1 Predator-Prey Systems
Suppose that we have a predator-prey system consisting of a population of
foxes (F ) and of rabbits (R).1

dR

dt
= 2R−RF,

dF

dt
= −5F +RF,

we have an equilibrium solution at R = 5 and F = 2. That is, the system is
in balance and there is just enough prey to support a constant population of
predators at the point (R,F ) = (5, 2).

If the number of rabbits or foxes changes, then the system is no longer in
balance. For example, if R = 1 and F = 1, then

dR

dt
= 1,

dF

dt
= −4,

and the rabbit population will be increasing while the fox population will
decrease. If we assume that we have initial conditions

R0 = R(0) = 1,

F0 = F (0) = 1,

we can apply a numerical algorithm to generate a solution for our system.2
The graphs of the solutions for R(t) and F (t) are given in Figure 2.1.1. Notice
that the solutions are periodic with the same period. Observe that a peak in
the rabbit population is followed by a peak in the fox population.

1Foxes are omnivores. Their diet consists of small mammals, including rabbits, as well as
fruits, berries, and vegetables. They will even eat fish and crabs.

2You will find technology extremely useful when analyzing systems. We will introduce
Sage commands for analyzing systems of equations at the end of this section.



CHAPTER 2. SYSTEMS OF DIFFERENTIAL EQUATIONS 98

2 4 6 8 10
t

2

4

6

8

10

12

14

R(t), F(t)

R(t)
F(t)

Figure 2.1.1 A simple predator-prey system
We can graph the solution to our system in a different manner—we can

construct a parametric plot of our solution in the RF -plane. Thus, a point on
the graph is given by (R(t), F (t)) at time t. We can view the solution curve
of our system in the RF -plane in Figure 2.1.2. The RF -plane is called the
phase plane for our system of differential equations and is analogous to the
phase line that we used during our investigation of slope fields for autonomous
differential equations. We can plot many solutions to our predator-prey system
and even plot direction fields in the phase plane (Figure 2.1.3).
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Figure 2.1.2 A solution curve in the RF -plane

0 2 4 6 8 10 12 14
R(t)

0

2

4

6

8

10

F
(t

)

Figure 2.1.3 The phase plane for a predator-prey system
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We will now modify our system by assuming that the rabbit population
will grow logistically if there are no predators present. The system can now be
written as

dR

dt
= aR(1−R/N)− bRF,

dF

dt
= −cF + dRF,

where N is the carrying capacity. As a specific example, consider the system

dR

dt
= 2R

(
1− R

10

)
−RF,

dF

dt
= −5F +RF.

It is easy to see that we have two equilibrium solutions—one at (R,F ) =
(0, 0) and one at (R,F ) = (5, 1). Our solutions now behave very differently
from the assumption that the population of the prey grows exponentially. If we
have initial values R0 = 1 and F0 = 1, then our solution is no longer periodic
(Figure 2.1.4). In fact, the solutions tend towards the equilibrium solution. The
phase plane for our modified predator-prey system is given in Figure 2.1.5. The
equilibrium solution (5, 1) is an example of a stable equilibrium solution.
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Figure 2.1.4 Solutions for a modified predator-prey system
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Figure 2.1.5 Phase plane for a modified predator-prey system
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Activity 2.1.1 Modifying Predator-Prey Systems. Consider the follow-
ing predator-prey system,

x′ = ax(1− x/N)− bxy

y′ = −cy + dxy,

where x(t) is the population of the prey and y(t) is the population of the
predator at time t.
(a) How would you modify this system to include the effect of hunting of the

prey at a rate of α units of prey per unit of time?

(b) How would you modify this system to include the effect of hunting of the
predators at a rate proportional to the number of predators?

(c) Suppose the predators discover a second, unlimited source of food, but
they still prefer to eat the primary prey when they can catch them. How
would you modify the system to include this assumption?

(d) Suppose the predators discover a second source of food that is limited in
supply. How would you modify the system to include this assumption?

(e) Suppose that the predators migrate to a different area if there are more
than three times as many prey as predators in that area (x > 3y) and they
move back if there are fewer than three times as many prey as predators.
How would you modify the system to take this into account?

(f) Suppose that prey move out of an area at a rate proportional to the
number of predators in the area. How would you modify the system to
take this into account?

2.1.2 The Spring-Mass Model Revisited
Recall the spring-mass model from Section 1.1. We have a mass lying on a flat
surface that is attached to one end of a spring with the other end of the spring
attached to a wall. The spring displacement is denoted by x. If x > 0, then
the spring is stretched. If x < 0, the spring is compressed. If x = 0, then the
spring is in a state of equilibrium (Figure 1.1.4). If the surface is frictionless
and we pull on the mass, then the mass will oscillate.

If we use a dashpot to add damping, the second-order differential equation
for the spring-mass system is

mx′′ = −bx′ − kx.

or
mx′′ + bx′ + kx = 0,

where m, b, and k are all positive constants.
A second-order differential equation can be restated in terms of a system

of first order differential equations. Given the differential equation

mx′′ + bx′ + kx = F (t),

with initial position x(0) = x0 and initial velocity x′(0) = x′0, we can rewrite
this equation as a system of first-order differential equations by letting v(t) =
x′(t). In this case, the equation becomes

mv′ + bv + kx = F (t).
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We now have a system of first-order differential equations,

x′ = v,

v′ =
1

m
F (t)− b

m
v − k

m
x,

with initial conditions

x(0) = x0

v(0) = v0.

Activity 2.1.2 A Harmonic Oscillator. Consider the equation

d2y

dt2
+
k

m
y = 0

for the motion of a simple harmonic oscillator.
(a) Rewrite the second-order differential equation, d2y/dt2 +(k/m)y = 0, as

a system of two first-order differentail equations, where v = y′.

(b) Consider the function y(t) = cosβt. Under what conditions on β is y(t)
a solution to the differential equation?

(c) What initial condition (t = 0) in the yv-plane corresponds to this solu-
tion?

(d) In terms of k and m, what is the period of this solution?

(e) Sketch the solution curve in the yv-plane that corresponds to this solu-
tion.

2.1.3 Modeling Epidemics
Systems of differential equations are very useful in epidemiology. Differen-
tial equations can be used to model various epidemics, including the bubonic
plague, influenza, AIDS, the 2015 ebola outbreak in west Africa, and the
COVID-19 pandemic. To understand how we might model an epidemic, we
will consider a very simple situation. We will assume that we have a closed
population of size N , where immigration, emigration, and birth do not play
an important role. We will also ignore any deaths that are not related to our
disease.

We will assume that each individual in the population falls into one of the
following categories:

s(t) = Susceptible individuals
i(t) = Infected individuals
r(t) = Removed individuals

Susceptible individuals are those who do not yet have the disease and can catch
the disease from infected individuals. Individuals enter the removed population
by either recovering from the disease or dying. If an infected individual recovers,
then the individual is immune to the disease. Schematically, we can represent
the effect of the disease by the diagram

s −→ i −→ r.

Since the population is closed, we know that

s(t) + i(t) + r(t) = N.
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This model is called an SIR model.
We can model how the disease acts with the following system of equations,

ds

dt
= −αsi

di

dt
= αsi− βi

dr

dt
= βi.

We say that α is the rate of infection and β is the rate at which the infected
are removed. That is, an infected individual either dies or recovers after 1/β
days. Since

d

dt
[s(t) + i(t) + r(t)] =

d

dt
N = 0,

we need only solve the system

ds

dt
= −αsi

di

dt
= αsi− βi.

Letting α = 0.005 and β = 0.08, we can see how the susceptible and infected
populations interact in an SIR epidemic in Figure 2.1.6.
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Figure 2.1.6 The susceptible and removed populations for an SIR epidemic
There are many questions associated with epidemic models.

• Will there be an epidemic?

• If there is an epidemic, how many individuals will be infected?

• Is there a period of time for which individuals are exposed to the disease
but exhibit no symptoms and cannot infect others?

• If the disease is endemic, what is the prevalence of the infection?

• Can the disease be eradicated or controlled?

• What is the effect of the population age structure?

To explore SIR models in more depth, see Project 2.5.1.
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2.1.4 Important Lessons
• A second-order linear equation

a(t)x′′ + b(t)x′ + c(t)x = g(t)

can be written as a system of first-order equations by letting v(t) = x′(t).

• We define an equilibrium solution for a system of differential equations

dx

dt
= f(x, y)

dy

dt
= g(x, y)

to be those values of x and y such that f(x, y) = 0 and g(x, y) = 0.

• We can graph solutions to the system

dx

dt
= f(x, y),

dy

dt
= g(x, y),

as parametric plots in the xy-plane. A point on the graph is given by
(x(t), y(t)) at time t. The xy-plane is called the phase plane for our
system of differential equations.

• Solution curves in the phase plane of

dx

dt
= f(x, y),

dy

dt
= g(x, y),

can act very differently depending on how close they are to a particular
equilibrium solution.

2.1.5 Reading Questions
1. Given a system of first-order differential equations, explain in your own

words what it means to be a stable equilibrium solution for the system.

2.1.6 Exercises
1. Verify whether or not the given pair of functions, (x(t), y(t)) forms a

solution to the system

dx

dt
= 4x+ 2y

dy

dt
= 3x− y

(a) x(t) = e−2t + 2e5t, y(t) = −3e−2t + e5t

(b) x(t) = 2e−2t, y(t) = −6e−2t

(c) x(t) = 2e−2t, y(t) = −5e−2t

(d) x(t) = c1e
−2t + 2c2e

5t, y(t) = −3c1e
−2t + c2e

5t
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2. Verify whether or not the given pair of functions, (x(t), y(t)) forms a
solution to the system

dx

dt
= 4x− 3y

dy

dt
= 3x+ 4y

(a) x(t) = 2e4t cos 3t, y(t) = 2e4t sin 3t

(b) x(t) = 2e4t cos 3t− 3e4t sin 3t, y(t) = 2e4t sin 3t+ 3e4t cos 3t

(c) x(t) = 3e4t cos 3t− 4e4t sin 3t, y(t) = 3e4t sin 3t+ 5e4t cos 3t

(d) x(t) = c1e
4t cos 3t− c2e

4t sin 3t, y(t) = c1e
4t sin 3t+ c2e

4t cos 3t
3. A system is autonomous if dx/dt and dx/dt do not depend on t; that is,

dx

dt
= f(x, y)

dy

dt
= g(x, y).

Which of the following systems are autonomous?
(a)

dx

dt
= 4x− 3y

dy

dt
= 3x+ 4y

(b)

dx

dt
= 4x− 3y + cosx

dy

dt
= 3x+ 4y − sinx

(c)

dx

dt
= 4x− 3y + 3tx

dy

dt
= 3x+ 4y − ex

(d)

dx

dt
= 4x

dy

dt
= 4y

4. Change each of the following second-order initial value problems into a
system of equations.

(a)

x′′ + 6x′ − 2x = 0

x(0) = 1
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x′(0) = 1

(b)

y′′ + y′ − 2y = 0

y(0) = 2

y′(0) = 0

(c)

d2x

dt2
+
dx

dt

′
+ 4x = sin t

x(0) = 4

x′(0) = −3

(d)

x′′ + tx′ − 2 = 0

x(0) = 0

x′(0) = 1

5. Change each of the following second-order initial value problems into a
system of equations.

(a)

x′′ + 6x′ − 2x = 0

x(0) = 1

x′(0) = 1

(b)

y′′ + y′ − 2y = 0

y(0) = 2

y′(0) = 0

(c)

d2x

dt2
+
dx

dt

′
+ 4x = sin t

x(0) = 4

x′(0) = −3

(d)

x′′ + tx′ − 2 = 0

x(0) = 0

x′(0) = 1

6. Consider the SIR model

dS

dt
= −αSI
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dI

dt
= αSI − βI,

where S is the susceptible population and I is the infected population.
(a) Modify the SIR model to account for the situation where the suscep-

tible population is reproducing at a rate proportional to the current
population.

(b) Modify the SIR model to account for the situation where the suscep-
tible population is decreasing at a constant rate such as susceptibles
leaving an infected area or city.

(c) Modify the SIR model to account for the situation where the in-
fected population is increasing at a constant rate such as infected
individuals entering an infected area or city from the outside.

7. A mass weighing 4 pounds stretches a spring 4 inches.
(a) Consider the function y(t) = cosβt. Under what conditions on β is

y(t) a solution to the differential equation?

(b) Formulate an initial value problem that corresponds to the motion
of this undamped mass-spring system if the mass is extended 1 foot
from its rest position and released with no initial velocity.

(c) Using the result of the previous exercise, find the solution of this
initial value problem.

2.1.7 Using Sage to Solve Systems
We can use Sage to plot the solution of the system

x′ = −x− y (2.1.1)
y′ = x+ y/5 (2.1.2)

x(0) = 1 (2.1.3)
y(0) = −1 (2.1.4)

First, let us plot a direction field for our system.

x, y, t = var( ' x␣y␣t ' )
F = [-x - y, x + y/5]
p = plot_vector_field(F, (x,-4,4), (y,-4,4))
p

Notice the vectors are different lengths depending on their magnitudes. If
we wish all of the vectors to be the same length, we can divide each component
by the length of the vector.

x, y, t = var( ' x␣y␣t ' )
F = [-x - y, x + y/5]
n = sqrt(F[0]^2 + F[1]^2)
F_unit = [F[0]/n, F[1]/n]
p = plot_vector_field(F_unit , (x,-4,4), (y,-4,4))
p

We can also add axes labels to our plot.
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x, y, t = var( ' x␣y␣t ' )
F = [-x - y, x + y/5]
n = sqrt(F[0]^2 + F[1]^2)
F_unit = [F[0]/n, F[1]/n]
p = plot_vector_field(F_unit , (x,-4,4), (y,-4,4),

axes_labels =[ ' $x(t)$ ' , ' $y(t)$ ' ])
p

Now suppose that we wish to plot solutions x(t) and y(t) to our system.
We can use the Sage command desolve_system_rk4.

x, y, t = var( ' x␣y␣t ' )
F = [-x - y, x + y/5]
P = desolve_system_rk4(F, [x, y], ics = [0,1,-1], ivar = t,

end_points = 10, step = 0.01)
P

We now have a numerical approximation of the solution to the system
(2.1.1)–(2.1.4). However, our approximation is just a very long list of points.
In fact, we get a list of triples, (t, x, y). It would be much more useful if we
could display a graph of the solution. In the code below, we grab pairs (t, x)
and (t, y) and then plot the points using the line command.

x, y, t = var( ' x␣y␣t ' )
F = [-x - y, x + y/5]
P = desolve_system_rk4(F, [x, y], ics = [0,1,-1], ivar = t,

end_points = 10, step = 0.01)
Q = [ [i, j] for i,j,k in P]
R = [ [i, k] for i,j,k in P]
p = line(Q)
p += line(R)
p

We can also add colors, axes labels, and legend colors so that the plot makes
more sense.

x, y, t = var( ' x␣y␣t ' )
F = [-x - y, x + y/5]
P = desolve_system_rk4(F, [x, y], ics = [0,1,-1], ivar = t,

end_points = 10, step = 0.01)
Q = [ [i, j] for i,j,k in P]
R = [ [i, k] for i,j,k in P]
p = line(Q, color= ' red ' , axes_labels =[ ' $t$ ' , ' $x(t),␣y(t)$ ' ],

legend_label= ' $x(t)$ ' , legend_color= ' red ' , fontsize =12)
p += line(R, color= ' blue ' , legend_label= ' $y(t)$ ' ,

legend_color= ' blue ' )
p

To plot the solution in the xy–plane, we will need to select the second two
entries in each triple.

x, y, t = var( ' x␣y␣t ' )
F = [-x - y, x + y/5]
P = desolve_system_rk4(F, [x, y], ics = [0,1,-1], ivar = t,

end_points = 10, step = 0.01)
Q = [ [j,k] for i,j,k in P]
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p = line(Q, axes_labels =[ ' $x(t)$ ' , ' $y(t)$ ' ], fontsize =12)
p

We can adjust the thickness of the plot add an arrow to indicate the direc-
tion of the solution.

x, y, t = var( ' x␣y␣t ' )
F = [-x - y, x + y/5]
P = desolve_system_rk4(F, [x, y], ics = [0,1,-1], ivar = t,

end_points = 10, step = 0.01)
Q = [ [j,k] for i,j,k in P]
p = line(Q, axes_labels =[ ' $x(t)$ ' , ' $y(t)$ ' ], fontsize =12,

thickness =3)
p += arrow(Q[int(len(Q)/5)], Q[int(len(Q)/5) + 1])
p

Now let us add a vector field to our plot.

x, y, t = var( ' x␣y␣t ' )
F = [-x - y, x + y/5]
P = desolve_system_rk4(F, [x, y], ics = [0,1,-1], ivar = t,

end_points = 10, step = 0.01)
Q = [ [j,k] for i,j,k in P]
p = line(Q, axes_labels =[ ' $x(t)$ ' , ' $y(t)$ ' ], fontsize =12,

thickness =3)
p += arrow(Q[int(len(Q)/5)], Q[int(len(Q)/5) + 1])
n = sqrt(F[0]^2 + F[1]^2)
F_unit = [F[0]/n, F[1]/n]
p += plot_vector_field(F_unit , (x, -1.5 ,1.5), (y, -1.5 ,1.5),

axes_labels =[ ' $x(t)$ ' , ' $y(t)$ ' ])
p

To learn more about how to use Sage to solve systems of differential equa-
tions, see www.sagemath.org/doc/reference/calculus/sage/calculus/desolvers.html.
The Sage cell below can be used to make your own computations.

2.2 The Geometry of Systems

Objectives
• To understand how the righthand side of the system

dx

dt
= f(x, y)

dy

dt
= g(x, y)

can be viewed as a vector field, (f(x, y), g(x, y)), which can be plotted in
the x, y-plane.

• To understand and be able to use nullclines and phase plane analysis to
sketch solution curves for the system

dx

dt
= f(x, y)

http://www.sagemath.org/doc/reference/calculus/sage/calculus/desolvers.html
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dy

dt
= g(x, y).

We can use direction fields in the phase plane to represent autonomous
systems

dx

dt
= f(x, y), (2.2.1)

dy

dt
= g(x, y). (2.2.2)

Equation (2.2.1) tells us how a solution curve changes in the x direction, while
equation (2.2.2) tells us how a solution curve changes in the y direction.

2.2.1 Direction Fields
Example 2.2.1 Consider the differential equation for a simple harmonic oscil-
lator that we developed in Section 1.1,

mx′′ + kx = 0.

If we assume that k and m are both equal to one and let x′ = v, we can rewrite
this equation as the first order system,

x′ = v,

v′ = −x.

The direction field is relatively easy to understand. After plotting only few
vectors, we can very quickly see that the vectors are tangent to circles centered
at the origin (Figure 2.2.2). Since the solutions to the undamped harmonic
oscillator x′′ + x = 0 are of the form

x(t) = A cos t+B sin t

for arbitrary constants A and B, this should not be too surprising.
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Figure 2.2.2 The direction field for a harmonic oscillator
□
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Let us examine some systems of equations with direction fields that are
easily plotted.
Example 2.2.3 The system

x′ = x

y′ = y

gives us a direction field where the vectors point away from the origin (Fig-
ure 2.2.4).
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Figure 2.2.4 The direction field for x′ = x and y′ = y

The system

x′ = −x,
y′ = −y.

gives us a direction field where the vectors point towards the origin (Fig-
ure 2.2.5).
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Figure 2.2.5 The direction field for x′ = −x and y′ = −y
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The system

x′ = −x,
y′ = −5y.

also gives us a direction field where the vectors point towards the origin; how-
ever, we shall soon see that there are important differences between this direc-
tion field and the direction field of the previous system (Figure 2.2.5).
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Figure 2.2.6 The direction field for x′ = −x and y′ = −5y

□
Activity 2.2.1 Plotting Direction Fields. Plot direction fields for each of
the following systems of differential equations in the xy-plane.
(a)

x′ = −3x

y′ = 4y

(b)

x′ = 2x

y′ = y/2

(c)

x′ = x/2

y′ = 2y

(d)

x′ = x+ y

y′ = x− y
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2.2.2 Modified Predator-Prey System
Let us recall the modified predator-prey system that we developed in the last
section. That is, we will assume that the prey in our model has logistic growth,

dR

dt
= aR(1−R/N)− bRF,

dF

dt
= −cF + dRF,

where N is the carrying capacity. In order to investigate the geometric prop-
erties of our system, we will rewrite our system in vector form. For each value
of t, we will use x(t) to denote the vector-valued function

x(t) =
(
R(t)

F (t)

)
.

This vector-valued function, x(t) corresponds to our solution curve (R(t), F (t))
in the RF -plane. Now we can write our predator-prey model as a single vector
equation,

dx
dt

=

(
R′(t)

F ′(t)

)
=

(
aR(1−R/N)− bRF,

−cF + dRF

)
.

We can view the right side of the equation as a vector field. The specific
example that we examined was

dR

dt
= 2R

(
1− R

10

)
−RF,

dF

dt
= −5F +RF.

The vector field form of this system is

dx
dt

=

(
2R(1−R/10)−RF

−5F +RF

)
.

We can associate a vector in the RF -plane for each value of R and F . For
example, if we let (R,F ) = (10, 10), we have (R′, F ′) = (−100, 50). At this
particular point, the population of rabbits is falling rapidly while the number of
foxes is climbing very quickly, We can represent this vector in the phase plane
by drawing an arrow in the proper direction. Thus, we obtain a direction field
for our system of differential equations (Figure 2.2.7).
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Figure 2.2.7 A vector field for the predator-prey system
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2.2.3 A Competing Species Model
Suppose that x and y are the population of two distinct species that compete for
the same resources. For example, two species of fish may compete for the same
food in a lake, leopards and lions may compete for the same prey, or cattle and
sheep may compete for the same grazing land. We can model two competing
species using the following system of first-order differential equations,

dx

dt
= αx

(
1− x

M

)
− βxy

dy

dt
= γy

(
1− y

N

)
− δxy.

The first term in each equation is the logistic growth of each species. The
second term is how the species is affected by interacting with the competing
species.

Example 2.2.8 Suppose that x = x(t) and y = y(t) are two populations,
competing for the same resources, are governed by the following system of
differential equations,

dx

dt
= x(1− x)− αxy

dy

dt
= y(1− y)− αxy.

If we study how the two populations interact, we will discover two very different
cases depending on the value of the parameter α.

If we let α = 2, then there is a strong interaction between the two species
and our system becomes

dx

dt
= x(1− x)− 2xy

dy

dt
= y(1− y)− 2xy.

We are interested in what happens as t → ∞. First we will examine what
happens when dx/dt = 0 and dy/dt = 0:

dx

dt
= x(1− x− 2y)

dy

dt
= y(1− y − 2x).

If dx/dt = 0, then

x = 0 (2.2.3)
y = (1− x)/2. (2.2.4)

Similarly, if dy/dt = 0, we have

y = 0 (2.2.5)
y = 1− 2x. (2.2.6)

The lines in equations (2.2.3)–(2.2.6) are called nullclines. In general, if we
are given the system

dx

dt
= f(x, y)
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dy

dt
= g(x, y),

then the values of x and y satisfying dx/dt = f(x, y) = 0 are called the x-
nullclines of the system and the values of x and y satisfying the equation
dy/dt = g(x, y) = 0 are called the y-nullclines of the system.
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y(
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Figure 2.2.9 Nullclines for the case β = 2

In our example, we can plot the x and y-nullclines to help us understand
our system (Figure 2.2.9). Of course, we have an equilibrium solution whenever
an x-nullcline intersects with a y-nullcline. Thus, the equilibrium points for
our particular system are (0, 0), (1, 0), (0, 1), and (1/3, 1/3). Furthermore, we
can choose a representative point in each region to find how the direction field
is oriented. If we are given the initial condition (1.4, 1.3) for example, we can
see that

dx

dt
= −4.2

dy

dt
= −4.03.

Since both of these numbers are negative, we can see that our initial trajectory
is headed down and to the left—slightly more to the left than down. However,
we have no guarantee that the trajectory will continue in this direction.

Before we proceed further with our analysis, let us determine what happens
on the nullclines themselves. That is, we will examine the case when dx/dt = 0
or dy/dt = 0. If dx/dt = 0, then any solution crossing this x-nullcline must
be moving vertically. There can be no right or left movement at this point
in the phase portrait. We can indicate this fact along with the direction of
vertical movement by drawing a vertical slash with an arrow on the x-nullcline
(Figure 2.2.9). For example, the point (0.5, 0.25) lies on the x-nullcline and

dy

dt
(0.5, 0.25) < 0.

Therefore, the trajectory that crosses the R-nullcline at (0.5, 0.25) is moving
down. As we move along the x-nullcline, the direction of this arrow can only
change when we cross an y-nullcline.
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Similarly, there can be no vertical motion on an y-nullcline. We will indicate
the direction of horizontal motion by drawing a horizontal line with an arrow
pointing to the right if dx/dt > 0 on the y-nullcline and an arrow pointing to
the left if dx/dt < 0 on the y-nullcline.

We can also determine the basic direction of the solution curve by checking
what happens at a point in each of the regions bounded by the nullclines. For
example, at the point (0.1, 0.1) we find that

d

dt
x(0.1, 0.1) = 0.7

d

dt
y(0.1, 0.1) = 0.7.

Thus, the general direction of any solution curve in this region is up and right
(Figure 2.2.9).

What happens to the initial condition (1.4, 1.3)? We see three possible
scenarios if we follow the nullclines for large values of t.

• Only species x survives and species y becomes extinct.

• Only species y survives and species x becomes extinct.

• There are essentially equal numbers of species x and y.

□
Activity 2.2.2 Plotting Direction Fields with Nullclines. Consider the
competing species model

dx

dt
= x(1− x)− βxy

dy

dt
= y(1− y)− βxy,

where the species interact weakly, say β = 1/2.
(a) Find the x and y-nullclines for this system.

(b) Find all equilibrium points for this system.

(c) The nullclines will divide the first quadrant of the plane, x ≥ 0 and y ≥ 0,
into different regions. In each of these regions find a slope vector at some
point (x0, y0) in the region. For example, at the point (1, 2), we can
attach slope vector (−1,−3).

(d) Sketch the phase plane for this system.

(e) If the initial populations are given by x(0) = 2.4 and y(0) = 0.3, what
happens to the two populations as t→ ∞?

Example 2.2.10 There is no reason why our nullclines should be limited to
straight lines. The system

x′ = y − x2

y′ = x− 2

has an x-nullcline y = x2 and a y-nullcline x = 2. These two nullclines intersect
at (2, 4), and the system has a single equilibrium solution. The nullclines divide
the plane into four basic regions (Figure 2.2.11). By choosing a point in each
of these regions and determining the direction of the slope field at that point,
we can decide the direction of the slope field in the entire region.
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4 3 2 1 0 1 2 3 4
x(t)

0

2

4

6

8

y(
t)

Figure 2.2.11 The system x′ = y − x2 and y′ = x− 2

The only equilibrium solution of our system occurs at (2, 4). □

2.2.4 Plotting Direction Fields with Sage
It is easy to plot direction fields using Sage. We can plot the direction field for
the system

x′ = y − 2x,

y′ = x− xy − x3

using the following Sage interact. You can evaluate the cell below to get a
menu driven applet for drawing direction fields for systems of two differential
equations.

Figure 2.2.12 A Sage applet for plotting direction fields for systems

2.2.5 A Summary of Phase Plane Analysis
We can use the following series of steps to summarize phase plane analysis for
the nonlinear system

dx

dt
= f(x, y)

dy

dt
= g(x, y).

• Step 1. Draw the curves where f(x, y) = 0. These curves are called the
x-nullclines. When a solution curve x(t) lies on one of these curves,
dx/dt = 0, draw vertical slash marks on the x-nullclines to remind your-
self that a trajectory crossing the nullcline can only do so if it is moving
in a vertical direction at the instant of crossing.



CHAPTER 2. SYSTEMS OF DIFFERENTIAL EQUATIONS 117

• Step 2. Draw the curves where g(x, y) = 0. These curves are called
the y-nullclines. When x(t) lies on one of these curves, dg/dt = 0.
Draw horizontal slash marks on the y-nullclines to remind yourself that
a trajectory crossing the nullcline can only do so if it is moving in a
horizontal direction at the instant of crossing.

• Step 3. Label the points where the x and y-nullclines intersect. These
intersections are the equilibrium points. If x(t) is ever at one of these
points, then both dx/dt and dy/dt vanish. This means that the trajectory
stays at the equilibrium point for all time. If our system is going to tend
towards a steady state, then x(t) will approach on of the equilibrium
points as t→ ∞.

• Step 4. Label the regions of the xy-plane where dx/dt < 0 and where
dx/dt > 0. These regions are always separated by x-nullclines. Likewise,
label the regions where dy/dt is positive and negative.

• Step 5.Go back and put arrows on the vertical hash marks of the x
nullclines. These arrows indicate whether the motion across the nullcline
is up or down. The arrows are up on the parts of the x-nullclines that
are in the dy/dt > 0 region, and down on those parts of the x-nullclines
in the dy/dt < 0 regions. Likewise, draw arrows on the horizontal slash
marks of the y-nullclines. These arrows are pointing right on the parts
of the y-nullclines in the dx/dt > 0 regions and left point on the parts in
the dx/dt < 0 regions.

• Step 6.

◦ If dx/dt > 0 and dy/dt > 0, then both x(t) and y(t) are increasing
and the trajectory moves up and right.

◦ If dx/dt > 0 and dy/dt < 0, the trajectory moves down and right.
◦ If dx/dt < 0 and dy/dt > 0, the trajectory moves up and left.
◦ If dx/dt < 0 and dy/dt < 0, the trajectory moves down and left.

2.2.6 Important Lessons
• The righthand side of the system

dx

dt
= f(x, y)

dy

dt
= g(x, y)

can be viewed as a vector field, (f(x, y), g(x, y)), which can be plotted in
the x, y-plane.

• Competition between two competing species can be modeled with the
system

dx

dt
= αx

(
1− x

M

)
− βxy

dy

dt
= γy

(
1− y

N

)
− δxy.

• We can use nullclines and phase plane analysis to sketch solution curves
for the system

dx

dt
= f(x, y)
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dy

dt
= g(x, y).

2.2.7 Reading Questions
1. Using your own words, explain what a nullcline is.
2. What happens at the intersection of an x-nullcline and a y-nullcline?

2.2.8 Exercises
1. Consider a cooperating species model

dx

dt
= x(1− x) + βxy

dy

dt
= y(1− y) + βxy,

where the species interact weakly, say β = 1/2.
(a) Find the x and y-nullclines for this system.

(b) Find all equilibrium points for this system.

(c) Sketch the phase plane for this system.

(d) If the initial populations are given by x(0) = 2.4 and y(0) = 0.3,
what happens to the two populations as t→ ∞?

Plotting Phase Portraits. For the following two systems of equations

• Find the equilibrium points of the system.

• Sketch the phase plane and direction field for each system (technology
will be helpful).

• Briefly describe the behavior of typical solutions.
2.

x′ = 3x+ 4y

y′ = −x+ y

3.

x′ = −3x+ 4y

y′ = −x+ y

4.

x′ = −3x+ 4y

y′ = x+ 6y

5.

x′ = cos y
y′ = −x+ y

6.

x′ = −3x+ 4y + x2

y′ = −x+ y − xy
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7. Consider an epidemic that moves through an isolated population. We will
make the following assumptions about the epidemic.

• Individuals are infected at a rate proportional to the product of the
number of infected and susceptible individuals. We assume that the
constant of proportionality is α.

• The length of the incubation period is negligible, and infectious in-
dividuals are immediately infectious.

• On the average, an infected individual dies after 10 days.

• Only a single individual is initially ill.

• Infected individuals do not give birth, but susceptible individuals
have a birth rate of 0.0003 per individual per year. Newborns are
susceptible.

If S(t) is the number of susceptible and I(t) is the number of infected
people, then

dS

dt
= −αSI + 0.0003S (2.2.7)

dI

dt
= αSI − 0.1I. (2.2.8)

The constant α is a measure of the relative infectivity of the disease.
Some diseases such as Ebola, a viral hemorrhagic fever, are extremely
infectious with a mortaility rate of up to 90%. On the other hand, AIDS
which is caused by the HIV virus, has a much lower transmission rate.
The goal of this exercise is to examine the differences between the two.

(a) If α = 0.05, draw the phase portrait. Be sure to label all nullclines
and equilibrium solutions. Suppose that S(0) = 1000 and I(0) = 1.
What happens to the solution curve as t→ ∞?

(b) If α = 0.000001, draw the phase portrait. Be sure to label all null-
clines and equilibrium solutions. Suppose that S(0) = 30000 and
I(0) = 1. What happens to the solution curve as t→ ∞?

(c) What conclusions can you draw about the behavior of the two dif-
ferent epidemics?

2.2.9 Plotting Nullclines with Sage
Let us use Sage to analyze the system

x′ = x+ y,

y′ = −2x+ y.

First let us plot the phase plane of the system without nullclines.

x, y, t = var( ' x␣y␣t ' )
F = [x + y, -2*x + y]
P = desolve_system_rk4(F,[x,

y],ics =[0 ,0.55 ,0] , ivar=t,end_points =10,step =0.01)
Q = [ [j,k] for i,j,k in P]
p = line(Q, axes_labels =[ ' $x(t)$ ' , ' $y(t)$ ' ], thickness =2)
n = sqrt(F[0]^2 + F[1]^2)
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F_unit = [F[0]/n, F[1]/n] #set all vectors in the vector
field to be same length

p += plot_vector_field(F_unit , (x,-4,4), (y,-4,4),
axes_labels =[ ' $x(t)$ ' , ' $y(t)$ ' ], xmax = 4, xmin = -4,
ymax = 4, ymin = -4, aspect_ratio =1)

p

If these Sage commands seem unfamiliar, you may want to refer to Subsec-
tion 2.1.7

We can add nullclines to our plot using the implicit_plot function from
Sage.

x, y, t = var( ' x␣y␣t ' )
F = [x + y, -2*x + y]
P = desolve_system_rk4(F,[x,

y],ics =[0 ,0.55 ,0] , ivar=t,end_points =10,step =0.01)
Q = [ [j,k] for i,j,k in P]
p = line(Q, axes_labels =[ ' $x(t)$ ' , ' $y(t)$ ' ], thickness =2)
n = sqrt(F[0]^2 + F[1]^2)
F_unit = [F[0]/n, F[1]/n] #set all vectors in the vector

field to be same length
p += plot_vector_field(F_unit , (x,-4,4), (y,-4,4),

axes_labels =[ ' $x(t)$ ' , ' $y(t)$ ' ], xmax = 4, xmin = -4,
ymax = 4, ymin = -4, aspect_ratio =1)

p += implicit_plot(F[0], (x,-4,4), (y,-4,4), color="green")
p += implicit_plot(F[1], (x,-4,4), (y,-4,4), color="red")
p

The x-nullclines are plotted in green and the y-nullclines are in red.

2.3 Numerical Techniques for Systems

Objectives
• To understand that many systems of equations cannot be solved ana-

lytically but can be solved using numerical techniques such as Euler’s
Method or Runge-Kutta methods to find approximate solutions for
the system.

• To understand that we are guaranteed unique local solutions to any sys-
tem of first-order differential equations provided certain condtions are
met.

• To understand that uniqueness tells us that two distinct solutions cannot
start at the same place nor can solutions intersect.

• To understand that solutions do not depend on time in an autonomous
system.

If we are unable to find an analytic solution to a first-order differential
equation y′ = f(t, y), there is no reason to expect that it will be any easier to
solve a system of equations. However, many of the numerical techniques that
are used to solve a first-order equation can be extended to solve a system.
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2.3.1 Duffing’s Equation
Large mobile cranes can reach up to 700 feet (Figure 2.3.1). This is about the
same height as a 50 story building. At such heights, cranes are susceptible
to winds and the end of the boom can move back and forth several feet even
in moderate winds. We can model the motion as a harmonic oscillator if the
side-to-side motion is not too great. However, if the wind becomes too strong
and the crane moves too much, gravity will become a factor and the crane may
topple due to its weight.

Figure 2.3.1 Cranes
Before we can construct a model that might best describe the swaying of a

large crane, we should remind ourselves of how harmonic oscillators work (see
Section 1.1). A simple mass-spring system can be modeled by the equation

m
d2x

dt2
= −kx,

where x = x(t) is the displacement of the mass at time t. Given such a system,
the mass will oscillate forever with constant amplitude. If we want to be a bit
more realistic, we can introduce a damping force,

−bdx
dt
,

where b > 0. Our equation now becomes

m
d2x

dt2
= −kx− b

dx

dt
.

If we let p = b/m and q = k/m, we can rewrite this last equation as

d2x

dt2
+ p

dx

dt
+ qx = 0.
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If we set v = x′, we can rewrite this second-order equation as a system of
first-order equations,

dx

dt
= v,

dv

dt
= −qx− pv.

In the case of our swaying crane, we will let x = x(t) be the displacement
of the end of the boom from the perfect vertical position. When x(t) ̸= 0, the
boom is bent, and the structure of the boom supplies a strong restorative force
to bring everything back to a true vertical position. Thus, the swaying of our
crane’s boom might be described by an equation such as

d2x

dt2
+ 0.1

dx

dt
+ 0.3x = 0

or the equivalent system,
dx

dt
= v,

dv

dt
= −0.3x− 0.1v.

We will learn how to solve such systems later, but it is easy to check that

x(t) = c1e
−t/20 cos

(√
119

20
t

)
+ c2e

−t/20 sin
(√

119

20
t

)
is a solution to our equation. The Sage code for solving this system is given
below.

t = var( ' t ' )
x = function( ' x ' )(t)
b = 0.1
k = 0.3
position = desolve(diff(x,t,2)+b*diff(x,t)+ k*x == 0,x)
velocity = diff(position , t)
position.show()
velocity.show()

The constants c1 and c2 can be determined if we know the initial position
and initial velocity of the end of the crane’s boom. We show several solutions
to our equation in Figure 2.3.2.

10 20 30 40 50 60 70 80
t

2

1

1

2

3

x(t), v(t)
x(t)
v(t)

Figure 2.3.2 Solutions to x′′ + 0.1x′ + 0.3x = 0
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Modeling the swaying motion of a crane with a harmonic oscillator might
work only if the side-to-side motion is small. If the motion is larger, we must
account for the effect of gravity in our model. When x(t) is large, part of the
crane will not be above any other part of the crane. Thus, gravity will pull
downward on that part of the crane and will cause the crane to bend even
further. We can model this effect by setting the equation for our harmonic
oscillator equal to a factor of x3,

d2x

dt2
+ 0.1

dx

dt
+ 0.3x = 0.02x3. (2.3.1)

When x is small, this forcing term will not contribute much to the motion of
the building. However, when x is large, the term will contribute a great deal.
The equation x′′+0.1x′+0.3x = 0.02x3 is an example of Duffing’s equation.

We can rewrite equation (2.3.1) as a system of first-order differential equa-
tions by letting dx/dt = v,

dx

dt
= v (2.3.2)

dv

dt
= −0.1v − 0.3x+ 0.02x3. (2.3.3)

Thus, one of our main objectives should be finding and analyzing solutions to
such a system.

2.3.2 Euler’s Method for Systems
The system of equations (2.3.2)–(2.3.3) is nonlinear due the x3 term. There
is little hope to finding an analytic solution to such a system. We can use
software to plot the phase plane in order to learn something about the solutions
(Figure 2.3.3). However, we still need to numerically generate solutions in order
to plot the phase plane.

4 2 0 2 4
x(t)

4

2

0

2

4

v(
t)

Figure 2.3.3 The phase plane for Duffing’s equation
Let us see how we might find a numerical solution for a system. Consider

the system

dx

dt
= f(t, x, y)
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dy

dt
= g(t, x, y),

with initial conditions x(t0) = x0 and y(t0) = y0. We can rewrite our system
in vector form

dx
dt

= f(t,x)

x(t0) = x0

where x = (x, y), dx/dt = (dx/dt, dy/dt), f = (f, g), and x0 = (x0, y0). We
wish to find approximate values x1, x2, . . . , xn and y1, y2, . . . , yn for the solution
x(t) and y(t) at the points

tk = t0 + kh, k = 1, 2, . . . , n,

where h is the step size. If we let xk = (xk, yk) and fk = (f(xk, yk), g(xk, yk)),
then Euler’s method now becomes

xk+1 = xk + hfk

or

xk+1 = xk + hf(tk, xk, yk)

yk+1 = yk + hg(tk, xk, yk).

The initial conditions are used to determine f0, which is the tangent vector to
the graph of the solution x(t) in the xy-plane (Figure 2.3.3). We can move in
the direction of this tangent vector for time h in order to find the next point
x1. We then calculate a new tangent vector f1 and then move along this new
vector for a time step h to find x2. We can repeat this technique to generate
an approximate solution curve in the phase plane.
Example 2.3.4 Numerical Solutions for Duffing’s Equation. We are
now in a position to calculate some solutions to Duffing’s equation. Suppose
that

dx

dt
= v,

dv

dt
= −0.3x+ 0.02x3 − 0.1v,

with initial conditions (t0, x0, v0) = (0, 0, 1.7652). Using a numerical algo-
rithm, we can generate enough points to generate a graph of the solution
(Figure 2.3.5).
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Figure 2.3.5 Solutions for Duffing’s equation with initial conditions x(0) = 0
and v(0) = 1.7652

The surprising thing about Duffing’s equation is that it is extremely sensi-
tive to initial conditions. A slight change in the initial conditions can yield dra-
matically different solutions. If we change the initial velocity to v(0) = 1.7653,
we obtain a very different graph of the solution (Figure 2.3.5 ). For small initial
velocities, solutions spiral towards the origin. However, a larger initial velocity
will send the solution in the phase plane away from the origin. If the crane
sways too violently, we will have a disaster.
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Figure 2.3.6 Solutions for Duffing’s equation with initial conditions x(0) = 0
and v(0) = 1.7653

□
Example 2.3.7 Let us consider the system

x′ = x− y + t

y′ = −x+ y2 − t2

x(0) = 1

y(0) = 0.

Then (x0, y0) = (1, 0). Letting the step size be h = 0.1, we obtain and(
x1
y1

)
=

(
x0
y0

)
+ h

(
f(t0, x0, y0)

g(t0, x0, y0)

)
=

(
1

0

)
+ (0.1)

(
1

−1

)
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=

(
1.1

−0.1

)
.

Similarly, (
x2
y2

)
=

(
x1
y1

)
+ h

(
f(t1, x1, y1)

g(t1, x1, y1)

)
=

(
1.1

−0.1

)
+ (0.1)

(
1.3

−1.1

)
=

(
1.23

−0.21

)
.

Using this procedure, we can generate a list of values that will approximate
the solution to our system (Table 2.3.8).

Table 2.3.8 Euler’s approximation for a system of equations

k tk xk hf(tk, xk, yk) yk hg(tk, xk, yk)

0 0.0 1.0000 0.1000 0.0000 −0.1000

1 0.1 1.1000 0.1300 −0.1000 −0.1100

2 0.2 1.2300 0.1640 −0.2100 −0.1226

3 0.3 1.3940 0.2027 −0.3326 −0.1373

4 0.4 1.5967 0.2467 −0.4699 −0.1536

5 0.5 1.8433 0.2967 −0.6235 −0.1705

6 0.6 2.1400 0.3534 −0.7940 −0.1870

7 0.7 2.4934 0.4174 −0.9809 −0.2021

8 0.8 2.9108 0.4894 −1.1830 −0.2151

9 0.9 3.4002 0.5698 −1.3982 −0.2255

10 1.0 3.9701 0.6594 −1.6237 −0.2334

Notice that our system is not autonomous and depends on time. Therefore,
we cannot graph the phase plane of this system; however, we can graph a
solution curve in three dimensions (Figure 2.3.9).

Figure 2.3.9 A solution curve for Duffing’s equation
□



CHAPTER 2. SYSTEMS OF DIFFERENTIAL EQUATIONS 127

Activity 2.3.1 Solving a System Numerically. Consider the system

x′ = 2x

y′ = y

with initial conditions x(0) = 1 and y(0) = 3.1

(a) Show that x(t) = (e2t, 3et) satisfies the initial value problem.

(b) Use Euler’s method with step size ∆t = 0.5 to approximate this solution,
and check how close the approximation is to the real solution when t = 2,
t = 4, and t = 6.

(c) Use Euler’s method with step size ∆t = 0.1 to approximate this solution,
and check how close the approximation is to the real solution when t = 2,
t = 4, and t = 6.

(d) Discuss how and why the Euler approximations differ from the real solu-
tion.

2.3.3 Taylor Series Methods
Just as in the case of a single first-order differential equation, we can think of
Euler’s approximation as the first two terms of the Taylor series expansion,(

xk+1

yk+1

)
=

(
xk
yk

)
+ h

(
x′k
y′k

)
+
h2

2

(
x′′k
y′′k

)
+ · · ·

=

(
xk
yk

)
+ h

(
f(tk, xk, yk)

g(tk, xk, yk)

)
+
h2

2

(
x′′k
y′′k

)
+ · · · .

To get a more accurate approximation, we can take the first two terms of the
Taylor series. In this case, we must compute x′′. If we return to our example,

x′ = x− y + t

y′ = −x+ y2 − t2

x(0) = 1

y(0) = 0.

we can see how this is done. First, note that

x′′ =

(
x′′

y′′

)
=

(
x′ − y′ + 1

−x′ + 2yy′ − 2t

)
=

(
(x− y + t)− (−x2 + y2 − t2)

−(x− y + t) + 2y(−x+ y2 − t2)− 2t

)
=

(
2x− y − y2 + t+ t2

−x+ y − 2xy + 2y3 − 2t2y − 3t

)
.

Our algorithm now becomes clear,(
xk+1

yk+1

)
=

(
xk
yk

)
+ h

(
f(tk, xk, yk)

g(tk, xk, yk)

)
+
h2

2

(
x′′k
y′′k

)
1You will find Sage very useful for this exercise
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=

(
xk + h(xk − yk + tk) + h2(2xk − yk − y2k + tk + t2k)/2

yk + h(−xk + y2k − t2k) + h2(−xk + yk − 2xkyk + 2y3k − 2t2kyk − 3tk)/2

)
.

Of course, this algorithm requires us to compute some derivatives.

2.3.4 A Word about Existence and Uniqueness
Theorem 2.3.10 Let

dx
dt

= f(t,x)

be a system of differential equations such that f is continuously differentiable.
If x0 is the initial value at time t0, there exists a unique solution for the initial
value problem on some open interval t0 − ϵ < t < t0 + ϵ for some ϵ > 0.

The consequences of the Existence and Uniqueness Theorem are much the
same as they were for first-order differential equations.

• If we are interested in a certain system of differential equations, it is very
nice to know that a unique solution exists.

• Uniqueness tells us that two solutions cannot start at the same place.
Geometrically, this implies that solution curves cannot cross.

• If we have an autonomous system x′ = f(x), our solution does not depend
on time. Thus, we obtain the same solution curve if we start at the same
point even though we might start at different times.

For a proof of existence and uniqueness for systems of differential equations,
see [12].

2.3.5 Important Lessons
• A damped harmonic oscillator can be described by the second-order equa-

tion
d2x

dt2
+ p

dx

dt
+ qx = 0.

We can rewrite this equation as a first-order system,

dx

dt
= v,

dv

dt
= −qx− pv.

• Duffing’s equation,
d2x

dt2
+ p

dx

dt
+ qx = x3,

is an example of a differential equation that is very sensitive to initial
conditions.

• Many systems of equations cannot be solved analytically. However, we
can use numerical techniques such as Euler’s Method to find approximate
solutions for the system. Given the system

dx

dt
= f(t, x, y)

dy

dt
= g(t, x, y),
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with initial condition (x0, y0) and step size h, we can approximate a
solution to the system by

xk+1 = xk + f(xk, yk)h

yk+1 = yk + g(xk, yk)h.

We can extend this method to the improved Euler’s method, Taylor series
methods, or Runge-Kutta methods.

• Provided certain conditions are met, we are guaranteed unique local so-
lutions to any system of first-order differential equations. Some of the
following are consequences of existence and uniqueness.

• Uniqueness tells us that two distinct solutions cannot start at the same
place. Geometrically, this implies that solution curves cannot cross.

• If we have an autonomous system x′ = f(x), our solution does not depend
on time. Thus, we obtain the same solution curve if we start at the same
point even though we might start at different times.

2.3.6 Reading Questions
1. What does it mean for a system of equations to be autonomous?
2. What does it mean for a system of equations to be sensitive to initial

conditions?

2.3.7 Exercises
1. Consider the system

x′ = x+ 3y

y′ = x− y

with initial conditions x(0) = 0 and y(0) = 1.2

(a) Show that

x(t) =
(

3
4e

2t − 3
4e

−2t

1
4e

2t + 3
4e

−2t

)
satisfies the initial value problem.

(b) Use Euler’s method with step size ∆t = 0.5 to approximate this so-
lution, and check how close the approximation is to the real solution
when t = 2, t = 4, and t = 6.

(c) Use Euler’s method with step size ∆t = 0.1 to approximate this so-
lution, and check how close the approximation is to the real solution
when t = 2, t = 4, and t = 6.

(d) Discuss how and why the Euler approximations differ from the real
solution.

2. Consider the system

x′ = y

y′ = −10x− 2y

2You will find Sage very useful for this exercise
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with initial conditions x(0) = 0 and y(0) = 1.3

(a) Show that

x(t) =
(

1
3e

−t sin 3t

e−t cos 3t− 1
3e

−t sin 3t

)
satisfies the initial value problem.

(b) Use Euler’s method with step size ∆t = 0.5 to approximate this so-
lution, and check how close the approximation is to the real solution
when t = 2, t = 4, and t = 6.

(c) Use Euler’s method with step size ∆t = 0.1 to approximate this so-
lution, and check how close the approximation is to the real solution
when t = 2, t = 4, and t = 6.

(d) Discuss how and why the Euler approximations differ from the real
solution.

3. Consider the system

x′ = −x− y

y′ = x− 3y

with initial conditions x(0) = 5 and y(0) = 1.4

(a) Show that

x(t) = e−2t

(
5 + 4t

1 + 4t

)
satisfies the initial value problem.

(b) Use Euler’s method with step size ∆t = 0.5 to approximate this so-
lution, and check how close the approximation is to the real solution
when t = 2, t = 4, and t = 6.

(c) Use Euler’s method with step size ∆t = 0.1 to approximate this so-
lution, and check how close the approximation is to the real solution
when t = 2, t = 4, and t = 6.

(d) Discuss how and why the Euler approximations differ from the real
solution.

2.3.8 Using Sage to Solve Systems with Euler’s Method
Sage is a very convenient tool for solving systems using Euler’s method. Con-
sider the system

x′ = x+ y + t (2.3.4)
y′ = x− y (2.3.5)

x(0) = −1 (2.3.6)
y(0) = 1, (2.3.7)

where h = 1/4 and t ranges from 0 to 1.

t, x, y = PolynomialRing(QQ ,3,"txy").gens()
f = x+y+t

3You will find Sage very useful for this exercise
4You will find Sage very useful for this exercise
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g = x-y
eulers_method_2x2(f,g, 0, -1, 1, 1/4, 1)

We can generate a list of points instead of a table.

t, x, y = PolynomialRing(QQ ,3,"txy").gens()
f = x+y+t
g = x-y
pts = eulers_method_2x2(f,g, 0, -1, 1, 1/4, 1, algorithm

="none")
pts

A list of points can be useful for creating a line plot.

Q = [ [j, k] for i,j,k in pts]
p = list_plot(Q, color="red")
p += line(Q, xmin = -2, ymin = -1.2, xmax=2, ymax = 1.2,

axes_labels =[ ' $x$ ' , ' $y$ ' ])
p

Notice that we have been working over the rationals. The command to
work over the real number is similar.

RR = RealField(sci_not=0, prec=4, rnd= ' RNDU ' )
t, x, y=PolynomialRing(RR ,3,"txy").gens()
f = x+y+t
g = x-y
eulers_method_2x2(f,g, 0, -1, 1, 0.25, 1)

In practice a Runge-Kuta method is much more efficient that Euler’s method.
Consider the system

x′ = 2x− xy

y′ = −5y + xy

with initial conditions x(0) = 1 and y(0) = 1. We can use the desolve_system_rk4
command to obtain and plot a numerical solution.

var( ' x␣y␣t ' )
dx = 2*x - x*y
dy = -5*y + x*y
pts = desolve_system_rk4(des=[dx, dy], vars=[x, y], ivar=t,

step = 0.01, end_points =[0, 10], ics=[0, 1, 1])
ptsx = [[i, j] for i, j, k in pts]
ptsy = [[i, k] for i, j, k in pts]
p = line(ptsx , color= ' blue ' ) + line(ptsy , color= ' red ' )
p.show(axes_labels =[ ' $t$ ' , ' $x,␣y$ ' ])

Sage Exercises
1. Consider the system

x′ = x2 + y

y′ = −3x− 2y2
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with initial conditions x(0) = 2 and y(0) = 1.
(a) Use eulers_method_2x2 with step size h = 0.05 to find an approxi-

mate solution for 0 ≤ t ≤ 1.

(b) Use desolve_system_rk4 with step size h = 0.05 to find an approx-
imate solution for 0 ≤ t ≤ 1.

(c) Plot the solutions given by eulers_method_2x2 and desolve_system_rk4
on the same axes.

(d) Discuss how and why the solution given by eulers_method_2x2 dif-
fers from the one given by desolve_system_rk4.

2.4 Solving Systems Analytically

Objectives
• To understand that a system of the form

dx

dt
= f(x)

dy

dt
= g(y)

is decoupled and can be solved by solving each equation independently.

• To understand that a system of the form

dx

dt
= f(x),

dy

dt
= g(x, y)

is partially coupled system and can be solved by first solving the first
equation and then substituting the solution into the second equation,
which can then be solved.

• To be able to use Sage to solve systems of the form

x′ = ax+ by

y′ = cx+ dy.

Mixing problems model how substances flow back and forth between two or
more compartments. These problems often arise in applications—for example,
we might want to model how greenhouse gases flow back and forth between
different layers of the earth’s atomosphere[17], how chemicals move between
tanks in a refinery or a brewery, or how pollutants move between a series of
lakes or ponds. Systems of differential equations can prove very useful when it
comes to modeling such situations.
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2.4.1 Partially Coupled Systems
We will use linear systems of differential equations such as

dx

dt
= ax+ by

dy

dt
= cx+ dy

to illustrate how we can use systems of differential equations to model how
substances flow back and forth between two or more compartments. Suppose
that we have two tanks (A and B) between which a mixture of brine flows
(Figure 2.4.1). Tank A contains 300 liters of water in which 100 kilograms of
salt has been dissolved and Tank B contains 300 liters of pure water. Fresh
water is pumped into Tank A at the rate of 500 liters per hour, and brine is
pumped into Tank B from Tank A at the rate of 500 liters per hour. Brine
is also drained at a rate 500 liters of brine per hour from Tank B. All brine
mixtures are well-stirred. If we let x = x(t) be the amount of salt in Tank A at
time t and y = y(t) be the amount of salt in Tank B at time t, then we know
that

x(0) = 100

y(0) = 0

We know that the salt concentrations in the two tanks are x/300 kilograms per
liter and y/300 kilograms per liter. Thus, we can describe the rate of change
in each tank with a differential equation,

dx

dt
= −500 · x

300
= −5

3
x,

dy

dt
= 500 · x

300
− 500 · y

300
=

5

3
x− 5

3
y.

300 l 300 l

Tank A Tank B

500 l/hr

500 l/hr

500 l/hr

Figure 2.4.1 Mixing example with two tanks
We can now ask how we might solve the system of equations

dx

dt
= −5

3
x,

dy

dt
=

5

3
x− 5

3
y.

The task of solving the system

dx

dt
= f(x, y),

dy

dt
= g(x, y),
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may be quite difficult or even impossible. However, we can find solutions in
certain cases. For example, if we have a system of the form

dx

dt
= f(x),

dy

dt
= g(y),

then each equation is an autonomous first-order equation. To solve our system,
we only need to solve two first-order equations. Such a system is said to be
decoupled. Generalizing slightly, we say that a partially coupled system
is a system of the form

dx

dt
= f(x),

dy

dt
= g(x, y).

Since the first equation is an autonomous first-order equation in x, we can solve
this equation separately, and substitute our solution into the second equation.

Consider the system

dx

dt
= x

dy

dt
= x+ y.

We can easily solve the first equation, dx/dt = x, to obtain x = aet. Using
this information in the second equation, we have

dy

dt
− y = aet

which is a first-order linear equation. This equation has an integrating factor
µ(t) = e−t, and

d

dt
(e−ty) = µ(t)

(
dy

dt
− y

)
= aetµ(t) = a.

Therefore, the solution to our second equation is

y(t) = atet + bet.

Revisiting the mixing problem that we posed at the beginning of this sec-
tion, we have the following initial value problem,

dx

dt
= −5

3
x,

dy

dt
=

5

3
x− 5

3
y.

x(0) = 100,

y(0) = 0.

Solving dx/dt = −(5/3)x is easy. We can quickly determine that x(t) =
c1e

−5t/3. Applying the initial condition x(0) = 100, we can determine that
c1 = 100 and x(t) = 100e−5t/3. Our second equation now becomes

dy

dt
=

5

3
x− 5

3
y =

500

3
e−5t/3 − 5

3
y.
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This last equation is a first-order linear equation

dy

dt
+

5

3
y =

500

3
e−5t/3.

Multiplying both sides of this last equation by the integrating factor µ(t) =
e5t/3 yields

d

dt
(e5t/3y) = e5t/3

dy

dt
+ e5t/3

5

3
y =

500

3
.

Integrating both sides of this last equation gives us

e5t/3y =
500

3
t+ c2.

Using our initial condition y(0) = 0, we can determine that c2 = 0. Thus,

y =
500

3
te−5t/3

Example 2.4.2 Consider the partially coupled system

x′ = 2x

y′ = x+ 3y

Notice that we already have the tools to solve x′ = 2x. In fact, the solution
is x(t) = c1e

2t. We can use this information to solve the second equation,
y′ = x+ 3y. That is, if we use the fact that x(t) = c1e

2t, the second equation
becomes

y′ = c1e
2t + 3y.

We can rewrite this equation as

y′ − 3y = c1e
2t,

which is a first-order linear equation. If we multiply both sides of the equation
by µ(t) = e−3t, we have

d

dt

(
e−3ty

)
= e−3ty′ − 3e−3ty = c1e

−t.

Integrating, we have
e−3ty = −c1e−t + c2.

Solving for y, yields y = −c1e2t + c2e
3t. Thus the solution to our system is

x = c1e
2t

y = −c1e2t + c2e
3t.

□
Activity 2.4.1 Solving Partially Coupled Systems. Solve each of the
following systems of differential equations.
(a)

x′ = −x
y′ = x− 3y

(b)

x′ = −x− y
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y′ = −3y

(c)

x′ = 2x

y′ = 3x+ 2y

(d)

x′ = 3x+ 4y

y′ = −2y

2.4.2 Using Sage to Solve Linear Systems
Solving linear systems such as

x′ = ax+ by

y′ = cx+ dy

is much more difficult, since we cannot use the same strategies that we used
to solve partially-coupled systems. We will devote all of Chapter 3 to finding
an answer. However, we can use Sage to solve linear systems for the moment.
The following is a Sage interact that will solve the initial value problem

x′ = 3x− 2y

y′ = x+ y

x(0) = 1

y(0) = 1;

however, we can change the coefficients and initial values to be anything that
we like.

Figure 2.4.3 A Sage applet for solving linear systems

2.4.3 Harmonic Oscillators
The equation

d2x

dt2
+ 3

dx

dt
+ 2x = 0

is a specific case of a damped harmonic oscillator, where m = 1, the spring
constant is 2, and the damping constant is 3. We can rewrite this equation as
a first-order linear system,

dx

dt
= v,

dv

dt
= −2x− 3v.

Suppose that x(0) = 0 is the initial position of the mass and v(0) = 1 is the
initial velocity. We can use Sage to verify that the solution to our system is

x(t) = e−t − e−2t,

v(t) = −e−t + 2e−2t.

This is an example of an over-damped harmonic oscillator (Figure 2.4.4). In
other words, a spring-mass system that is modeled by this system of equations
has so much damping that the mass will not oscillate.
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t = var( ' t ' )
x = function( ' x ' )(t)
v = function( ' v ' )(t)
t_start = 0
x_start = 0
v_start = 1
de1 = diff(x,t) == v
de2 = diff(v,t) == -2*x - 3*v
sol = desolve_system ([de1 , de2], [x,v], ics=[t_start ,

x_start , v_start ])
sol [0]. show()
sol [1]. show()

1 2 3 4 5
t

0.2

0.4

0.6

0.8

1.0

x(t), v(t)

x(t) = e−t − e−2t

v(t) = − e−t + 2e−2t

Figure 2.4.4 An over-damped harmonic oscillator
Now let us relax the damping and increase the spring constant on our

harmonic oscillator,
d2x

dt2
+ 2

dx

dt
+ 10x = 0.

The corresponding linear system is

dx

dt
= v,

dv

dt
= −10x− 2v

x(0) = 0

v(0) = 1.

Notice that our initial conditions have not changed. We again use Sage to solve
our system.

t = var( ' t ' )
x = function( ' x ' )(t)
v = function( ' v ' )(t)
t_start = 0
x_start = 0
v_start = 1
de1 = diff(x,t) == v
de2 = diff(v,t) == -10*x - 2*v
sol = desolve_system ([de1 , de2], [x,v], ics=[t_start ,

x_start , v_start ])
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sol [0]. show()
sol [1]. show()

The solution to our system is

x(t) =
1

3
e−t sin 3t,

v(t) = e−t cos 3t− 1

3
e−t sin 3t.

Notice that the system oscillates due to the sine and cosine terms in the solution.
This system is underdamped (Figure 2.4.5).

1 2 3 4 5
t

0.4

0.2

0.2

0.4

0.6

0.8

1.0

x(t), v(t)

x(t) = (1/3)e−tsin3t
v(t) = e−tcos3t− (1/3)e−tsin3t

Figure 2.4.5 An under-damped harmonic oscillator

2.4.4 Important Lessons
• A system of the form

dx

dt
= f(x)

dy

dt
= g(y)

is said to be decoupled. Such a system can be solved by solving each
equation independently.

• A system of the form

dx

dt
= f(x),

dy

dt
= g(x, y)

is a partially coupled system. Since the first equation is an autonomous
first-order equation in x, we can solve this equation separately, and sub-
stitute our solution into the second equation.

• We can use Sage to solve systems of the form

x′ = ax+ by

y′ = cx+ dy.

• Sage is useful for investigating the behavior of harmonic oscillators.
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2.4.5 Reading Questions

1. Explain what a partially coupled system is?
2. Why would you expect that it is impossible to find explicit solutions for

most systems of differential equations?

2.4.6 Exercises

Partially Coupled Systems. Solve each of the partially coupled systems
in Exercise Group 2.4.6.1–4.

1.

x′ = 2x

y′ = x+ 2y

2.

x′ = −x+ 3y

y′ = −2y

3.

x′ = −3x

y′ = 2x+ 3y

4.

x′ = 2x− 3y

y′ = 4y

5. Suppose that we have two tanks (A and B) between which a mixture of
brine flows. Tank A contains 200 liters of water in which 20 kilograms of
salt has been dissolved and Tank B contains 200 liters of water in which
10 kilograms of salt has been dissolved. Fresh water is pumped into Tank
A at the rate of 200 liters per hour, and brine is pumped into Tank B
from Tank A at the rate of 200 liters per hour. Brine is also drained at
a rate 200 liters of brine per hour from Tank B. All brine mixtures are
well-stirred. Find the amount of salt in each tank at time t.

6. For each of the following harmonic oscillators (1) rewrite the second-order
initial value problem as a system of two first-order linear equations, (2) use
Sage to solve the system of linear equations, and (3) classify the harmonic
oscillator as underdamped, critically damped, or overdamped.

(a)
y′′ + 7y′ + 6y = 0

y(0) = 1

y′(0) = 0

(b)
y′′ + 4y′ + 5y = 0

y(0) = 1

y′(0) = 0

(c)
y′′ + 6y′ + 9y = 0
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y(0) = 1

y′(0) = 0

2.5 Projects for Systems of Differential Equations
Project 2.5.1 Project—Modeling a Pandemic. On December 31, 2019,
the city of Wuhan in China reported an outbreak of a novel coronavirus
(COVID-19). It is the seventh member of the coronavirus family, together
with MERS-CoV and SARS-CoV, that can spread to humans.1 The virus is
spreading rapidly. As of January 10, 2021, over 89 million people worldwide
have been infected, including over 1.9 million deaths. The World Health Orga-
nization (WHO) has declared the outbreak as a pandemic.2

The word “pandemic” comes from the Greek word “pandemos,” meaning
“pertaining to all people.” Pandemics are usually caused by an infectious agent
that is capable of rapidly spreading. An epidemic is specific to one city, re-
gion, or country, but a pandemic spreads beyond national borders, possibly
worldwide. The 1918 Spanish flu was the worst pandemic in modern human
history. It infected 500 million people around the world and resulted in the
deaths of over 50 million people.3 Increased travel and mobility have increased
the likelihood of new diseases spreading. Table 2.5.1 lists the major epidemics
and pandemics that have occurred over time. The recent ones are SARS, swine
flu, Ebola, MERS, and COVID-19.

Table 2.5.1 Major epidemics and pandemics in human history4

Name Time Period Type/Pre-Human Host Death Toll
Antonine Plague 165–180 Believed to be smallpox or measles 5 million
Plague of Justinian 541–542 Yersinia pestis bacteria/rats, fleas 30–50 million
Japanese Smallpox Epidemic 735–737 Variola major virus 1 million
Black Death 1347–1351 Yersinia pestis bacteria/rats, fleas 200 million
New World Smallpox Outbreak 1520 onwards Variola major virus 56 million
Great Plague of London 1665 Yersinia pestis bacteria/rats, fleas 100,000
Italian Plague 1629–1631 Yersinia pestis bacteria/rats, fleas 1 million
Cholera Pandemics 1–6 1817–1923 V. cholerae bacteria 1+ million
Third Plague 1885 Yersinia pestis bacteria/rats, fleas 12 million (China and India)
Yellow Fever Late 1800s Virus/Mosquitos 100,000–150,000 (U.S.)
Russian Flu 1889–1890 Believed to be H2N2 (avian origin) 1 million
Spanish Flu 1918–1919 H1N1 virus/Pigs 40–50 million
Asian Flu 1957–1958 H2N2 virus 1.1 million
Hong Kong Flu 1968–1970 H3N2 virus 1 million
HIV/AIDS 1981–present Virus/Chimpanzees 25–35 million
SARS 2002–2003 Coronavirus/Bats, civets 770
Swine Flu 2009–2010 H1N1 virus/Pigs 200,000
Ebola 2014–2016 Ebola virus/Wild Animals 11,000
MERS 2015–present Coronavirus/Bats, camels 850
COVID-19 2019–present Coronavirus/Unknown (possibly bats) 1.9 million (as of Jan 10, 2021)

Infectious disease modeling is an essential part of the effort to minimize the
spread. A well-designed model not only can help predict the likely course of
an epidemic, but also can reveal the most promising and realistic strategies for
containing it.

Following the SIR model in Subsection 2.1.3, we will assume that we have a
closed population of size N , where immigration, emigration, and birth do not
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play an important role. We will also ignore any deaths that are not related to
our disease.

We will assume that each individual in the population falls into one of the
following categories:

s(t) = Susceptible individuals
i(t) = Infected individuals
r(t) = Removed individuals

Susceptible individuals are those who do not yet have the disease and can catch
the disease from infected individuals. Individuals enter the removed population
by either recovering from the disease or dying. If an infected individual recovers,
then the individual is immune to the disease. Schematically, we can represent
the effect of the disease by the diagram

s −→ i −→ r.

Since the population is closed, we know that

s(t) + i(t) + r(t) = N.

It may seem more natural to work with population counts, but some of
our calculations will be simpler if we use the fractions instead. Therefore, we
normalize the dependent variables by the total population to represent the
fraction of the total population in each group. The two sets of dependent
variables are proportional to each other, so either set will give us the same
information about the progress of the epidemic

S(t) = s(t)/N = the fraction of susceptible individuals
I(t) = i(t)/N = the fraction of infected individuals
R(t) = r(t)/N = the fraction of removed individuals

1 = S(t) + I(t) +R(t).

The SIR model is described by the nonlinear system of below, where α is the
transmission rate and β is the recovery rate.

dS

dt
= −αSI

dI

dt
= αSI − βI

dR

dt
= βI.

To understand this model, let us analyze the differential equations and
parameters. The transmission rate α is the product of two factors: the rate
of contact and probability of transmission. α describes the fraction of those
contacts that may result in infection, or it can be interpreted as the expected
number of people an infected person infects per day. The function λ(I) = αI
is the rate at which susceptible individuals become infectious, called the force
of infection. The rate of change of the susceptible population is negative the
force of infection times the number of susceptible, leading to dS/dt = −αSI.

The recovery rate β is the rate at which infected individuals get over the
disease, that is the proportion of infected recovering per day, thus the rate of
change of the recovered population is βI, leading to dR/dt = βI. Importantly,
the parameter β is measured in 1/time and 1/β can be interpreted as the
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average time to recover, or the number of days an infected person has and can
spread the disease.

The equation dI/dt = αSI − βI now makes sense. The rate at which the
fraction of infected individuals changes is the rate at which the fraction of
susceptible minus the rate at which the fraction of individuals recover or

dI

dt
= αSI − βI.

(a) Using Sage, we can plot the solutions, and visualize the interaction of
the three groups. Consider the initial population fractions S(0) = 0.99,
I(0) = 0.01, R(0) = 0, α = 1, β = 0.2, and a time period of 30 days.
Adjust the parameters values to examine different behaviors and view the
changes in action. What do you observe by increasing or decreasing α?

Susceptible , Infected , Recovered , t = var( ' Susceptible ,␣
Infected ,␣Recovered ,␣t ' )

alpha = 1.0
beta = 0.2
F = [-alpha*Susceptible*Infected ,

alpha*Susceptible*Infected - beta*Infected ,
beta*Infected]

P = desolve_system_rk4(F,[ Susceptible , Infected ,
Recovered],ics =[0 ,0.99 ,0.01 ,0] , ivar=t,end_points =30,step =0.1)

Q = [ [i, j] for i,j,k,l in P]
R = [ [i, k] for i,j,k,l in P]
S = [ [i, l] for i,j,k,l in P]
LQ = line(Q, color= ' red ' , axes_labels =[ ' $t$ ' , ' $S(t),␣

I(t)$ ' ], legend_label= ' $S(t)$ ' , legend_color= ' red ' ,
fontsize =12, thickness =2)

LR = line(R, color= ' blue ' , legend_label= ' $I(t)$ ' ,
legend_color= ' blue ' , thickness =2)

LS = line(S, color= ' green ' , legend_label= ' $R(t)$ ' ,
legend_color= ' green ' , thickness =2)

p = LQ + LR + LS
p

(b) Basic Reproduction Number R0.
The basic reproduction number R0, is introduced to measure the trans-
mission potential of a disease. It is the expected number of secondary
infections produced by a single infective. For example, if the R0 for
measles in a population is 16, then we would expect each new case of
measles to produce 16 new secondary cases over the period of time dur-
ing which the infected individual can actually spread the disease. The
reproduction number is affected by several factors: the rate of contacts in
the host population, the probability of infection being transmitted during
contact, and the duration of infectiousness. In the SIR model described
above,

R0 =
α

β
.

Simply put, R0 is a metric of how contagious a disease is. It can capture
three basic scenarios (Figure 2.5.2). If R0 < 1, on average, an infected
person infects less than one person. The disease is expected to stop
spreading. If R0 = 1, an infected person infects an average of one person.
The disease spread is stable, or endemic. If R0 > 1, on average, an
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infected person infects more than one person. The disease is expected
to increasingly spread in the absence of intervention. Measles is one of
the most contagious with a range of 12–18 for the reproduciton number.5
Estimates of R0 for COVID-19 vary in the range of 2–2.5.6

Figure 2.5.2 Basic reproduction number R0

(i) Examine the system

dS

dt
= −αSI

dI

dt
= αSI − βI.

According to the differential equation for dI/dt, under what con-
ditions will I(t) be increasing? decreasing? What does this mean
about the spread of the disease? Using this result, explain whether
quarantine will be effective against the disease.

(ii) Show that
dI

dS
= −1 +

1

R0S
.

Two features of this new equation are particularly worth noting.
• The only parameter that appears is R0, the reproduction num-

ber.
• The equation is independent of time. That is, what we learn

about the relationship between S and I must be true for the
entire duration of the pandemic.

Compute d2I/dS2. Determine when the number of infected will
begin to decrease. Compare this to your result from Task 2.5.1.b.i.
Hint. Use the chain rule.

(iii) Show that I must have the form

I = −S +
1

R0
lnS + C,

where C is a constant.
(iv) For a disease such as COVID-19, I(0) ≈ 0 and S(0) ≈ 1. A long

time after the onset of the epidemic, we have limt→∞ I(t) = I∞
approximately 0 again, and S∞ = limt→∞ S(t) has settled to its
steady state value, observable as the fraction of the population that
did not get the disease. Explain why

R0 =
lnS∞

S∞ − 1
.
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(v) Describe the meaning and significance of “herd immunity.” How can
vaccination lead to herd immunity?

(c) Your Final Report.
You have been commissioned to write a report on the COVID-19 pan-
demic to the state health department. In particular, your task is to
explain what the meaning of R0 and its relationship to “herd immu-
nity”. Your final report should contain a one-page executive summary.
The executive summary should summarize your work in such a way that
the reader can rapidly become acquainted with the material. It should
contain a brief description of the problem, important background infor-
mation, a discussion of pertinent assumptions, a short description of your
methodology, concise analysis, and your main conclusions. Assume the
reader is familiar with the basics of calculus and differential equations,
so there is no need to walk through every step of your solution process or
include equations. However, you should still describe the processes and
mathematical techniques you used to reach your conclusions and explain
why you used them. Refer the reader to the appendices as needed.
Appendices should be neatly formatted and present information in a log-
ical manner. DO NOT simply print out Sage code. Consolidate your
results and provide a short explanation of what it is the reader is seeing
while also highlighting key pieces of information in the appendix.

• Appendix A—Answers and analysis
• Additional Appendices—Include additional appendices as necessary.

Other models include SEIR, SEIS, SEAIR, MSIR, MSEIR, and MSEIRS. For
many infections, there is an incubation period during which individuals have
been infected but are not yet infectious themselves. During this period the
individual is in class E (for exposed), leading to the SEIR model. The SEIS
model is like the SEIR except that no immunity is acquired at the end. In the
E class, a significant number of persons may never develop symptoms, but they
are capable of transmitting the disease, introducing an additional compartment
A, and thus SEAIR. For many infections, such as measles, babies are not born
into the susceptible compartment but are immune to the disease for the first
few months of life due to protection from maternal antibodies. The M class
contains infants with maternally derived immunity (or passive immunity). The
MSEIRS model is similar to the MSEIR, but the immunity in the R class would
be temporary, so that individuals would regain their susceptibility when the
temporary immunity ended.

1Johns Hopkins Coronavirus Resource Center, 2021. coronavirus.jhu.edu. Accessed
10 January 2021.

2This project is adapted from Jue Wang (2020), “6-016-S-PandemicModeling,” www.
simiode.org/resources/7518

3Centers for Disease Control and Prevention. 2019. 1918 influenza pandemic (H1N1
virus). www.cdc.gov/flu/pandemic-resources/1918-pandemic-h1n1.html. Accessed 10
January 2021.

4World Economic Forum. 2021. A visual history of pandemics.
www.weforum.org/agenda/2020/03/a-visual-history-of-pandemics. Accessed 10 January
2021.

5World Economic Forum. 2021. A visual history of pandemics. www.weforum.org/
agenda/2020/03/a-visual-history-of-pandemics Accessed 10 January 2021.

6The Johns Hopkins University. 2021. Coronavirus: COVID-19 Terms You Should
Know. www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus/
COVID-19-terms Accessed 10 January 2021.

https://coronavirus.jhu.edu
https://www.simiode.org/resources/7518
https://www.simiode.org/resources/7518
https://www.cdc.gov/flu/pandemic-resources/1918-pandemic-h1n1.html
https://www.weforum.org/agenda/2020/03/a-visual-history-of-pandemics
https://www.weforum.org/agenda/2020/03/a-visual-history-of-pandemics
https://www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus/COVID-19-terms
https://www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus/COVID-19-terms


Chapter 3

Linear Systems

3.1 Linear Algebra in a Nutshell

Objectives
• To understand and be able to apply definitions such as linear dependence

and independence, basis, and linear combinations to vectors in R2.

• To understand and be able to do operations such as matrix arithmetic,
computing determinants, finding eigenvalues and eigenvectors, and find-
ing matrix inverses for 2× 2 matrices.

Linear algebra and matrices provide a convenient notation for representing
the 2× 2 system

dx

dt
= ax+ by,

dy

dt
= cx+ dy.

If we let
A =

(
a b

c d

)
and x(t) =

(
x(t)

y(t)

)
,

then we can rewrite our system as(
x′(t)

y′(t)

)
=

(
ax(t) + by(t)

cx(t) + dy(t)

)
=

(
a b

c d

)(
x(t)

y(t)

)
.

In other words, we can write our system as
dx
dt

= Ax,

where
x′ =

dx
dt

=

(
x′(t)

y′(t)

)
.

3.1.1 Matrices and Systems of Linear Equations
A short review of linear algebra and 2×2 matrices is useful at this point. Recall
that any system of two equations in two variables,

ax+ by = α,

145
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cx+ dy = β,

can be written as a matrix equation(
a b

c d

)(
x

y

)
=

(
ax+ by

cx+ dy

)
=

(
α

β

)
. (3.1.1)

We will denote the 2× 2 coefficient matrix by A. That is,

A =

(
a b

c d

)
.

If a solution for the system (3.1.1) exists, it is easy to find. A unique
solution will occur exactly when the matrix A is invertible (or nonsingular).
The unique solution is given by(

x

y

)
=

(
a b

c d

)−1(
α

β

)
,

where
A−1 =

1

ad− bc

(
d −b
−c a

)
.

The matrix A is invertible if and only if its determinant is nonzero,

det(A) = ad− bc ̸= 0.

If det(A) = 0, then we either have no solution or infinitely many solutions.
Let us consider the special case

A

(
x

y

)
=

(
0

0

)
.

If det(A) ̸= 0, we have exactly one solution, x = 0 and y = 0. On the other
hand, if det(A) = 0, we have infinitely many solutions. Suppose that a ̸= 0.
Then x = −(b/a)y, and

−c
(
b

a

)
y + dy = 0.

Therefore, (ad − bc)y = 0. Since det(A) = ad − bc = 0, the variable y can
assume any value and x = −(b/a)y. Thus, the solutions to our system lie
along a line through the origin. In fact, we will always get a line of solutions
through the origin as long as at least one entry in our matrix is nonzero.1

3.1.2 Linear Independence
We say that two vectors x and y in R2 are linearly independent if they do
not lie on the same line through the origin. If, on the other hand, they do lie
on the same line, then the vectors are linearly dependent. Equivalently, two
vectors are linearly dependent if one vector is a multiple of the other. We leave
the proof of the following theorem as an exercise.

Theorem 3.1.1 Let x = (x1, x2) and y = (y1, y2). Then x and y are linearly
1We will not worry about the 2× 2 zero matrix, since it will not play a role in our study

of linear equations.
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independent if and only if

det
(
x1 y1
x2 y2

)
̸= 0.

If we have a pair of linearly independent vectors in R2, then we can write
any vector in R2 as a unique linear combination of the two vectors. That is,
given two linearly independent vectors x = (x1, x2) and y = (y1, y2), we can
write z = (z1, z2) as (

z1
z2

)
= α

(
x1
x2

)
+ β

(
y1
y2

)
,

where α and β are unique. To see why this is true, we must solve the equations

z1 = αx1 + βy1

z2 = αx2 + βy2

for α and β. However, this system has a unique solution since

det
(
x1 y1
x2 y2

)
̸= 0.

Two vectors are said to be a basis for R2 if we can write any vector in R2 as
a linear combination of these two vectors. By our arguments above, any two
linearly independent vectors will form a basis for R2.

Example 3.1.2 The vectors e1 = (1, 0) and e2 = (0, 1) form a basis for R2.
Indeed, if z = (z1, z2), then we can write

z = z1e1 + z2e2.

The vectors e1 and e2 are called the standard basis for R2. □
Example 3.1.3 Let v1 = (2, 1) and v2 = (3, 2). Since

det
(
2 3

1 2

)
̸= 0,

these vectors form a basis for R2. If z = (−5,−4), then we can write

z = 2v1 − 3v2.

We say that the coordinates of z are (2,−3) with respect to the basis {v1,v2}.
□

Example 3.1.4 The vectors (1, 1) and (−1,−1) do not form a basis for R2

since these two vectors lie along the same line. □
If 2 × 2 matrices and the rest of what we have described above make you

nervous, you should work through the exercises at the end of this section.
Activity 3.1.1 Matrix Operations. Given the matrices and vectors

A =

(
5 3

−6 4

)
, B =

(
2 3

1 2

)
,x =

(
1

0

)
y =

(
2

−1

)
compute each of the following expressions.
(a) AB, BA

(b) A−1, B−1, (AB)−1, B−1A−1

(c) det(A),det(B),det(AB),det(A−1)
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(d) Ax, Ay, yT x, xyT , where yT = (2,−1)

3.1.3 Finding Eigenvalues and Eigenvectors
A nonzero vector v is an eigenvector of A if Av = λv for some λ ∈ R. The
constant λ is called an eigenvalue of A. Letting

A =

(
a b

c d

)
and v =

(
x

y

)
̸= 0,

we have Ax = λv or Av − λv = 0. In matrix form this is(
a b

c d

)(
x

y

)
− λ

(
x

y

)
=

(
a b

c d

)(
x

y

)
−
(
λ 0

0 λ

)(
x

y

)
=

(
a− λ b

c d− λ

)(
x

y

)
=

(
0

0

)
.

This matrix equation is certainly true if (x, y) = (0, 0). However, we seek
nonzero solutions to this system. This will occur exactly when the determinant
of

A− λI =

(
a− λ b

c d− λ

)
is zero. In this case

det(A− λI) = det
(
a− λ b

c d− λ

)
= λ2 − (a+ d)λ+ (ad− bc).

We say that
det(A− λI) = λ2 − (a+ d)λ+ (ad− bc)

is the characteristic polynomial of A. We summarize the results of this
discussion in the following theorem.
Theorem 3.1.5 The roots of the characteristic polynomial of A are the eigen-
values of A.
Example 3.1.6 Suppose that we wish to find the eigenvalues and associated
eigenvectors of

A =

(
1 2

4 3

)
.

To find the eigenvalues and eigenvectors for A, we must solve the equation

A

(
x

y

)
= λ

(
x

y

)
.

If we let I denote the 2× 2 identity matrix,

I =

(
1 0

0 1

)
,

we can rewrite this equation in the form

(A− λI)

(
x

y

)
=

(
0

0

)
. (3.1.2)
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We know that A − λI is a 2 × 2 matrix and that this system will only have
nonzero solutions if det(A− λI) = 0. In our example,

det(A− λI) = det
(
1− λ 2

4 3− λ

)
= (1− λ)(3− λ)− 8

= λ2 − 4λ− 5

= (λ− 5)(λ+ 1).

Thus, λ = 5 or −1.
To see this from a different perspective, we will rewrite equation (3.1.2) as

x+ 2y = λx

4x+ 3y = λy.

This system is equivalent to

(1− λ)x+ 2y = 0

4x+ (3− λ)y = 0

which can be reduced to

(1− λ)x+ 2y = 0

(λ2 − 4λ− 5)y = 0.

Therefore, either λ = 5 or λ = −1 to obtain a nonzero solution.

• If λ = 5, the first equation in the system becomes −2x+ y = 0, and the
eigenvectors corresponding to this eigenvalue are the nonzero solutions
of this equation. That is, a vector must be a nonzero multiple of (1, 2)
to be an eigenvector of A corresponding to λ = 5.

• If λ = −1, then the corresponding eigenvectors are the nonzero multiples
of (1,−1).

□
Activity 3.1.2 Finding Eigenvalues and Eigenvectors. For each of the
following matrices (1) find the characteristic polynomial, (2) find all of the
eigenvalues, and (3) find an eigenvector for each eigenvalue.
(a)

A =

(
1 3

1 −1

)
.

(b)

A =

(
−8 2

−15 3

)
.

(c)

A =

(
4 3

−6 −5

)
.

(d)

A =

(
7 4

−10 −5

)
.
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(e)

A =

(
3 1

−1 1

)
.

3.1.4 Important Lessons
• A matrix A is invertible (or nonsingular) if there exists a matrix A−1

such that AA−1 = A−1A = I, where I is the identity matrix. In the case
of 2× 2 matrices,

I =

(
1 0

0 1

)
.

• If
A =

(
a b

c d

)
,

then
A−1 =

1

ad− bc

(
d −b
−c a

)
.

• A matrix A is invertible if and only if its determinant is nonzero,

det(A) = ad− bc ̸= 0.

• We say that two vectors x and y in R2 are linearly independent if
they do not lie on the same line through the origin. If, on the other hand,
they do lie on the same line, then the vectors are linearly dependent.
Equivalently, two vectors are linearly dependent if one vector is a multiple
of the other.

• Let x = (x1, x2) and y = (y1, y2). Then x and y are linearly independent
if and only if

det
(
x1 y1
x2 y2

)
̸= 0.

• If we have a pair of linearly independent vectors in R2, then we can
write any vector in R2 as a unique linear combination of the two
vectors. That is, given two linearly independent vectors x = (x1, x2) and
y = (y1, y2), we can write z = (z1, z2) as(

z1
z2

)
= α

(
x1
x2

)
+ β

(
y1
y2

)
,

where α and β are unique.

• Two vectors are a basis for R2 if we can write any vector in R2 as a
linear combination of these two vectors. Any two linearly independent
vectors will form a basis for R2.

• The roots of the characteristic polynomial, det(A− λI), of a matrix
A are the eigenvalues of A. Given a specific eigenvalue, λ, for a matrix
A, the eigenvectors associated with A are the nonzero solutions of the
system of equations

(A− λI)

(
x

y

)
=

(
0

0

)
.

• If v1 and v2 are eigenvectors of two distinct real eigenvalues of a matrix
A, then v1 and v2 are linearly independent.



CHAPTER 3. LINEAR SYSTEMS 151

3.1.5 Reading Questions

1. Explain what it means for two vectors to be linearly independent.
2. Explain what it means for a matrix to be nonsingular.
3. What is an eigenvalue and an eigenvector?

3.1.6 Exercises
1. Given a column vector

x =

(
x1
x2

)
,

we define the transpose of x to be

xT =
(
x1 x2

)
.

If
A =

(
3 −2

0 −1

)
,x =

(
4

1

)
, and y =

(
−2

3

)
,

find each of the following.
(a) Ax

(b) Ay

(c) xT y

(d) yT x
2. If

A =

(
1 −2

3 1

)
and B =

(
4 1

−1 −2

)
,

find each of the following.
(a) A+B

(b) 2A− 3B

(c) AB

(d) BA

(e) A−1

(f) B−1

3. If
A =

(
2 1− i

2− i 2

)
and B =

(
4i 1− i

1 + 3i −2− i

)
,

find each of the following.
(a) A+B

(b) 3A− 2B

(c) AB

(d) BA

Finding Determinants. Find the determinant of each of the matrices A in
Exercise Group 3.1.6.4–13.

4. A =

(
3 4

2 1

)
5. A =

(
6 3

−4 −1

)
6. A =

(
3 1

−1 1

)
7. A =

(
−1 6

−2 6

)
8. A =

(
3 1

−2 0

)
9. A =

(
1 −2

1 3

)
10. A =

(
2 0

0 −3

)
11. A =

(
1 2

0 3

)
12. A =

(
2 1

1 3

)
13. A =

(
1 −2

−3 2

)

Finding Inverses. Find the inverse (if it exists) of each of the matrices A
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in Exercise Group 3.1.6.14–21. that is, find the matrix A−1 such that AA−1 =
A−1A = I, where

I =

(
1 0

0 1

)
.

14. A =

(
1 2

3 4

)
15. A =

(
6 3

−4 −1

)
16. A =

(
3 −7

−2 5

)
17. A =

(
8 7

2 2

)
18. A =

(
−3 4

−2 5

)
19. A =

(
3 2

4 3

)
20. A =

(
4 0

0 −3

)
21. A =

(
1 2

−3 −6

)

Finding Eigenvalues and Eigenvectors. For each of the matrices A in
Exercise Group 3.1.6.22–31:

(a) Find the characteristic polynomial of A.

(b) Find all of the eigenvalues of A.

(c) Find an eigenvector for each eigenvalue of A.

22. A =

(
3 4

2 1

)
23. A =

(
6 3

−4 −1

)
24. A =

(
3 1

−1 1

)
25. A =

(
−1 6

−2 6

)
26. A =

(
3 1

−2 0

)
27. A =

(
1 −2

1 3

)
28. A =

(
2 0

0 −3

)
29. A =

(
1 2

0 3

)
30. A =

(
2 1

1 3

)
31. A =

(
1 −2

−3 2

)
32. For what values of a are the vectors (2, a) and (4,−1) linearly indepen-

dent?
33. We define the trace of a 2×2 matrix to be the sum of its diagonal entries.

That is, the trace of

A =

(
a b

c d

)
is tr(A) = a + d. Show that tr(AB) = tr(BA) for any 2 × 2 matrices A
and B.

34. Let A and B be two 2× 2 matrices. Show that det(AB) = det(A)det(B).
35. Let A be a 2× 2 matrix. Show that det(A−1]) = 1/.
36. Define the 2× 2 identity matrix to be

I =

(
1 0

0 1

)
.

Show that AI = IA = A for any 2× 2 matrix.
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37. An upper triangular matrix A is a matrix of the form

A =

(
α γ

0 β

)
.

Show that A has eigenvalues α and β.
38. Let x = (x1, x2) and y = (y1, y2). Prove that x and y are linearly inde-

pendent if and only if

det
(
x1 y1
x2 y2

)
̸= 0.

3.1.7 Finding Eigenvalues and Eigenvectors with Sage
Sage can be used to find eigenvalues and eigenvectors for a matrix A for now.
Consider the matrix

A =

(
1 3

1 −1

)
.

Using Sage, we would enter the matrix A as follows.

A = matrix ([[1, 3], [1, -1]])
A

[ 1 3] [ 1 -1]

We can use the following command to find the eigenvalues of A.

A = matrix ([[1, 3], [1, -1]])
A.eigenvalues ()

[2, -2]

Sage will also allow us to find eigenvectors for each of the eigenvalues of A.

A = matrix ([[1, 3], [1, -1]])
A.eigenvectors_right ()

[(2, [(1, 1/3)], 1), (-2, [(1, -1)], 1)]

Thus, the matrix A has two eigenvalues: λ1 = 2 with eigenvector v1 =
(1, 1/3) and λ2 = −2 with eigenvector v2 = (1,−1).

There is a third entry in the Sage output which refers to the multiplicity of
the eigenvalue. In the previous example, the multiplicity is 1. In the matrix

B =

(
1 1

−1 3

)
in the Sage cell below, we obtain a single repeated eigenvalue λ = 2 and only
one eigenvector v = (1, 1). The multiplicity of this eigenvalue is 2. In our
previous examples, we obtained two linearly independent eigenvalues allowing
us to solve initial value problems given a general solution.

B = matrix ([[1, 1],[-1, 3]])
B.eigenvectors_right ()

[(2, [(1, 1)], 2)]
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We may also have matrices such as

C =

(
4 1

−1 4

)
has complex eigenvalues, λ = 4 − i and µ = 4 + i. Eigenvectors for λ and µ
are u = (1,−i) and v = (1, i), respectively.

C = matrix ([[4, 1],[-1, 4]])
C.eigenvectors_right ()

[(4 - 1*I, [(1, -1*I)], 1), (4 + 1*I, [(1, 1*I)], 1)]

The complex number 4− i is written as 4 - 1*I in Sage.

3.2 Planar Systems

Objectives
• To understand that for 2× 2 matrix A with distinct real eigenvalues, λ1

and λ2 and associated eigenvectors v1 and v2, that the general solution
of the linear system x′ = Ax is given by

x(t) = αeλ1tv1 + βeλ2tv2.

A first-order linear system of n equations and n variables is any
system that can be written in the form

dx1
dt

= a11(t)x1(t) + · · ·+ a1n(t)xn(t) + f1(t),

dx2
dt

= a21(t)x1(t) + · · ·+ a2n(t)xn(t) + f2(t),

...
dxn
dt

= an1(t)x1(t) + · · ·+ ann(t)xn(t) + fn(t).

If each of the coefficients is constant and the functions fi vanish, then we have
a homogeneous first-order linear system with constant coefficients,

dx1
dt

= a11x1 + · · ·+ a1nxn

dx2
dt

= a21x1 + · · ·+ a2nxn,

...
dxn
dt

= an1x1 + · · ·+ annxn.

We will concentrate on 2 × 2 homogeneous first-order linear systems or
planar systems for the time being,

dx

dt
= ax+ by, (3.2.1)

dy

dt
= cx+ dy. (3.2.2)



CHAPTER 3. LINEAR SYSTEMS 155

3.2.1 Planar Systems and 2× 2 Matrices
We will use linear systems of differential equations to illustrate how we can use
systems of differential equations to model how subtances flow back and forth
between two or more compartments. Suppose that we have two tanks (A and
B) between which a mixture of brine flows (Figure 3.2.1). Tank A contains
300 liters of water in which 100 kilograms of salt has been dissolved and Tank
B contains 300 liters of pure water. Fresh water is pumped into Tank A at
the rate of 500 liters per hour, and brine is pumped into Tank B from Tank
A at the rate of 900 liters per hour. Brine is also pumped back into Tank A
from Tank B at the rate of 400 liters per hour, and an additional 500 liters of
brine per hour is drained from Tank B. All brine mixtures are well-stirred. If
we let x = x(t) be the amount of salt in Tank A at time t and y = y(t) be the
amount of salt in Tank B at time t, then we know that

x(0) = 100

y(0) = 0

We know that the salt concentrations in the two tanks are x/300 kilograms per
liter and y/300 kilograms per liter. Thus, we can describe the rate of change
in each tank with a differential equation,

dx

dt
= −900 · x

300
+ 400 · y

300
= −3x+

4

3
y,

dy

dt
= 900 · x

300
− 400 · y

300
− 500 · y

300
= 3x− 3y.

300 l 300 l

Tank A Tank B

400 l/hr

900 l/hr

500 l/hr

500 l/hr

Figure 3.2.1 Mixing example with two tanks
Matrix notation gives us a convenient way of representing the 2 × 2 sys-

tem (3.2.1)–(3.2.1). If we let

A =

(
a b

c d

)
and x(t) =

(
x(t)

y(t)

)
,

then we can rewrite our system as(
x′(t)

y′(t)

)
=

(
ax(t) + by(t)

cx(t) + dy(t)

)
=

(
a b

c d

)(
x(t)

y(t)

)
.

In other words, we can write our system as
dx
dt

= Ax,

where
x′ =

dx
dt

=

(
x′(t)

y′(t)

)
.



CHAPTER 3. LINEAR SYSTEMS 156

3.2.2 Systems of Differential Equations
A linear planar system

x′ = ax+ by

y′ = cx+ dy

has an equilibrium solution at (x0, y0) if

ax0 + by0 = 0,

cx0 + dy0 = 0.

The following proposition tells us exactly where to find the equilibrium solu-
tions of a linear system with constant coefficients.
Theorem 3.2.2 Let

dx
dt

= Ax

be a 2× 2 linear system, where A is not the zero matrix.
1. If det(A) ̸= 0, then (x, y) = (0, 0) is the unique equilibrium solution for

the system.

2. If det(A) = 0, then the equilibrium solutions for the system form a straight
line in R2.

Now let us attack the problem of finding all of the solutions of the system
x′ = Ax. Suppose that we can find a nonzero vector v0 such that Av0 = λv0

for some real number λ. In this case, the matrix A just sends the vector v0 to
a vector on the same line through the origin, λv0. This is a very special case
of course; however, we claim that

x(t) = eλtv0

is a solution for our linear system if we can find such a vector. To see that this
is indeed the case, we compute

x′(t) = λeλtv0

= eλt(λv0)

= eλt(Av0)

= A(eλtv0)

= Ax(t).

In other words, the key to solving a linear system x′ = Ax is to be able to find
eigenvalues and eigenvectors for the matrix A. We are now ready to state the
results of our discussion in a theorem.
Theorem 3.2.3 Let v0 be an eigenvector for the matrix A with associated
eigenvalue λ. Then the function x(t) = eλtv0 is a solution of the system
x′ = Ax.

We say that the solution x(t) = eλtv0 is a straight-line solution. The
vector eλtv0 lies on the same line for each value of t. Note that if v0 is an
eigenvector for A, then any nonzero multiple of v0 is also an eigenvector for A,

A(αv0) = αAv0 = α(λv0) = λ(αv0).

Example 3.2.4 Consider the system

x′ = x+ 3y
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y′ = x− y.

We can rewrite this system in matrix form as x′ = Ax, where

A =

(
1 3

1 −1

)
.

The matrix A has an eigenvector u = (3, 1) with associated eigenvalue λ = 2,
since

Au =

(
1 3

1 −1

)(
3

1

)
=

(
6

2

)
= 2

(
3

1

)
= λu.

Similarly, v = (1,−1) is an eigenvector for A with associated eigenvalue µ = −2.
Thus, we have two solutions for our system: the equilibrium solution at the
origin, the solution

x1(t) = e2t
(
3

1

)
,

and the solution
x2(t) = e−2t

(
1

−1

)
.

Since

d

dt
(c1x1(t) + c2x2(t)) = c1

d

dt
x1(t) + c2

d

dt
x2(t)

= c1Ax1(t) + c2Ax2(t)

= A(c1x1(t) + c2x2(t)),

any linear combination of solutions to a linear system is also a solution. Thus,
a general solution to our system is

x(t) = c1e
2t

(
3

1

)
+ c2e

−2t

(
1

−1

)
or

x(t) = 3c1e
2t + c2e

−2t

y(t) = c1e
2t − c2e

−2t.

If we are given initial conditions, say x(0) = 0 and y(0) = 1, then we can
determine c1 and c2 by solving the linear system of equations

3c1 + c2 = 0

c1 − c2 = 1

to get c1 = 1/4 and c2 = −3/4. Thus, the solution to our initial value problem
is

x(t) =
3

4
e2t − 3

4
e−2t

y(t) =
1

4
e2t +

3

4
e−2t.

□
Activity 3.2.1 Planar Systems with Distinct Real Eigenvalues. Con-
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sider the initial value problem dx/dt = Ax, where

A =

(
23 10

−50 −22

)
x(0) =

(
3

3

)
.

(a) Find the eigenvalues of A. You should find distinct real eigenvalues λ
and µ.

(b) Find eigenvectors v1 and v2 for the eigenvalues λ and µ, respectively.

(c) Find the straight-line solutions of dx/dt = Ax. Plot the solutions in the
xy-plane.

(d) Sketch the solution curve to the initial value problem in the xy-plane.

(e) Show that x(t) = c1e
λtv1 + c2e

µtv2 is a solution to the linear system
dx/dt = Ax.

(f) Use the fact that

x(0) =
(
1

2

)
to find c1 and c2 such that x(t) = c1e

λtv1 + c2e
µtv2 is a solution to the

initial value problem. Does this solution agree with the solution that you
plotted in Task 3.2.1.d?

If x1(t) and x2(t) are solutions to the linear system x′ = Ax, then

x′
1 = Ax1

x′
2 = Ax2.

Thus, for any two real numbers c1 and c2,

d

dt
(c1x1(t) + c2x2(t)) = α

d

dt
x1(t) + c2

d

dt
x2(t)

= c1Ax1(t) + c2Ax2(t)

= A(c1x1(t) + c2x2(t)).

We state this result in the following theorem.
Theorem 3.2.5 Principle of Superposition. If A is a 2× 2 matrix, then
any linear combination of solutions to the linear system x′ = Ax is also a
solution.

Revisiting the mixing problem that we posed at the beginning of this sec-
tion, we have the following initial value problem,

dx

dt
= −3x+

4

3
y,

dy

dt
= 3x− 3y,

x(0) = 100,

y(0) = 0.

If we write our system in matrix form, x′ = Ax, then

A =

(
−3 4/3

3 −3

)
.
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It is easy to check that we have eigenvalues λ = −1 and µ = −5 with eigenvec-
tors u = (2, 3) and v = (−2, 3), respectively. Thus, we have two solutions to
our system,

x1(t) = e−tu,
x2(t) = e−5tv.

Since any linear combination of solutions is also a solution,

x(t) = c1

(
2e−t

3e−t

)
+ c2

(
−2e−5t

3e−5t

)
is a solution to our system. Using the initial values x(0) = 100 and y(0) = 0,
we can determine that c1 = 25 and c2 = −25. We now have the solution that
we seek,

x(t) = 50e−t + 50e−5t

y(t) = 75e−t − 75e−5t.

3.2.3 Solving Linear Systems
Our goal is to prove the following theorem.
Theorem 3.2.6 Suppose that A has a pair of distinct real eigenvalues, λ1 and
λ2, with associated eigenvectors v1 and v2. Then the general solution of the
linear system x′ = Ax is given by

x(t) = c1e
λ1tv1 + c2e

λ2tv2.

Lemma 3.2.7 Let A be an 2×2 matrix with a pair of distinct real eigenvalues,
λ1 and λ2 and eigenvectors v1 and v2, respectively. Then v1 and v2 are linearly
independent.
Proof. If v1 and v2 are linearly dependent, then there exists α ̸= 0 such that

v1 = αv2. (3.2.3)

Multiplying both sides of this equation by A, we have

λ1v1 = Av1 = αAv2 = αλ2v2. (3.2.4)

On the other hand, we obtain

λ2v1 = αλ2v2 (3.2.5)

if we multiply both sides of (3.2.3) by λ2. Using (3.2.4) and (3.2.5), we can
conclude that

(λ1 − λ2)v1 = α(λ2 − λ2)v2 = 0v2 = 0.

However, this contradicts the assumption that λ1 and λ2 are distinct. ■
We can now proceed to the proof of the theorem. Suppose that we have a

linear system x′ = Ax such that A has a pair of distinct real eigenvalues, λ1 and
λ2, with associated eigenvectors v1 and v2. By the Principle of Superposition,
we know that

x(t) = c1e
λ1tv1 + c2e

λ2tv2.

is a solution to the linear system x′ = Ax. To show that this is the general
solution, we must show that we can choose c1 and c2 to satisfy a given initial
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condition x0 = x(0) = (x0, y0). By Lemma 3.2.7, we know that v1 and v2

form a basis for R2. That is, we can write x0 as a linear combination of v1

and v2. In other words, we can find c1 and c2 such that

x0 = x(0) = c1v1 + c2v2.

It remains to show that x(t) = c1e
λ1tv1 + c2e

λ2tv2 is the unique solution
to the system

x′(t) = Ax(t),
x(0) = x0.

Suppose that there is another solution y(t) such that y(0) = x0. Then we can
write

y(t) = f(t)v1 + g(t)v2,

where

f(0) = c1,

g(0) = c2.

Since y(t) is a solution to our system of equations, we know that

Ay(t) = y′(t) = f ′(t)v1 + g′(t)v2.

On the other hand,

Ay(t) = f(t)Av1 + g(t)Av2 = λ1f(t)v1 + λ2g(t)v2.

Consequently, we have two first-order initial value problems,

f ′(t) = λ1f(t),

f(0) = c1,

and

g′(t) = λ2g(t),

g(0) = c2.

The solutions of these initial value problems are

f(t) = c1e
λ1t,

g(t) = c2e
λ2t,

respectively. Thus, y(t) = x(t), and proof our theorem is complete.

3.2.4 Important Lessons
• If v1 and v2 are eigenvectors of two distinct real eigenvalues of a matrix
A, then v1 and v2 are linearly independent.

• The Principle of Superposition tells us that any linear combination of
solutions to the linear system x′ = Ax is also a solution.

• Let A be a 2 × 2 matrix. If A has a pair of distinct real eigenvalues, λ1
and λ2, with associated eigenvectors v1 and v2, then the general solution
of the linear system x′ = Ax is given by

x(t) = αeλ1tv1 + βeλ2tv2.

3.2.5 Reading Questions
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1. What is a 2× 2 linear system of differential equations?
2. What is the Principle of Superposition?

3.2.6 Exercises

Solving Linear Systems with Distinct Real Eigenvalues. Find the
general solution of each of the linear systems in Exercise Group 3.2.6.1–4.

1.

x′ = x+ 2y

y′ = −x+ 4y

2.

x′ = 4x+ 2y

y′ = x+ 3y

3.

x′ = −3x+ 4y

y′ = 3x− 2y

4.

x′ = 6x+ 4y

y′ = −8x− 6y

Solving Initial Value Problems. Solve each of the following linear systems
for the given initial values. in Exercise Group 3.2.6.5–8.

5.

x′ = x+ 2y

y′ = −x+ 4y

x(0) = 3

y(0) = 2

6.

x′ = 4x+ 2y

y′ = x+ 3y

x(0) = 3

y(0) = 2

7.

x′ = −3x+ 4y

y′ = 3x− 2y

x(0) = 1

y(0) = 3

8.

x′ = 6x+ 4y

y′ = −8x− 6y

x(0) = 1

y(0) = 3

9. Consider the nonhomogeneous system of linear differential equations

x′ = a(t)x+ b(t)y + f(t) (3.2.6)
y′ = c(t)x+ d(t)y + g(t) (3.2.7)

and assume that the general solution of

x′ = a(t)x+ b(t)y

y′ = c(t)x+ d(t)y

is given by

xh =

(
x(t)

y(t)

)
= c1

(
u1(t)

u2(t)

)
+ c2

(
v1(t)

v2(t)

)
.

If
xp =

(
ϕ1(t)

ϕ2(t)

)
is a particular solution of (3.2.6), show that

xh + xp =

(
x(t) + ϕ1(t)

y(t) + ϕ2(t)

)
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is the general solution to the system. Thus, to solve a nonhomogeneous
system of linear differential equations, we need to find the solution of
the corresponding homogeneous system and one particular solution of the
nonhomogeneous system.

10. Consider the linear system

x′ = x+ 3y + (t− 3t2)

y′ = x− y + (2− t+ t2)

x(0) = 1

y(0) = −1.

(a) Find the general solution of the homogeneous system

x′ = x+ 3y

y′ = x− y

(b) Find a particular solution for

x′ = x+ 3y + (t− 3t2)

y′ = x− y + (2− t+ t2)

(c) Find the solution of

x′ = x+ 3y + (t− 3t2)

y′ = x− y + (2− t+ t2)

x(0) = 1

y(0) = −1.

Hint. Assume that your solution must be of the form

xp =

(
a2t

2 + a1t+ a0
b2t

2 + b1t+ b0.

)
This is called the method of undetermined coefficients.

11. Consider the system

x′ = ax+ y

y′ = 2ax+ 2y,

where a ∈ R. For what values of a do you find a bifurcation (a change in
the type of phase portrait)? Sketch typical phase portraits for a values of
a above and below the bifurcation point.

12. Prove that
αeλt

(
1

0

)
+ βeλt

(
t

1

)
is the general solution of

x′ =

(
λ 1

0 λ

)
x.



CHAPTER 3. LINEAR SYSTEMS 163

3.3 Phase Plane Analysis of Linear Systems

Objectives
• To understand that given a system of linear differential equations(

dx/dt

dy/dt

)
=

(
a b

c d

)(
x

y

)
= A

(
x

y

)
,

with distinct real eigenvalues, we can classify the origin as sink, saddle,
or source depending on the signs of the eigenvalues.

In Section 3.2, we learned how to solve the system(
dx/dt

dy/dt

)
=

(
a b

c d

)(
x

y

)
= A

(
x

y

)
provided the system has distinct real eigenvalues. If A has distinct real eigenval-
ues λ and µ with eigenvectors u and v, respectively, then the general solution
of the system is

x(t) = c1e
λtu + c2e

µtv.

Furthermore, we can use the general solution of such a system to find the
straight-line solutions to the system. If c2 = 0, then all solutions will lie along
the line in the xy-plane that contains the vector u. Similarly, if c1 = 0, then
all solutions will lie along the line in the xy-plane that contains the vector v.

3.3.1 The Case λ1 < 0 < λ2

Example 3.3.1 The system

x′ = x+ 3y

y′ = x− y

can be written in matrix form x′ = Ax, where

A =

(
1 3

1 −1

)
.

The eigenvalues of A are λ = −2 or λ = 2 with eigenvectors u = (1,−1) and
v = (3, 1), respectively. Therefore, the straight-line solutions must be lines
containing u and v (Figure 3.3.2).
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3 2 1 0 1 2 3
x(t)

3

2

1

0

1

2

3

y(
t)

Figure 3.3.2 Straight-line solutions
□

Let us consider the special case of the system x′ = Ax, where λ1 < 0 < λ2
and

A =

(
λ1 0

0 λ2

)
.

Since this is a decoupled system,

dx

dt
= λ1x

dy

dt
= λ2y,

we already know how to find the solutions. However, in keeping with the
spirit of our investigation, we will find the eigenvalues of A. The characteristic
equation of A is

(λ− λ1)(λ− λ2) = 0,

and our eigenvalues are λ1 and λ2. It is easy to see that we can associate
eigenvectors (1, 0) and (0, 1) to λ1 and λ2, respectively. Thus, our general
solution is

x(t) = c1e
λ1t

(
1

0

)
+ c2e

λ2t

(
0

1

)
.
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3 2 1 0 1 2 3
x(t)

3

2

1

0

1

2

3

y(
t)

Figure 3.3.3 Saddle phase portrait
Since λ1 < 0, the straight-line solutions of the form c1e

λ1t(1, 0) lie on the
x-axis. These solutions approach zero as t → ∞. On the other hand, the
solutions c2eλ2t(0, 1) lie on the y-axis and approach infinity as t→ ∞. The x-
axis is a stable line of solutions, while the y-axis is an unstable line of solutions.
All other solutions

x(t) = c1e
λ1t

(
1

0

)
+ c2e

λ2t

(
0

1

)
(with c1, c2 ̸= 0) tend to infinity in the direction of the unstable line, since x(t)
approaches (0, c2e

λ2t) as t→ ∞. The phase portrait for the system

x′ = −x
y′ = y

is given in Figure 3.3.3. The equilibrium point of such systems is called a
saddle.

In general, a straight-line solution is called a stable line of solutions if all
solutions approach (0, 0). A straight-line solution is called an unstable line
if all of the non-zero solutions approach infinity.
Example 3.3.4 For the system in Example 3.3.1, the unstable line of solutions
is

x1(t) = c1e
2t

(
3

1

)
.

Each solution tends away from the origin as t→ ∞. The stable line of solutions
is given by

x2(t) = c2e
−2t

(
1

−1

)
,

and each solution on this line approaches the origin as t→ ∞. By the Principle
of Superposition, the general solution to the system is

x(t) = c1e
2t

(
3

1

)
+ c2e

−2t

(
1

−1

)
.

If c1 ̸= 0, we have x(t) → x1(t) as t → ∞. If c2 ̸= 0, we have x(t) → x2(t) as
t→ −∞. Thus, we have the phase portrait in Figure 3.3.5.
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x(t)
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Figure 3.3.5 Saddle phase portrait
□

For the general case, where A has eigenvalues λ1 < 0 < λ2, we always have
a stable line of solutions and an unstable line of solutions. All other solutions
approach the unstable line as t→ ∞ and the stable line as t→ −∞.
Activity 3.3.1 Planar Systems with Eigenvalues of Different Signs.
Consider the system dx/dt = Ax, where

A =

(
8 −3

18 −7

)

(a) Find the eigenvalues of A. You should find distinct real eigenvalues λ
and µ.

(b) Find eigenvectors v1 and v2 for the eigenvalues λ and µ, respectively.

(c) Find the straight-line solutions of dx/dt = Ax. Plot the solutions in the
xy-plane.

(d) Sketch several solution curves for the system dx/dt = Ax. What do you
notice about the solution curves, especially with respect to the straight-
line solutions?

3.3.2 The Case λ1 < λ2 < 0

Suppose λ1 < λ2 < 0 and consider the diagonal system(
x′(t)

y′(t)

)
=

(
λ1 0

0 λ2

)(
x(t)

y(t)

)
.

The general solution of this system is

x(t) = c1e
λ1t

(
1

0

)
+ c2e

λ2t

(
0

1

)
,

but unlike the case of the saddle, all solutions tend towards the origin as t→ ∞.
To see how the solutions approach the origin, we will compute dy/dx for c2 ̸= 0.
If

x(t) = c1e
λ1t
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y(t) = c2e
λ2t,

then
dy

dx
=
y′(t)

x′(t)
=
λ2c2e

λ2t

λ1c1eλ1t
=
λ2c2
λ1c1

e(λ2−λ1)t.

Since λ2 − λ1 > 0, the derivative, dy/dx, must approach ±∞, provided c2 ̸=
0. Therefore, the solutions tend towards the origin tangentially to the y-axis
(Figure 3.3.6). We say that the equilibrium point for this system is a sink.

3 2 1 0 1 2 3
x(t)

3

2

1

0

1

2

3

y(
t)

Figure 3.3.6 Sink phase portrait
Since λ1 < λ2 < 0, we say that λ1 is the dominant eigenvalue. The

x-coordinates of the solutions approach the origin much faster than the y-
coordinates.

To see what happens in the general case, suppose that λ1 < λ2 < 0, the
eigenvectors associated with λ1 and λ2 are (u1, u2) and (v1, v2), respectively.
The general solution of our system is

x(t) = c1e
λ1t

(
u1
u2

)
+ c2e

λ2t

(
v1
v2

)
.

The slope of a solution curve at (x, y) is given by

dy

dx
=
λ1c1e

λ1tu2 + λ2c2e
λ2tv2

λ1c1eλ1tu1 + λ2c2eλ2tv1

=

(
λ1c1e

λ1tu2 + λ2c2e
λ2tv2

λ1c1eλ1tu1 + λ2c2eλ2tv1

)
e−λ2t

e−λ2t

=
λ1c1e

(λ1−λ2)tu2 + λ2c2v2
λ1c1e(λ1−λ2)tu1 + λ2c2v1

.

This last expression tends toward the slope v2/v1 of the eigenvector of λ2 (un-
less c2 = 0). If c2 = 0, then we have the straight-line solution corresponding
to the eigenvalue λ1. Hence, all the solutions for this case (except those on the
straight-line belonging to the dominant eigenvalue) tend toward the origin tan-
gentially to the straight-line solution corresponding to the weaker eigenvalue,
λ2.
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Example 3.3.7 Consider the system(
x′(t)

y′(t)

)
=

(
−5 −2

−1 −4

)(
x(t)

y(t)

)
.

The eigenvalues of this system are λ1 = −6 and λ2 = −3 with eigenvectors
v1 = (2, 1) and v2 = (1,−1), respectively. Since the dominant eigenvalue is
λ1 = −6, solutions tend towards the straight-line solution containing the vector
v1 = (2, 1) more quickly (Figure 3.3.8).

4 3 2 1 0 1 2 3 4
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Figure 3.3.8 Sink phase portrait
□

Activity 3.3.2 Planar Systems with Two Negative Eigenvalues. Con-
sider the system dx/dt = Ax, where

A =

(
6 14

−4 −9

)

(a) Find the eigenvalues of A. You should find distinct real eigenvalues λ
and µ.

(b) Find eigenvectors v1 and v2 for the eigenvalues λ and µ, respectively.

(c) Find the straight-line solutions of dx/dt = Ax. Plot the solutions in the
xy-plane.

(d) Sketch several solution curves for the system dx/dt = Ax. What do you
notice about the solution curves, especially with respect to the straight-
line solutions?

(e) Which of the two eigenvalues is the dominant eigenvalue? Why?

3.3.3 The Case λ1 > λ2 > 0

If λ1 > λ2 > 0, we can regard our direction field as the negative of the direction
field of the previous case. The general solution and the direction field are the
same, but the arrows are reversed (Figure 3.3.9). In this case, we say that the
equilibrium point is a source.
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Figure 3.3.9 Source phase portrait

Example 3.3.10 Consider the system(
x′(t)

y′(t)

)
=

(
4 −3

−1 2

)(
x(t)

y(t)

)
.

The eigenvalues of this system are λ1 = 5 and λ2 = 1 with eigenvectors v1 =
(3,−1) and v2 = (1, 1), respectively. Since the dominant eigenvalue is λ1 = 5,
solutions are closer to the straight-line solution containing the vector v2 =
(3,−1) more as t→ ∞ (Figure 3.3.11).
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t)

Figure 3.3.11 Source phase portrait
□

3.3.4 Important Lessons
• Given a system of linear differential equations(

dx/dt

dy/dt

)
=

(
a b

c d

)(
x

y

)
= A

(
x

y

)
,



CHAPTER 3. LINEAR SYSTEMS 170

we can use the eigenvalues of A to find and classify the solutions of the
system.

• If
A =

(
λ1 0

0 λ2

)
,

then A has two distinct real eigenvalues. The general solution to the
system x′ = Ax is

x(t) = αeλ1t

(
1

0

)
+ βeλ2t

(
0

1

)
.

◦ For the case λ1 < 0 < λ2, the equilibrium point of the system
x′ = Ax is a saddle.

◦ For the case λ1 < λ2 < 0, the equilibrium point of the system
x′ = Ax is a sink.

◦ For the case 0 < λ1 < λ2, the equilibrium point of the system
x′ = Ax is a source.

3.3.5 Reading Questions
1. What is a stable line of solutions?
2. For a 2×2 linear system with distinct real eigenvalues, what are the three

different possibilities for the phase plane of the system?

3.3.6 Exercises

Phase Plane Analysis of Linear Systems with Distinct Real Eigenval-
ues. For each of the linear systems dx/dt = Ax in Exercise Group 3.3.6.1–8

(a) Find the eigenvalues of A.

(b) What is the dominant eigenvalue?

(c) Find the eigenvectors for each eigenvalue of A.

(d) What are the straight-line solutions of dx/dt = Ax?

(e) Describe the nature of the equilibrium solution at 0.

(f) Sketch the phase plane and several solution curves.
1.

A =

(
−1 2

−6 6

) 2.
A =

(
−12 30

−5 13

)
3.

A =

(
−9 −2

10 0

) 4.
A =

(
11 8

−12 −9

)
5.

A =

(
7 12

−4 −7

) 6.
A =

(
10 12

−4 −4

)
7.

A =

(
−2 −6

2 5

) 8.
A =

(
−18 −30

10 17

)
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9. Solve each linear systems dx/dt = Ax in Exercise Group 3.3.6.1–8 for the
initial condition x(0) = (2, 2).

10. Consider the linear system dx/dt = Ax, where

A =

(
3 2

3 −2

)
.

Suppose the initial conditions for the solution curve are x(0) = 1 and
y(0) = 1. We can use the following Sage code to plot the phase portrait
of this system, including the straight-line solutions and a solution curve.

x, y, t = var( ' x␣y␣t ' ) #declare the variables
F = [3*x + 2*y, 3*x - 2*y] #declare the system
# normalize the vector fields so that all of the arrows

are the same length
n = sqrt(F[0]^2 + F[1]^2)
# plot the vector field
p = plot_vector_field ((F[0]/n, F[1]/n), (x, -4, 4), (y,

-4, 4), aspect_ratio = 1)
# solve the system for the initial condition t = 0, x =

1, y = 1
P1 = desolve_system_rk4(F, [x, y], ics=[0, 1, 1], ivar =

t, end_points = 5, step = 0.01)
# grab the x and y values
S1 = [ [j, k] for i, j, k in P1]
# plot the solution
# Setting xmin , xmax , ymin , ymax will clip the window
# Try plotting without doing this to see what happens
p += line(S1, thickness = 2,

axes_labels =[ ' $x(t)$ ' , ' $y(t)$ ' ], xmin = -4, xmax =
4, ymin = -4, ymax = 4)

# plot the straight -line solutions
p += line([(-4, -2), (4, 2)], thickness = 2, color =

"red")
p += line ([(-4/3, 4), (4/3, -4)], thickness = 2, color =

"red")
p

Use Sage to graph the direction field for the system linear systems
dx/dt = Ax in Exercise Group 3.3.6.1–8. Plot a solution curve for the
initial condition x(0) = (2, 2). Be sure to show the corresponding straight-
line solutions on your graph.

3.4 Complex Eigenvalues
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Objectives
• To understand and be able to apply Euler’s formula,

eiβt = cosβt+ i sinβt.

• To understand that if a 2 × 2 matrix A has two complex eigenvalues,
λ = α ± iβ, then the general solution will involve sines and cosines.
Furthermore, the origin will be a spiral sink, a spiral source or a center.

Consider the following system,(
dx/dt

dy/dt

)
=

(
−3 1

−2 −1

)(
x

y

)
(3.4.1)

The characteristic polynomial of the system (3.4.1) is λ2+4λ+5. The roots of
this polynomial are λ1 = −2+i and λ2 = −2−i with eigenvectors v1 = (1, 1+i)
and v2 = (1, 1−i), respectively. It is clear from the phase portrait of the system
that there are no straight-line solutions (Figure 3.4.1). However, we would like
to have real solutions for a linear system with real coefficients.

4 3 2 1 0 1 2 3 4
x(t)

4

3

2

1

0

1

2

3

4

y(
t)

Figure 3.4.1 A system with no straight-line solutions

3.4.1 Complex Eigenvalues
Suppose that we have the system(

dx/dt

dy/dt

)
=

(
0 β

−β 0

)(
x

y

)
= A

(
x

y

)
,

where β ̸= 0. The characteristic polynomial of this system is det(A − λI) =
λ2 + β2, and so we have imaginary eigenvalues ±iβ. To find the eigenvector
corresponding to λ = iβ, we must solve the system(

−iβ β

−β −iβ

)(
x

y

)
=

(
0

0

)
;

however, this reduces to solving the equation iβx = βy. Thus, we can find a
complex eigenvector (1, i). Consequently,

x(t) = eiβt
(
1

i

)
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is a complex solution to the system x′ = Ax. The problem is that we have
a real system of differential equations and would like real solutions. We can
remedy the situation if we use Euler’s formula, 1

eiβt = cosβt+ i sinβt.

Let us rewrite our solution as

x(t) = eiβt
(
1

i

)
=

(
cosβt+ i sinβt
i(cosβt+ i sinβt)

)
=

(
cosβt+ i sinβt
− sinβt+ i cosβt

)
=

(
cosβt
− sinβt

)
+ i

(
sinβt
cosβt

)
and consider the real and imaginary parts of the solution:

xRe =

(
cosβt
− sinβt

)
and xIm =

(
sinβt
cosβt

)
.

Since

x′
Re(t) + ix′

Im(t) = x′(t)

= Ax(t)
= A(xRe(t) + ixIm(t))

= AxRe(t) + iAxIm(t).

we know that x′
Re(t) = AxRe(t) and x′

Im(t) = AxIm(t) by setting the real
and imaginary parts equal. Thus, both xRe(t) and xIm(t) are solutions to our
system. Moreover, since

xRe(0) =

(
1

0

)
and xIm(0) =

(
0

1

)
,

we know that the appropriate linear combination of xRe(t) and xIm(t) will
provide a solution to any initial value problem.

We claim that
x(t) = c1xRe(t) + c2xIm(t) (3.4.2)

is a general solution to our system. That is, we must be able to write every
solution of our system as a linear combination of xRe(t) and xIm(t). If

y(t) =
(
u(t)

v(t)

)
is another solution to the system x′ = Ax, then

y′(t) =

(
u′(t)

v′(t)

)
=

(
0 β

−β 0

)(
u(t)

v(t)

)
=

(
βv(t)

−βu(t)

)
.

In other words, u′(t) = βv(t) and v′(t) = −βu(t). Now, define f by

f(t) = (u(t) + iv(t))eiβt.

1If you are unfamiliar with Euler’s formula, try expanding both sides as a power series to
check that we do indeed have a correct identity.
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The derivative of f is

f ′(t) = (u′(t) + iv′(t))eiβt + iβ(u(t) + iv(t))eiβt

= (βv(t)− iβu(t))eiβt + (iβu(t) + i2βv(t))eiβt

= 0.

Therefore, f(t) is a complex constant and f(t) = (u(t) + iv(t))eiβt = a + bi.
We can now write u(t) + iv(t) = (a+ ib)e−iβt. Thus,

u(t) + iv(t) = (a+ ib)e−iβt

= (a+ ib)(cosβt− i sinβt)
= (a cosβt+ b sinβt) + i(b cosβt− a sinβt).

Therefore,

u(t) = a cosβt+ b sinβt
v(t) = b cosβt− a sinβt.

Consequently, (
u(t)

v(t)

)
=

(
a cosβt+ b sinβt
b cosβt− a sinβt

)
= a

(
cosβt
− sinβt

)
+ b

(
sinβt
cosβt

)
= axRe(t) + bxIm(t).

Notice that the solutions

x(t) = c1

(
cosβt
− sinβt

)
+ c2

(
sinβt
cosβt

)
are periodic with period 2π/β. This type of system is called a center.

Example 3.4.2 Consider the initial value problem

dx

dt
= 2y

dy

dt
= −2x

x(0) = 1

y(0) = 2.

The eigenvalues of this system are λ = ±2i. Therefore, the general solution to
the system is

x(t) = c1 cos 2t+ c2 sin 2t

y(t) = −c1 sin 2t+ c2 cos 2t.

Using the initial conditions to solve for c1 and c2, the solution to our initial
value problem is

x(t) = cos 2t+ 2 sin 2t

y(t) = − sin 2t+ 2 cos 2t.

The phase portrait is a circle of radius 2 about the origin (Figure 3.4.3).
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Figure 3.4.3 Phase portrait for a center
□

3.4.2 Spiral Sinks and Sources
Now let us consider the system x′ = Ax, where

A =

(
α β

−β α

)
and α and β are nonzero real numbers. The characteristic equation of A is

λ2 − 2αλ+ (α2 + β2) = 0,

so the eigenvalues are λ = α± iβ. We can use the equation

(α− (α+ iβ))x+ βy = 0

to show that (1, i) is an eigenvector for α+ iβ. Therefore, we have a complex
solution of the form

x(t) = e(α+iβ)t

(
1

i

)
= eαt

(
cosβt
− sinβt

)
+ ieαt

(
sinβt
cosβt

)
= xRe(t) + ixIm(t).

As before, both

xRe(t) = eαt
(

cosβt
− sinβt

)
and xIm(t) = eαt

(
sinβt
cosβt

)
are real solutions to x′ = Ax. Furthermore, these solutions are linearly inde-
pendent. Indeed, xRe cannot be a multiple of xIm for all values of t. Thus, we
have the general solution

x(t) = c1e
αt

(
cosβt
− sinβt

)
+ c2e

αt

(
sinβt
cosβt

)
.
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The eαt factor tells us that the solutions either spiral into the origin if α < 0 or
spiral out to infinity if α > 0. In this case we say that the equilibrium points
are spiral sinks and spiral sources, respectively.
Example 3.4.4 Consider the initial value problem

dx

dt
= −x/10 + y

dy

dt
= −x− y/10

x(0) = 2

y(0) = 2.

The matrix (
−1/10 1

−1 −1/10

)
has eigenvalues λ = −1/10±i. The eigenvalue λ = −1/10+i has an eigenvector
v = (1, i). The complex solution of our system is

x(t) = e(−1/10+i)t

(
1

i

)
= e−t/10eit

(
1

i

)
= e−t/10(cos t+ i sin t)

(
1

i

)
= e−t/10

(
cos t+ i sin t
− sin t+ i cos t

)
= e−t/10

(
cos t
− sin t

)
+ ie−t/10

(
sin t
cos t

)
The real and imaginary parts of this solution are

xRe(t) = e−t/10

(
cos t
− sin t

)
and xIm(t) = e−t/10

(
sin t
cos t

)
,

respectively. Thus, we have the general solution

x(t) = c1e
−t/10

(
cos t
− sin t

)
+ c2e

−t/10

(
sin t
cos t

)
.

Applying our initial conditions, we can determine that c1 = 2 and c2 = 2;
hence, the solution to our initial value problem is

x(t) = 2e−t/10

(
cos t+ sin t
cos t− sin t

)
.

The phase portrait of this solution indicates that we do indeed have a spiral
sink (Figure 3.4.5).
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Figure 3.4.5 Phase portrait for a spiral sink
□

Example 3.4.6 The initial value problem

dx

dt
= x/10 + y

dy

dt
= −x+ y/10

x(0) = 0

y(0) = 1/2.

The matrix (
1/10 1

−1 1/10

)
has an eigenvector (1,−i) with eigenvalue λ = 1/10 − i. Thus, the complex
solution is

x(t) = e(1/10−i)t

(
1

−i

)
.

Following the procedure that we used in the previous example, the solution to
our initial value problem is

x(t) = 1

2
et/10

(
sin t
cos t

)
,

and he phase portrait is a spiral source (Figure 3.4.7).
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Figure 3.4.7 Phase portrait for a spiral source
□

Activity 3.4.1 Systems with Complex Eigenvalues. Consider the system
dx/dt = Ax, where

A =

(
7 4

−4 7

)
(a) Find the eigenvalues, λ and λ of A.

(b) Find eigenvectors, v and v for the eigenvalues λ and λ, respectively.

(c) Find the complex solution to the system dx/dt = Ax.

(d) Find the real solution to the system dx/dt = Ax.

(e) Is the origin a spiral source or a spiral sink? Sketch a solution curve in
the xy-plane.

3.4.3 Solving Systems with Complex Eigenvalues
Suppose that we have the linear system x′ = Ax, where

A =

(
a b

c d

)
.

The characteristic polynomial of A is

p(λ) = λ2 − (a+ d)λ+ (ad− bc).

If (a + d)2 − 4(ad − bc) < 0, then the eigenvalues of A are complex, and we
cannot apply the strategy that we used to determine the general solution in
the case of distinct real roots.
Example 3.4.8 The system x′ = Ax, where

A =

(
−1 −2

4 3

)
.

The characteristic polynomial of A is λ2 − 2λ + 5 and so the eigenvalues are
complex conjugates, λ = 1 + 2i and λ = 1 − 2i. It is easy to show that an
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eigenvector for λ = 1+2i is v = (1,−1− i). Recalling that eiθ = cos θ+ i sin θ,

x(t) = e(1+2i)tv

= e(1+2i)t

(
1

−1− i

)
= ete2it

(
1

−1− i

)
= et(cos 2t+ i sin 2t)

(
1

−1− i

)
= et

(
cos 2t+ i sin 2t

(−1− i)(cos 2t+ i sin 2t)

)
= et

(
cos 2t+ i sin 2t

(− cos 2t+ sin 2t) + i(− cos 2t− sin 2t)

)
= et

(
cos 2t

− cos 2t+ sin 2t

)
+ iet

(
sin 2t

− cos 2t− sin 2t

)
is a complex solution to our system. Taking the real and imaginary parts of
this solution, we obtain the general solution to our system

x(t) = c1e
t

(
cos 2t

− cos 2t+ sin 2t

)
+ c2e

t

(
sin 2t

− cos 2t− sin 2t

)
.

□
The nature of the equilibrium solution is determined by the factor eαt in

the solution. If α < 0, the equilibrium point is a spiral sink. If α > 0, the
equilibrium point is a spiral source. If α = 0, the equilibrium point is a
center.

Although we have outlined a procedure to find the general solution of x′ =
Ax if A has complex eigenvalues, we have not shown that this method will
work in all cases. We will do so in Section 3.6.
Activity 3.4.2 Planar Systems with Complex Eigenvalues. Consider
the system dx/dt = Ax, where

A =

(
7 −4

10 −5

)

(a) Find the eigenvalues, λ and λ of A.

(b) Find eigenvectors, v and v for the eigenvalues λ and λ, respectively.

(c) Find the complex solution to the system dx/dt = Ax.

(d) Find the real solution to the system dx/dt = Ax.

(e) Is the origin a spiral source or a spiral sink? Sketch a solution curve in
the xy-plane.

3.4.4 Important Lessons
• If

A =

(
α β

−β α

)
,
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then A has two complex eigenvalues, λ = α ± iβ. The general solution
to the system x′ = Ax is

x(t) = c1e
αt

(
cosβt
− sinβt

)
+ c2e

αt

(
sinβt
cosβt

)
.

If α < 0, the equilibrium point is a spiral sink. If α > 0, the equilibrium
point is a spiral source.

3.4.5 Reading Questions
1. When are two complex numbers equal?
2. What is Euler’s formula?
3. For a 2 × 2 linear system with complex eigenvalues, what are the three

different possibilities for the phase plane of the system?

3.4.6 Exercises

Solving Linear Systems with Complex Eigenvalues. Find the general
solution of each of the linear systems in Exercise Group 3.4.6.1–8.

1.

x′ = 2x+ 2y

y′ = −4x+ 6y

2.

x′ = 2x− 5y

y′ = x− 2y

3.

x′ = −9 + 26y

y′ = −4x+ 11y

4.

x′ = −7x+ 26y

y′ = −4x+ 13y

5.

x′ = −2x+ 13y

y′ = −2x+ 8y

6.

x′ = −7x+ 13y

y′ = −2x+ 3y

7.

x′ = 18x− 52y

y′ = 8x− 22y

8.

x′ = −12x+ 26y

y′ = −4x+ 8y

Solving Initial Value Problems. Solve each of the following linear systems
for the given initial values in Exercise Group 3.4.6.9–16.

9.

x′ = 2x+ 2y

y′ = −4x+ 6y

x(0) = 2

y(0) = −3

10.

x′ = 2x− 5y

y′ = x− 2y

x(0) = 2

y(0) = 1

11.

x′ = −9 + 26y

y′ = −4x+ 11y

x(0) = 10

y(0) = 10

12.

x′ = −7x+ 26y

y′ = −4x+ 13y

x(0) = 5

y(0) = −5
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13.

x′ = −2x+ 13y

y′ = −2x+ 8y

x(0) = −2

y(0) = −3

14.

x′ = −7x+ 13y

y′ = −2x+ 3y

x(0) = 1

y(0) = −1

15.

x′ = 18x− 52y

y′ = 8x− 22y

x(0) = 5

y(0) = 3

16.

x′ = −12x+ 26y

y′ = −4x+ 8y

x(0) = 2

y(0) = −5

17. Consider the linear system dx/dt = Ax, where

A =

(
3 2

−3 −1

)
.

Suppose the initial conditions for the solution curve are x(0) = 1 and
y(0) = 1. We can use the following Sage code to plot the phase portrait
of this system, including a solution curve.

x, y, t = var( ' x␣y␣t ' ) #declare the variables
F = [3*x + 2*y, -3*x - y] #declare the system
# normalize the vector fields so that all of the arrows

are the same length
n = sqrt(F[0]^2 + F[1]^2)
# plot the vector field
p = plot_vector_field ((F[0]/n, F[1]/n), (x, -30, 30),

(y, -30, 30), aspect_ratio = 1)
# solve the system for the initial condition t = 0, x =

1, y = 1
P1 = desolve_system_rk4(F, [x, y], ics=[0, 1, 1], ivar =

t, end_points = 5, step = 0.01)
# grab the x and y values
S1 = [ [j, k] for i, j, k in P1]
# plot the solution
# Setting xmin , xmax , ymin , ymax will clip the window
# Try plotting without doing this to see what happens
p += line(S1, thickness = 2,

axes_labels =[ ' $x(t)$ ' , ' $y(t)$ ' ], xmin = -30, xmax =
30, ymin = -30, ymax = 30)

p

Use Sage to graph the direction field for the system linear systems
dx/dt = Ax in Exercise Group 3.4.6.9–16. Plot the solution curve for the
given initial condition.
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3.5 Repeated Eigenvalues

Objectives
• To understand and be able to solve systems x′ = Ax, where A is a 2× 2

matrix with a single eigenvalue λ.

Consider the following system(
dx/dt

dy/dt

)
=

(
2 1

−1 4

)(
x

y

)
. (3.5.1)

The characteristic polynomial of the system (3.5.1) is λ2 − 6λ + 9 and λ2 −
6λ + 9 = (λ − 3)2. This polynomial has a single root λ = 3 with eigenvector
v = (1, 1). There is a single straight-line solution for this system (Figure 3.5.1).
The strategy that we used to find the general solution to a system with distinct
real eigenvalues will clearly have to be modified if we are to find a general
solution to a system with a single eigenvalue.

4 3 2 1 0 1 2 3 4
x(t)

4

3

2

1

0

1

2

3

4

y(
t)

Figure 3.5.1 A system with one straight-line solution

3.5.1 Repeated Eigenvalues
The remaining case that we must consider is when the characteristic equation
of a matrix A has repeated roots. The simplest such case is(

dx/dt

dy/dt

)
=

(
λ 0

0 λ

)(
x

y

)
= A

(
x

y

)
.

The eigenvalues of A are both λ. Since Av = λv, any nonzero vector in R2 is
an eigenvector for λ. Thus, solutions to this system are of the form

x(t) = αeλtv.

Each solution to our system lies on a straight line through the origin and either
tends to the origin if λ < 0 or away from zero if λ > 0.
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A more interesting case occurs if

A =

(
λ 1

0 λ

)
.

Again, both eigenvalues are λ; however, there is only one linearly independent
eigenvector, which we can take to be (1, 0). Therefore, we have a single straight-
line solution

x1(t) = αeλt
(
1

0

)
.

To find other solutions, we will rewrite the system as

x′ = λx+ y

y′ = λy.

This is a partially coupled system (Subsection 2.4.1). If y ̸= 0, the solution of
the second equation is

y(t) = βeλt.

Therefore, the first equation becomes

x′ = λx+ βeλt,

which is a first-order linear differential equation with solution

x(t) = αeλt + βteλt.

Consequently, a solution to our system is

αeλt
(
1

0

)
+ βeλt

(
t

1

)
.

Example 3.5.2 Consider the linear system

x′ = −x+ y

y′ = −y
x(0) = 1

y(0) = 3.

The matrix that corresponds to this system is

A =

(
−1 1

0 −1

)
has a single eigenvalue, λ = −1. An eigenvector for λ is v = (1, 0). The general
solution to our system is

x(t) = c1e
−t + c2te

−t

y(t) = c2e
−t.

Applying the initial conditions x(0) = 1 and y(0) = 3, the solution to our
initial value problem is

x(t) = e−t + 3te−t

y(t) = 3e−t.

Notice that we have only one straight-line solution (Figure 3.5.3).
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Figure 3.5.3 Phase portrait for repeated eigenvalues
□

Activity 3.5.1 Systems with Repeated Eigenvalues. Consider the sys-
tem dx/dt = Ax, where

A =

(
1 −2

0 1

)
(a) Find the eigenvalues of A. There should be a single real eigenvalue λ.

(b) Find the eigenvectors v for the eigenvalues λ.

(c) Find the straight-line solution of dx/dt = Ax. Plot the solution in the
xy-plane.

(d) Find the general solution of dx/dt = Ax.

(e) Sketch several solution curves for the system dx/dt = Ax. What do you
notice about the solution curves, especially with respect to the straight-
line solution?

3.5.2 Solving Systems with Repeated Eigenvalues
If the characteristic equation has only a single repeated root, there is a single
eigenvalue. If this is the situation, then we actually have two separate cases to
examine, depending on whether or not we can find two linearly independent
eigenvectors.

Example 3.5.4 Suppose we have the system x′ = Ax, where

A =

(
2 0

0 2

)
.

The single eigenvalue is λ = 2, but there are two linearly independent eigen-
vectors, v1 = (1, 0) and v2 = (0, 1). In this case our solution is

x(t) = c1e
2t

(
1

0

)
+ c2e

2t

(
0

1

)
.
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This is not too surprising since the system

x′ = 2x

y′ = 2y

is uncoupled and each equation can be solved separately. □
Example 3.5.5 Now let us consider the example x′ = Ax, where

A =

(
5 1

−4 1

)
.

Since the characteristic polynomial of A is λ2 − 6λ + 9 = (λ − 3)2, we have
only a single eigenvalue λ = 3 with eigenvector v1 = (1,−2). This gives us one
solution to our system, x1(t) = e3tv1; however, we still need a second solution.

Since all other eigenvectors of A are a multiple of v, we cannot find a second
linearly independent eigenvector, and we need to obtain the second solution in
a different manner. Furthermore, since this system is not partially coupled, we
will need a more general strategy.

First, we must find a vector v2 such that (A− λI)v2 = v1. To do this we
can start with any nonzero vector w that is not a multiple of v1, say w = (1, 0).
We then compute

(A− λI)w = (A− 3I)w =

(
2 1

−4 −2

)(
1

0

)
=

(
2

−4

)
= 2v1.

Thus, we can take v2 = (1/2)w = (1/2, 0), and our second solution is

x2 = eλt(v2 + tv1) = e3t
(
1/2 + t

−2t

)
Thus, our general solution is

x = c1x1 + c2x2 = c1e
3t

(
1

−2

)
+ c2e

3t

(
1/2 + t

−2t

)
.

□
If the eigenvalue is positive, we will have a nodal source. If it is negative,

we will have a nodal sink. Notice that we have only given a recipe for finding a
solution to x′ = Ax, where A has a repeated eigenvalue and any two eigenvec-
tors are linearly dependent. We will justify our procedure in the next section
(Subsection 3.6.6).

Activity 3.5.2 Systems with Repeated Eigenvalues—Finding a Sec-
ond Solution. Consider the system dx/dt = Ax, where

A =

(
4 3

−3 −2

)

(a) Find the eigenvalues of A. There should be a single real eigenvalue λ.

(b) Find the eigenvectors v1 for the eigenvalues λ.

(c) Find the straight-line solution of dx/dt = Ax. Plot the solution in the
xy-plane.

(d) Find one solution, x1, of dx/dt = Ax.
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(e) To find a second solution of dx/dt = Ax, choose a vector w that is
not a multiple of v1 and compute (A − λI)w. This should give you
a vector of the form αv1. Let v2 = (1/α)w. The second solution is
x2 = eλt(v2 + tv1). What is the general solution?

(f) Sketch several solution curves for the system dx/dt = Ax. What do you
notice about the solution curves, especially with respect to the straight-
line solution?

3.5.3 Important Lessons
• If

A =

(
λ 1

0 λ

)
,

then A has one repeated real eigenvalue. The general solution to the
system x′ = Ax is

x(t) = αeλt
(
1

0

)
+ βeλt

(
t

1

)
.

If λ < 0, then the solutions tend towards the origin as t→ ∞. For λ > 0,
the solutions tend away from the origin.

• Suppose that a system dx/dt = Ax has a single eigenvalue with an v1

and that all other eigenvectors are multiples of v1. Then one solution is
x1 = eλtv1. To find a second linearly independent solution of dx/dt =
Ax, choose a vector w that is not a multiple of v1 and compute (A−λI)w.
This should give you a vector of the form αv1. Let v2 = (1/α)w. The
second solution is x2 = eλt(v2+tv1). The general solution of dx/dt = Ax
will be

x(t) = c1e
λtv1 + c2e

λt(v2 + tv1).

3.5.4 Reading Questions
1. Given a 2 × 2 system with repeated eigenvalues, how many straight-line

solutions are there?
2. Given a 2×2 system with repeated eigenvalues, explain why it is necessary

to find a second linearly independent solution.

3.5.5 Exercises

Solving Linear Systems with Repeated Eigenvalues. Find the general
solution of each of the linear systems in Exercise Group 3.5.5.1–8.

1.

x′ = 9x+ 4y

y′ = −9x− 3y

2.

x′ = 5x+ 4y

y′ = −9x− 7y

3.

x′ = −x+ y

y′ = −x− 3y

4.

x′ = 2x+ y

y′ = −x
5.

x′ = 8x+ 4y

y′ = −9x− 4y

6.

x′ = 3x+ 4y

y′ = −9x− 9y
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7.

x′ = 11x+ 4y

y′ = −9x− y

8.

x′ = 13x/2 + 4y

y′ = −9x− 11y/2

Solving Initial Value Problems. Solve each of the following linear systems
for the given initial values in Exercise Group 3.5.5.9–16.

9.

x′ = 9x+ 4y

y′ = −9x− 3y

x(0) = 2

y(0) = −3

10.

x′ = 5x+ 4y

y′ = −9x− 7y

x(0) = 2

y(0) = 1

11.

x′ = −x+ y

y′ = −x− 3y

x(0) = 2

y(0) = 2

12.

x′ = 2x+ y

y′ = −x
x(0) = 0

y(0) = −5

13.

x′ = 8x+ 4y

y′ = −9x− 4y

x(0) = 1

y(0) = −1

14.

x′ = 3x+ 4y

y′ = −9x− 9y

x(0) = −1

y(0) = 0

15.

x′ = 11x+ 4y

y′ = −9x− y

x(0) = −3

y(0) = 2

16.

x′ = 13x/2 + 4y

y′ = −9x− 11y/2

x(0) = −2

y(0) = −2

17. Consider the linear system dx/dt = Ax, where

A =

(
3 1

−4 −1

)
.

Suppose the initial conditions for the solution curve are x(0) = −2 and
y(0) = 5. We can use the following Sage code to plot the phase portrait
of this system, including a solution curve and the straight-line solution.
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x, y, t = var( ' x␣y␣t ' ) #declare the variables
F = [3*x + y, -4*x - y] #declare the system
# normalize the vector fields so that all of the arrows

are the same length
n = sqrt(F[0]^2 + F[1]^2)
# plot the vector field
p = plot_vector_field ((F[0]/n, F[1]/n), (x, -20, 20),

(y, -20, 20), aspect_ratio = 1)
# solve the system for the initial condition t = 0, x =

-2, y = 5
P1 = desolve_system_rk4(F, [x, y], ics=[0, -2, 5], ivar

= t, end_points = 5, step = 0.01)
# grab the x and y values
S1 = [ [j, k] for i, j, k in P1]
# plot the solution
# Setting xmin , xmax , ymin , ymax will clip the window
# Try plotting without doing this to see what happens
p += line(S1, thickness = 2,

axes_labels =[ ' $x(t)$ ' , ' $y(t)$ ' ], xmin = -20, xmax =
20, ymin = -20, ymax = 20)

# plot the straight -line solutions
p += line ([(-10, 20), (10, -20)], thickness = 2, color =

"red")
p

Use Sage to graph the direction field for the system linear systems
dx/dt = Ax in Exercise Group 3.5.5.9–16. Plot the straight-line solutions
and the solution curve for the given initial condition.

3.6 Changing Coordinates

Objectives
• To understand that a linear map T converts solutions of y′ = (T−1AT )y

to solutions of x′ = Ax, and, conversely, the inverse of a linear map T
takes solutions of x′ = Ax to solutions of y′ = (T−1AT )y.

• To understand that a change of coordinates converts the system x′ = Ax
to one of the following special cases,(

λ 0

0 µ

)
,

(
α β

−β α

)
,

(
λ 0

0 λ

)
,

(
λ 1

0 λ

)
.

In the previous sections of this chapter, we outlined procedures for solving
systems of linear differential equations of the form(

dx/dt

dy/dt

)
=

(
a b

c d

)(
x

y

)
= A

(
x

y

)
by determining the eigenvalues of A. In this section we will consider the fol-
lowing special cases for A,(

λ 0

0 µ

)
,

(
α β

−β α

)
,

(
λ 0

0 λ

)
,

(
λ 1

0 λ

)
. (3.6.1)
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Although it may seem that we have limited ourselves by attacking only a very
small part of the problem of finding solutions for x′ = Ax, we are actually
very close to providing a complete classification of all solutions. We will now
show that we can transform any 2 × 2 system of first-order linear differential
equations with constant coefficients into one of these special systems by using
a change of coordinates.

3.6.1 Linear Maps
First, we need to add a few things to our knowledge of matrices and linear
algebra. A linear map or linear transformation on R2 is a function T :
R2 → R2 that is defined by a matrix. That is,

T

(
x

y

)
=

(
a b

c d

)(
x

y

)
.

When there is no confusion, we will think of the linear map T : R2 → R2 and
the matrix (

a b

c d

)
as interchangeable.

We will say that T : R2 → R2 is an invertible linear map if we can find
a second linear map S such that T ◦ S = S ◦ T = I, where I is the identity
transformation. In terms of matrices, this means that we can find a matrix S
such that

TS = ST = I,

where
I =

(
1 0

0 1

)
is the 2 × 2 identity matrix. We write T−1 for the inverse matrix of T . It is
easy to check that the inverse of

T =

(
a b

c d

)
is

T−1 =
1

detT

(
d −b
−c a

)
.

Theorem 3.6.1 A linear map T is invertible if and only if detT ̸= 0.
Proof. If detT = 0, then there are infinitely many nonzero vectors x such that
Tx = 0. Suppose that T−1 exists and x ̸= 0 such that Tx = 0. Then

x = T−1Tx = T−10 = 0,

which is a contradiction. On the other hand, we can certainly compute T−1,
at least in the 2× 2 case, if the determinant is nonzero. ■

3.6.2 Changing Coordinates
In Subsection 3.1.2, we discussed what a basis was along with the coordinates
with respect to a particular basis. The vectors e1 = (1, 0) and e2 = (0, 1) form
a basis for R2. Indeed, if z = (−5,−4), then we can write

z = −5e1 − 4e2.
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We say that the coordinates of z with respect to the basis {e1, e2} are (−5,−4).
Now consider the vectors v1 = (2, 1) and v2 = (3, 2). Since

det
(
2 3

1 2

)
̸= 0,

these vectors are linearly independent form a different basis for R2. If z =
(−5,−4), then we can write

z = 2v1 − 3v2.

The coordinates of z with respect to the basis {v1,v2} are (2,−3).
Suppose we wish to convert the coordinates with repect to one basis to a

new set of coordinates with respect to a different basis; that is, we wish to do
a change of coordinates. Observe that

v1 = 2e1 + e2

v2 = 3e1 + 2e2.

It follows that

c1v1 + c2v2 = c1(2e1 + e2) + c2(3e1 + 2e2)

= (2c1 + 3c2)e1 + (c2 + 2c2)e2.

Thus, the coordinates of c1v1 + c2v2 with respect to the basis {e1, e2} can be
determined by (

2c1 + 3c2
c2 + 2c2

)
=

(
2 3

1 2

)(
c1
c2

)
.

If we let
T =

(
2 3

1 2

)
and c =

(
c1
c2

)
,

then the coordinates with respect to the basis {e1, e2} are given by d = Tc.
If we are given the coordinates with respect to the basis {v1,v2} for a vector,
we simply need to multiply by the matrix T .

Now suppose that we wish to find the coordinates with respect to the basis
{v1,v2} if we know that a vector z = d1e1+d2e2. Since d = Tc, we need only
multiply both sides of the equation by T−1 to get c = T−1d. In our example,

T−1d =

(
2 −3

−1 2

)(
d1
d2

)
.

In our particular example,

T−1d =

(
2 −3

−1 2

)(
−5

−4

)
=

(
2

−3

)
,

which are the coordinates of z with respect to the basis {v1,v2}.

3.6.3 Systems and Changing Coordinates
The idea now is to use a change of coordinates to convert an arbitrary system
x′ = Ax into one of the special systems mentioned at the beginning of the
section (3.6.1), solve the new system, and then convert our new solution back
to a solution of the original system using another change of coordinates.



CHAPTER 3. LINEAR SYSTEMS 191

Suppose that we consider a linear system

y′ = (T−1AT )y (3.6.2)

where T is an invertible matrix. If y(t) is a solution of (3.6.2), we claim that
x(t) = Ty(t) solves the equation x′ = Ax. Indeed,

x′(t) = (Ty)′(t)
= Ty′(t)

= T ((T−1AT )y(t))
= A(Ty(t))
= Ax(t).

We can think of this in two ways.

1. A linear map T converts solutions of y′ = (T−1AT )y to solutions of
x′ = Ax.

2. The inverse of a linear map T takes solutions of x′ = Ax to solutions of
y′ = (T−1AT )y.

We are now in a position to solve our problem of finding solutions of an arbitrary
linear system (

x′

y′

)
=

(
a b

c d

)
=

(
x

y

)
.

3.6.4 Distinct Real Eigenvalues
Consider the system x′ = Ax, where A has two real, distinct eigenvalues λ1
and λ2 with eigenvectors v1 and v2, respectively. Let T be the matrix with
columns v1 and v2. If e1 = (1, 0) and e2 = (0, 1), then Tei = vi for i = 1, 2.
Consequently, T−1vi = ei for i = 1, 2. Thus, we have

(T−1AT )ei = T−1Avi

= T−1(λivi)

= λiT
−1vi

= λiei

for i = 1, 2. Therefore, the matrix T−1AT is in canonical form,

T−1AT =

(
λ1 0

0 λ2

)
.

The eigenvalues of the matrix T−1AT are λ1 and λ2 with eigenvectors (1, 0)
and (0, 1), respectively. Thus, the general solution of

y′ = (T−1AT )y

is
y(t) = αeλ1t

(
1

0

)
+ βeλ2t

(
0

1

)
.

Hence, the general solution of
x′ = Ax
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is

Ty(t) = T

(
αeλ1t

(
1

0

)
+ βeλ2t

(
0

1

))
= αeλ1tT

(
1

0

)
+ βeλ2tT

(
0

1

)
= αeλ2tv1 + βeλ2tv2.

Example 3.6.2 Suppose dx/dt = Ax, where

A =

(
1 2

4 3

)
.

The eigenvalues of A are λ1 = 5 and λ2 = −1 and the associated eigenvectors
are (1, 2) and (1,−1), respectively. In this case, our matrix T is(

1 1

2 −1

)
.

If e1 = (1, 0) and e2 = (0, 1), then Tei = vi for i = 1, 2. Consequently,
T−1vi = ei for i = 1, 2, where

T−1 =

(
1/3 1/3

2/3 −1/3

)
.

Thus,

T−1AT =

(
1/3 1/3

2/3 −1/3

)(
1 2

4 3

)(
1 1

2 −1

)
=

(
5 0

0 −1

)
.

The eigenvalues of the matrix (
5 0

0 −1

)
are λ1 = 5 and λ2 = −1 with eigenvectors (1, 0) and (0, 1), respectively. Thus,
the general solution of

y′ = (T−1AT )y

is
y(t) = αe5t

(
1

0

)
+ βe−t

(
0

1

)
.

Hence, the general solution of
x′ = Ax

is

Ty(t) =
(
1 1

2 −1

)(
αe5t

(
1

0

)
+ βe−t

(
0

1

))
= αe5t

(
1

2

)
+ βe−t

(
1

−1

)
The linear map T converts the phase portrait of the system y′ = (T−1AT )y
(Figure 3.6.3) to the phase portrait of the system x′ = Ax (Figure 3.6.4).
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Figure 3.6.3 Phase portrait for y′ = (T−1AT )y
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Figure 3.6.4 Phase portrait for x′ = Ax
□

Activity 3.6.1 Distinct Real Eigenvalues and Transformation of Co-
ordinates. Consider the system of linear differential equations dx/dt = Ax,
where

A =

(
1 3

1 −1

)
.

(a) Find the eigenvalues of A. You should find distinct real eigenvalues λ
and µ.

(b) Find the general solution for dx/dt = Ax.

(c) Construct the 2× 2 matrix T = (v1,v2) and find T−1.
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(d) Calculate T−1AT . You should obtain the diagonal matrix(
λ 0

0 µ

)
with eigenvectors e1 = (1, 0) and e2 = (0, 1).

(e) The general solution of
y′ = (T−1AT )y

is
y(t) = αeλt

(
1

0

)
+ βeµt

(
0

1

)
.

Now calculate Ty and compare this solution with the one that you ob-
tained in Activity 3.2.1.1

3.6.5 Complex Eigenvalues
Suppose the matrix

A =

(
a b

c d

)
in system x′ = Ax has complex eigenvalues. In this case, the characteristic
polynomial p(λ) = λ2 − (a + d)λ + (ad − bc) will have roots λ = α + iβ and
λ = α− iβ, where

α =
a+ d

2

β =

√
4bc− (a− d)2

2
.

The eigenvalues λ and λ are complex conjugates. Now, suppose that the eigen-
value λ = α+ iβ has an eigenvector of the form

v = v1 + iv2,

where v1 and v2 are real vectors. Then v = v1 − iv2 is an eigenvector for λ,
since

Av = Av = λv = λv.

Consequently, if A is a real matrix with complex eigenvalues, one of the eigen-
values determines the other.
Proposition 3.6.5 If λ = α + iβ is an eigenvalue of a real matrix A with
β ̸= 0 and eigenvector the form

v1 + iv2,

where v1 and v2 are real vectors, then the vectors v1 and v2 are linearly
independent.
Proof. If v1 and v2 are not linearly independent, then v1 = cv2 for some c ∈ R.
On one hand, we have

A(v1 + iv2) = A(cv2 + iv2) = (c+ i)Av2.

1Of couurse, we have much quicker ways of solving a system dx/dt = Ax with distinct
real eigenvalues. The goal of this section is show that we have covered all possible cases for
2× 2 systems of linear differential equations and not to invent new methods of solution.
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However,

A(v1 + iv2) = (α+ iβ)(v1 + iv2)

= (α+ iβ)(c+ i)v2

= (c+ i)(α+ iβ)v2

In other words, Av2 = (α + iβ)v2. However, this is a contradiction since the
left-side of the equation says that we have real eigenvector while the right-side
of the equation is complex. Thus, v1 and v2 are linearly independent. ■
Proposition 3.6.6 Let A be a real matrix with eigenvalue λ = α+ iβ, where
β ̸= 0. If

v1 + iv2,

is an eigenvector for λ, then there exists a matrix T such that

T−1AT =

(
α β

−β α

)
.

Proof. Since v1 + iv2 is an eigenvector associated to the eigenvalue α+ iβ, we
have

A(v1 + iv2) = (α+ iβ)(v1 + iv2).

Equating the real and imaginary parts, we find that

Av1 = αv1 − βv2

Av2 = βv1 + αv2.

If T is the matrix with columns v1 and v2, then

Te1 = v1

Te2 = v2.

Thus, we have

(T−1AT )e1 = T−1(αv1 − βv2) = αe1 − βe2.

Similarly,
(T−1AT )e2 = βe1 + αe2.

Therefore, we can write the matrix T−1AT as

T−1AT =

(
α β

−β α

)
.

■
The system y′ = (T−1AT )y is in one of the canonical forms and has a

phase portrait that is a spiral sink (α < 0), a center (α = 0), or a spiral
source (α > 0). After a change of coordinates, the phase portrait of x′ = Ax
is equivalent to a sink, center, or source.
Example 3.6.7 Suppose that we wish to find the solutions of the second order
equation

2x′′ + 2x′ + x = 0.

This particular equation might model a damped harmonic oscillator. If we
rewrite this second-order equation as a first-order system, we have

x′ = y
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y′ = −1

2
x− y,

or equivalently x′ = Ax, where

A =

(
0 1

−1/2 −1

)
.

The eigenvalues of A are
−1

2
± i

1

2
.

The eigenvalue λ = (1 + i)/2 has an eigenvector

v =

(
2

−1 + i

)
=

(
2

−1

)
+ i

(
0

1

)
,

respectively. Therefore, we can take T to be the matrix

T =

(
2 0

−1 1

)
.

Consequently,

T−1AT =

(
1/2 0

1/2 1

)(
0 1

−1/2 −1

)(
2 0

−1 1

)
=

(
−1/2 1/2

−1/2 −1/2

)
,

which is in the canonical form (
α β

−β α

)
.

The general solution to y′ = (T−1AT )y is

y(t) = c1e
−t/2

(
cos(t/2)
− sin(t/2)

)
+ c2e

−t/2

(
sin(t/2)
cos(t/2)

)
.

The phase portrait of y′ = (T−1AT )y is given in Figure 3.6.8.
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Figure 3.6.8 Phase portrait for y′ = (T−1AT )y
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The general solution of x′ = Ax is

Ty(t) =
(

2 0

−1 1

)[
c1e

−t/2

(
cos(t/2)
− sin(t/2)

)
+ c2e

−t/2

(
sin(t/2)
cos(t/2)

)]
= c1e

−t/2

(
2 0

−1 1

)(
cos(t/2)
− sin(t/2)

)
+ c2e

−t/2

(
2 0

−1 1

)(
sin(t/2)
cos(t/2)

)
= c1e

−t/2

(
2 cos(t/2)

− cos(t/2)− sin(t/2)

)
+ c2e

−t/2

(
2 sin(t/2)

− sin(t/2) + cos(t/2)

)
.

The phase portrait for this system is given in Figure 3.6.9.
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Figure 3.6.9 Phase portrait of x′ = Ax
□

Remark 3.6.10 Of course, we have a much more efficient way of solving the
system x′ = Ax, where

A =

(
0 1

−1/2 −1

)
.

Since A has eigenvalue λ = (−1 + i)/2 with an eigenvector v = (2,−1 + i), we
can apply Euler’s formula and write the solution as

x(t) = e(−1+i)t/2v

= e−t/2eit/2
(

2

−1 + i

)
= e−t/2(cos(t/2) + i sin(t/2))

(
2

−1 + i

)
= e−t/2

(
2 cos(t/2)

− cos(t/2)− sin(t/2)

)
+ ie−t/2

(
2 sin(t/2)

− sin(t/2) + cos(t/2)

)
.

Taking the real and the imaginary parts of the last expression, the general
solution of x′ = Ax is

x(t) = c1e
−t/2

(
2 cos(t/2)

− cos(t/2)− sin(t/2)

)
+ c2e

−t/2

(
2 sin(t/2)

− sin(t/2) + cos(t/2)

)
,

which agrees with the solution that we found by transforming coordinates.
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3.6.6 Repeated Eigenvalues
Now suppose that A has a single real eigenvalue λ. Then the characteristic
polynomial of A is p(λ) = λ2 − (a+ d)λ+ (ad− bc), then A has an eigenvalue
λ = (a+ d)/2.

Proposition 3.6.11 If A has a single eigenvalue and a pair of linearly inde-
pendent eigenvectors, then A must be of the form

A =

(
λ 0

0 λ

)
.

Proof. Suppose that u and v are linearly indeendent eigenvectors for A, and
let T be the matrix whose first column is u and second column is v. That is,
Te1 = u and Te2 = v. Since u and v are linearly independent, det(T ) ̸= 0
and T is invertible. So, it must be the case that

AT = (Au, Av) = (λu, λv) = λ(u,v) = λIT,

or
A =

(
λ 0

0 λ

)
.

■
In this case, the system is uncoupled and is easily solved. That is, we can

solve each equation in the system

x′ = λx

y′ = λy

separately to obtain the general solution

x = c1e
λt

y′ = c2e
λt.

Proposition 3.6.12 Suppose that A has a single eigenvalue λ. If v is an
eigenvector for λ and any other eigenvector for λ is a multiple of v, then there
exists a matrix T such that

T−1AT =

(
λ 1

0 λ

)
.

Proof. If w is another vector in R2 such that v and w are linearly independent,
then Aw can be written as a linear combination of v and w,

Aw = αv + βw.

We can assume that α ̸= 0; otherwise, we would have a second linearly inde-
pendent eigenvector. We claim that β = λ. If this were not the case, then

A

(
w +

(
α

β − λ

)
v
)

= Aw +

(
α

β − λ

)
Av

= αv + βw + λ

(
α

β − λ

)
v

= βw + α

(
1 +

λ

β − λ

)
v

= βw + α

(
β − λ+ λ

β − λ

)
v
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= β

(
w +

(
α

β − λ

)
v
)

and β would be an eigenvalue distinct from λ. Thus, Aw = αv + λw. If we
will let u = (1/α)w, then

Au = v +
λ

α
w = v + λu.

We now define Te1 = v and Te2 = u. Since

AT = Au +Av = v + λu + λv

T

(
λ 1

0 λ

)
= T (λe1) + Te1 + T (λe2) = v + λu + λv,

we have
T−1AT =

(
λ 1

0 λ

)
.

Therefore, x′ = Ax is in canonical form after a change of coordinates. ■
Example 3.6.13 Consider the system x′ = Ax, where

A =

(
5 1

−4 1

)
.

The characteristic polynomial of A is λ2 − 6λ + 9 = (λ − 3)2, we have only a
single eigenvalue λ = 3 with eigenvector v = (1,−2). Any other eigenvector
for λ is a multiple of v. If we choose w = (1, 0), then v and w are linearly
independent. Furthermore,

Aw =

(
5

−4

)
= 2

(
1

−2

)
+ λ

(
1

0

)
= 2

(
1

−2

)
+ 3

(
1

0

)
.

So we can let u = (1/2)w = (1/2, 0). Therefore, the matrix that we seek is

T =

(
1 1/2

−2 0

)
,

and
T−1AT =

(
−1/2 2

1 1

)(
5 1

−4 1

)(
1 1/2

−2 0

)
=

(
3 1

0 3

)
.

From Section 3.3, we know that the general solution to the system(
dx/dt

dy/dt

)
=

(
3 1

0 3

)(
x

y

)
is

y(t) = c1e
3t

(
1

0

)
+ c2e

3t

(
t

1

)
.

Therefore, the general solution to(
dx/dt

dy/dt

)
=

(
5 1

−4 1

)(
x

y

)
is

x(t) = Ty(t)
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= c1e
3tT

(
1

0

)
+ c2e

3tT

(
t

1

)
= c1e

3t

(
1

−2

)
+ c2e

3t

(
1/2 + t

−2t

)
.

This solution agrees with the solution that we found in Example 3.5.5. □
In practice, we find solutions to linear systems using the methods that we

outlined in Sections 3.2–3.4. What we have demonstrated in this section is
that those solutions are exactly the ones that we want.

3.6.7 Important Lessons
• A linear map T is invertible if and only if detT ̸= 0.

• A linear map T converts solutions of y′ = (T−1AT )y to solutions of
x′ = Ax.

• The inverse of a linear map T takes solutions of x′ = Ax to solutions of
y′ = (T−1AT )y.

• A change of coordinates converts the system x′ = Ax to one of the
following special cases,(

λ 0

0 µ

)
,

(
α β

−β α

)
,

(
λ 0

0 λ

)
,

(
λ 1

0 λ

)
.

3.6.8 Reading Questions
1. Explain what a change of coordinates is.
2. Given a 2× 2 linear system, what are the possible types of solutions?

3.6.9 Exercises

Diagonalizing Matrices with Distinct Real Eigenvalues. For each of
the matrices A in Exercise Group 3.6.9.1–6, find (1) the eigenvalues, λ1 and λ2;
(2) for each eigenvalue λ1 and λ2, find an eigenvector v1 and v2, respectively;
and (3) construct the matrix T = (v1,v2) and calculate T−1AT .

1. A =

(
7 3

−4 0

)
2. A =

(
−3 −10

3 8

)
3. A =

(
18 11

−22 −15

)
4. A =

(
−14 −12

18 16

)
5. A =

(
35/3 22

−22/3 −14

)
6. A =

(
31/2 85/6

−17 −47/3

)

Matrices with Complex Eigenvalues. For each of the matrices A in
Exercise Group 3.6.9.7–12, find (1) an eigenvalue, λ; (2) find an eigenvector
v = vRe+ivIm for λ; and (2) construct the matrix T = (vRe,vIm) and calculate
T−1AT . Compare your result to λ.

7. A =

(
5 2

−5 −1

)
8. A =

(
13 4

−26 −7

)
9. A =

(
−2 −2

25 12

)
10. A =

(
−23/3 −5

13 25/3

)
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11. A =

(
2 2

−4 6

)
12. A =

(
−9 26

−4 11

)

Matrices with Repeated Eigenvalues. For each of the matrices A in
Exercise Group 3.6.9.13–18, find (1) the eigenvalue, λ and an eigenvector v
for λ; (2) choose a vector w that is linearly independent of v and compute
(A− λI)w. You should find that

(A− λI)w = αv

for some real number α. (3) Let u = (1/α)w and form the matrix T = (v,u).
(4) Calculate T−1AT , which should be in the form(

λ 1

0 λ

)
.

13. A =

(
7 4

−9 −5

)
14. A =

(
4 4

−9 −8

)
15. A =

(
4 −4

1 8

)
16. A =

(
6 1

−4 2

)
17. A =

(
3 1

−2 0

)
18. A =

(
1 −2

1 3

)

3.7 The Trace-Determinant Plane

Objectives
• To understand that the characteristic polynomial of a 2 × 2 matrix can

be written as
λ2 − Tλ+D,

where T = tr(A) and D = det(A). Furthermore, if a 2× 2 matrix A has
eigenvalues λ1 and λ2, then tr(A) is λ1 + λ2 and det(A) = λ1λ2, and the
trace and determinant of a 2× 2 matrix are invariant under a change of
coordinates.

• To understand that the trace-determinant plane is determined by the
graph of the parabola D = T 2/4 on the TD-plane and that the trace-
determinant plane can be used to determine the phase portrait of a linear
system.

• To understand that the trace-determinant plane is useful for studying
bifurcations.

Suppose that we have two tanks, Tank A and Tank B, that both have a
volume of V liters and are both filled with a brine solution. Suppose that pure
water enters Tank A at a rate of rin liters per minute, and a salt mixture enters
Tank A from Tank B at a rate of rB liters per minute. Brine also enters Tank
B from Tank A at a rate of rA liters per minute. Finally, brine is drained
from Tank B at a rate of rout so that the volume in each tank is constant
(Figure 3.7.1).
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Tank A Tank B

rB

rA

rout

rin

Figure 3.7.1 Mixing example with two tanks
If x(t) and y(t) are the amounts of salt in Tank A and Tank B, respectively,

then our problem can be modeled with a linear system of two equations,

dx

dt
= rate in − rate out = −rA

x

V
+ rB

y

V
dy

dt
= rate in − rate out = rA

x

V
− rB

y

V
− rout

y

V
.

Furthermore, rA = rB + rout, since the volume in Tank B is constant. Conse-
quently, our system now becomes

dx

dt
= −rA

x

V
+ rB

y

V
dy

dt
= rA

x

V
− rA

y

V
.

If we have initial conditions x(0) = x0 and y(0) = y0, it is not too difficult to
deduce that the amount of salt in each tank will approach zero as t→ ∞, and
we will have a stable equilibrium solution at (0, 0). Determining the nature of
the equilibrium solution is a more difficult question. For example, is it ever
possible that the equilibrium solution is a spiral sink? One solution is provided
by studying the trace-determinant plane.

3.7.1 The Trace-Determinant Plane
The key to solving the system(

x′

y′

)
=

(
a b

c d

)(
x

y

)
= A

(
x

y

)
is determining the eigenvalues of A. To find these eigenvalues, we need to
derive the characteristic polynomial of A,

det(A− λI) = det
(
a− λ b

c d− λ

)
= λ2 − (a+ d)λ+ (ad− bc).

Of course, D = det(A) = ad−bc is the determinant of A. The quantity T = a+
d is the sum of the diagonal elements of the matrix A. We call this quantity the
trace of A and write tr(A). Thus, we can rewrite the characteristic polynomial
as

det(A− λI) = λ2 − Tλ+D.

We can use the trace and determinant to establish the nature of a solution to
a linear system.



CHAPTER 3. LINEAR SYSTEMS 203

Theorem 3.7.2 If a 2× 2 matrix A has eigenvalues λ1 and λ2, then the trace
of A is λ1 + λ2 and det(A) = λ1λ2.
Proof. The proof follows from a direct computation. Indeed, we can rewrite
the characteristic polynomial as

det(A− λI) = λ2 − Tλ+D.

The eigenvalues of A are now given by

λ1 =
T +

√
T 2 − 4D

2
and λ2 =

T −
√
T 2 − 4D

2
.

Hence, T = λ1 + λ2 and D = λ1λ2. ■
Theorem 3.7.2 tells us that we can determine the determinant and trace

of a 2 × 2 matrix from its eigenvalues. Thus, we should be able to determine
the phase portrait of a system x′ = Ax by simply examining the trace and
determinant of A. Since the eigenvalues of A are given by

λ =
T ±

√
T 2 − 4D

2
,

we can immediately see that the expression T 2 − 4D determines the nature of
the eigenvalues of A.

• If T 2 − 4D > 0, we have two distinct real eigenvalues.

• If T 2 − 4D < 0, we have two complex eigenvalues, and these eigenvalues
are complex conjugates.

• If T 2 − 4D = 0, we have repeated eigenvalues.

If T 2 − 4D = 0 or equivalently if D = T 2/4, we have repeated eigenvalues.
In fact, we can represent those systems with repeated eigenvalues by graph-
ing the parabola D = T 2/4 on the TD-plane or trace-determinant plane
(Figure 3.7.3). Therefore, points on the parabola correspond to systems with
repeated eigenvalues, points above the parabola (D > T 2/4 or equivalently
T 2 − 4D < 0) correspond to systems with complex eigenvalues, and points
below the parabola (D < T 2/4 or equivalently T 2 − 4D > 0) correspond to
systems with real eigenvalues.

T

D

Complex Eigenvalues

Distinct Real Eigenvalues

Repeated Eigenvalues

D= T 2/4

Figure 3.7.3 The trace-determinant plane

Theorem 3.7.4 The trace and determinant of a 2 × 2 matrix are invari-
ant under a change of coordinates. That is, det(T−1AT ) = det(A) and
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tr(T−1AT ) = tr(A) for any 2× 2 matrix A and any invertible 2× 2 matrix T .
Proof. It is straightforward to verify that det(AB) = det(A)det(B) and
det(T−1) = 1/ det(T ) for 2× 2 matrices A and B. Therefore,

det(T−1AT ) = det(T−1)det(A)det(T ) = 1

det(T ) det(A)det(T ) = det(A).

A direct computation shows that tr(AB) = tr(BA). Thus,

tr(T−1AT ) = tr(T−1TA) = tr(A).

■
Furthermore, the expression T 2 − 4D is not affected by a change of coordi-

nates by Theorem 3.7.4. That is, we only need to consider systems x′ = Ax,
where A is one of the following matrices:(

α β

−β α

)
,

(
λ 0

0 µ

)
,

(
λ 0

0 λ

)
,

(
λ 1

0 λ

)
.

The system

x′ =

(
α β

−β α

)
x

has eigenvalues λ = α± iβ. The general solution to this system is

x(t) = c1e
αt

(
cosβt
− sinβt

)
+ c2e

αt

(
sinβt
cosβt

)
.

The eαt factor tells us that the solutions either spiral into the origin if α < 0,
spiral out to infinity if α > 0, or stay in a closed orbit if α = 0. The equilibrium
points are spiral sinks and spiral sources, or centers, respectively.

The eigenvalues of A are given by

λ =
T ±

√
T 2 − 4D

2
.

If T 2−4D < 0, then we have a complex eigenvalues, and the type of equilibrium
point depends on the real part of the eigenvalue. The sign of the real part is
determined solely by T . If T > 0 we have a source. If T < 0, we have a sink.
If T = 0, we have a center. See Figure 3.7.5.

T

D

Center Spiral SourceSpiral Sink

D= T 2/4

Figure 3.7.5 D > T 2/4

The situation for distinct real eigenvalues is a bit more complicated. Sup-
pose that we have a system

x′ =

(
λ 0

0 µ

)
x
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with distinct eigenvalues λ and µ. We will have three cases to consider if none
of our eigenvalues are zero:

• Both eigenvalues are positive (source).

• Both eigenvalues are negative (sink).

• One eigenvalue is negative and the other is positive (saddle).

Our two eigenvalues are given by

λ =
T ±

√
T 2 − 4D

2
.

If T > 0, then the eigenvalue

T +
√
T 2 − 4D

2

is positive and we need only determine the sign of the second eigenvalue

T −
√
T 2 − 4D

2

If D < 0, we have one positive and one zero eigenvalue. That is, we have a
saddle if T > 0 and D < 0.

If D > 0, then
T 2 − 4D < T 2.

Since we are considering the case T > 0, we have√
T 2 − 4D < T

and the value of the second eigenvalue (T−
√
T 2 − 4D )/2 is postive. Therefore,

any point in the first quadrant below the parabola corresponds to a system with
two positive eigenvalues and must correspond to a nodal source.

One the other hand, suppose that T < 0. Then the eigenvalue (T −√
T 2 − 4D )/2 is always negative, and we need to determine if other eigen-

value is positive or negative. If D < 0, then T 2−4D > T 2 and
√
T 2 − 4D > T .

Therefore, the other eigenvalue (T −
√
T 2 − 4D )/2 is positive, telling us that

any point in the fourth quadrant must correspond to a saddle. If D > 0, then√
T 2 − 4D < T and the second eigenvalue is negative. In this case, we will

have a nodal sink. We summarize our findings in Figure 3.7.6.

T

D

Center Spiral SourceSpiral Sink

Nodal SourceNodal Sink

Saddle

D= T 2/4

Figure 3.7.6 The trace-determinant plane for real and complex eigenvalues
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For repeated eigenvalues, the analysis depends only on T . Since

T 2 − 4D = 0,

the only eigenvalue is T/2. Thus, we have sources if T > 0 and sinks if T < 0
(Figure 3.7.7).

T

D

Center Spiral SourceSpiral Sink

Nodal SourceNodal Sink

Source (unstable line)Sink (stable line)

Saddle

D= T 2/4

Figure 3.7.7 D = T 2/4

Example 3.7.8 Let us return to the mixing problem that we proposed at the
beginning of this section. The problem could be modeled by the system of
equations

dx

dt
= −rA

x

V
+ rB

y

V
dy

dt
= rA

x

V
− rA

y

V
x(0) = x0

y(0) = y0.

The matrix corresponding to this system is

A =

(
−rA/V +rB/V

rA/V −rA/V

)
.

Computing the trace and determinant of the matrix yields T = −2rA/V and
D = (r2A − rArB)/V

2, where rA and rB are both positive. Certainly, T < 0
and

D =
r2A − rArB

V 2
=
rA(rA − rB)

V 2
=
rArout
V 2

> 0.

Therefore, any solution must be stable. Finally, since

4D − T 2 = 4
r2A − rArB

V 2
−
(
−2rA
V

)2

= −4rArB
V 2

< 0,

we are below the parabola in the trace-determinant plane and know that our
solution must be a nodal sink. □

3.7.2 Parameterized Families of Linear Systems
The trace-determinant plane is an example of a parameter plane. We can
adjust the entries of a matrix A and, thus, change the value of the trace and
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the determinant.
Recall that a harmonic oscillator can be modeled by the second-order equa-

tion
m
d2x

dt2
+ b

dx

dt
+ kx = 0,

where m > 0 is the mass, b ≥ 0 is the damping coefficient, and k > 0 is the
spring constant. If we rewrite this equation as a first-order system, we have

x′ =

(
0 1

−k/m −b/m

)
x.

Thus, for the harmonic oscillator T = −b/m and D = k/m. If we use the trace-
determinant plane to analyze the harmonic oscillator, we need only concern
ourselves with the second quadrant (Figure Figure 3.7.9).

T

D

Under Damped

Over Damped

Critically Damped
Undamped

D= T 2/4

Figure 3.7.9 A one-parameter family for a harmonic oscillator
If (T,D) = (−b/m, k/m) lies above the parabola, we have an underdamped

oscillator. If (T,D) = (−b/m, k/m) lies below the parabola, we have an over-
damped oscillator. If (T,D) = (−b/m, k/m) lies on the parabola, we have a
critically damped oscillator. If b = 0, we have an undamped oscillator.
Example 3.7.10 Now let us see what happens to our harmonic oscillator when
we fix m = 1 and k = 3 and let the damping b vary between zero and infinity.
We can rewrite our system as

dx

dt
= y

dy

dt
= −3x− by.

Thus, T = −b and D = 3. We can see how the phase portrait varies with the
parameter b in Figure Figure 3.7.11.

T

3

D

Under Damped

Over Damped

Critically Damped
Undamped

D= T 2/4

Figure 3.7.11 The trace-determinant plane for varying damping
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The line D = 3 in the trace-determinant plane crosses the repeated eigen-
value parabola, D = T 2/4 if b2 = 12 or when b = 2

√
3. If b = 0, we have

purely imaginary eigenvalues. This is the undamped harmonic oscillator. If
0 < b < 2

√
3, the eigenvalues are complex with a nonzero real part—the un-

derdamped case. If b = 2
√
3, the eigenvalues are negative and repeated—the

critically damped case. Finally, if b > 2
√
3, we have the overdamped case. In

this case, the eigenvalues are real, distinct, and negative. A bifurcation occurs
at b = 2

√
3. □

Activity 3.7.1 Harmonic Oscillator with a Varying Spring Constant.
Consider a harmonic oscillator modeled by the second-order equation

m
d2x

dt2
+ b

dx

dt
+ kx = 0, (3.7.1)

where m = 2 is the mass, b = 2 is the damping coefficient, and k > 0 is the
spring constant.
(a) Rewrite (3.7.1) as a system of first-order differential equations, dx/dt =

Ax.

(b) Calculate the trace and determinant of A.

(c) Sketch a line in the trace-determinant plane that parameterizes the family
of equations dx/dt = Ax.

(d) For what values of k is the harmonic oscillator underdamped? Over-
damped? For what value of k do we have a bifurcation?

Example 3.7.12 Consider the system(
x′

y′

)
= Ax =

(
−2 a

−2 0

)
x.

The trace of A is always T = −2, but D = det(A) = 2a. We are on the
parabola if

T 2 − 4D = 4− 8a = 0 or a =
1

2
.

Thus, a bifurcation occurs at a = 1/2. If a > 1/2, we have a spiral sink. If
a < 1/2, we have a sink with real eigenvalues. Further more, if a < 0, our sink
becomes a saddle (Figure 3.7.13).

−2

T

D

Spiral Sink

Nodal Sink

Sink (stable line)

Saddle

D= T 2/4

Figure 3.7.13 A one-parameter family of linear systems
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□
Activity 3.7.2 Parameterized Families of Linear Systems. Consider
the parameterized system of linear differential equations dx/dt = Ax, where

A =

(
α β

1 α

)
.

(a) Find the trace, T , and determinant, D, of A.

(b) Calculate T 2 = 4D.

(c) For what values of α and β is the origin a spiral sink of dx/dt = Ax? A
spiral source? A center?

(d) For what values of α and β is the origin a nodal sink of dx/dt = Ax? A
nodal source? A saddle?

(e) Identify all of the regions in the αβ-plane where the system dx/dt = Ax
possesses a saddle, a sink, a spiral sink, and so on. Plot your results on
the αβ-plane.

Example 3.7.14 Although the trace-determinant plane gives us a great deal
of information about our system, we can not determine everything from this
parameter plane. For example, the matrices

A =

(
0 1

−1 0

)
and B =

(
0 −1

1 0

)
both have the same trace and determinant, but the solutions to x′ = Ax wind
around the origin in a clockwise direction while those of x′ = Bx wind around
in a counterclockwise direction. □

3.7.3 Important Lessons
• The characteristic polynomial of a 2× 2 matrix can be written as

λ2 − Tλ+D,

where T = tr(A) and D = det(A).

• If a 2× 2 matrix A has eigenvalues λ1 and λ2, then tr(A) is λ1 + λ2 and
det(A) = λ1λ2.

• The trace and determinant of a 2×2 matrix are invariant under a change
of coordinates.

• The trace-determinant plane is determined by the graph of the parabola
D = T 2/4 on the TD-plane. Points on the trace-determinant plane
correspond to the trace and determinant of a linear system x′ = Ax.
Since the trace and the determinant of a matrix determine the eigenvalues
of A, we can use the trace-determinant plane to parameterize the phase
portraits of linear systems.

• The trace-determinant plane is useful for studying bifurcations.
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3.7.4 Reading Questions

1. What is the trace of a matrix?
2. Explain what information the trace-determinant plane provides about a

2× 2 linear system.

3.7.5 Exercises

Classifiying Equilibrium Points. Classify the equilibrium points of the
system x′ = Ax based on the position of (T,D) in the trace-determinant plane
in Exercise Group 3.7.5.1–8. Sketch the phase portrait by hand and then use
Sage to verify your result.

1. A =

(
1 2

3 4

)
2. A =

(
4 2

3 2

)
3. A =

(
−3 −8

4 −6

)
4. A =

(
4 −5

3 2

)
5. A =

(
−11 10

4 −5

)
6. A =

(
5 −3

−8 −6

)
7. A =

(
4 −15

3 −8

)
8. A =

(
4 11

−8 −3

)

One-Parameter Families and Bifurcations. Each of the following ma-
trices in Exercise Group 3.7.5.9–14 describes a family of differential equations
x′ = Ax that depends on the parameter α. For each one-parameter family
sketch the curve in the trace-determinant plane determined by α. Identify any
values of α where the type of system changes. These values are bifurcation
values of α.

9. A =

(
α 3

−1 0

)
10. A =

(
α 3

α 0

)
11. A =

(
α 2

α α

)
12. A =

(
1 2

α 0

)
13. A =

(
α 1

1 α− 1

)
14. A =

(
0 1

α
√
1− α2

)
15. Consider the two-parameter family of linear systems(

x′

y′

)
=

(
α β

1 0

)(
x

y

)
.

Identify all of the regions in the αβ-plane where this system possesses a
saddle, a sink, a spiral sink, and so on.

16. Consider the two-parameter family of linear systems(
x′

y′

)
=

(
α β

β α

)(
x

y

)
.

Identify all of the regions in the αβ-plane where this system possesses a
saddle, a sink, a spiral sink, and so on.
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17. Consider the two-parameter family of linear systems(
x′

y′

)
=

(
α −β
β α

)(
x

y

)
.

Identify all of the regions in the αβ-plane where this system possesses a
saddle, a sink, a spiral sink, and so on.

3.8 Linear Systems in Higher Dimensions

Objectives
• To understand we can solve the system x′ = Ax by finding eigenvalues

and eigenvectors for A, where A is an n× n matrix.

• To understand that the Principle of Superposition holds for higher-order
systems.

• To understand that the geometry of a system in R3 is characterized by
stable lines and stable planes.

Suppose that we have two masses on a table, m1 and m2, connected by
three springs with the outside springs connected to two walls (Figure 3.8.1),
and the masses are free to move horizontally. We will assume that the springs
are uniform and all have the same spring constant k. The horizontal displace-
ments of the springs are denoted by x1(t) and x2(t) for the masses m1 and
m2, respectively. Assuming that there is no damping, the only forces acting
on mass m1 at time t are those of left and middle springs. The force from the
left spring will be −kx1 while the force from middle spring will be k(x2 − x1).
By Newton’s Second Law of motion, we have

m1x
′′
1 = −kx1 + k(x2 − x1).

Similarly, the only forces acting on the second mass, m2, will come from middle
and right springs. Again using Newton’s Second Law,

m2x
′′
2 = −k(x2 − x1)− kx2.

x1 = 0 x2 = 0

m1 m1

wall wall

x1 x2

Figure 3.8.1 A double spring-mass system
We now have a system of two second-order linear equations

m1x
′′
1 = −2kx1 + kx2

m2x
′′
2 = kx1 − 2kx2.

If we define x3 and x4 by x3 = x′1 and x4 = x′2, we now have first-order linear
system of four equations,

x′1 = x3
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x′2 = x4

x′3 = −2
k

m1
x1 +

k

m1
x2

x′4 =
k

m2
x1 − 2

k

m2
x2

We can represent this system in the matrix form x′ = Ax, where

A =


0 0 1 0

0 0 0 1

−2k/m1 k/m1 0 0

k/m2 −2k/m2 0 0

 .

We will learn how to analyze and solve such systems in the next two sections.

3.8.1 Higher-Order Linear Systems
We can write the system

x′1 = a11x1 + · · · a1nxn
x′2 = a21x1 + · · · a2nxn

...
x′n = an1x1 + · · · annxn

in matrix form x′ = Ax, where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
an1 an2 · · · ann

 and x =


x1
x2
...
xn

 .

The strategy for finding solutions to the system x′ = Ax is the same as for
systems of two equations. If λ is an eigenvalue of A with eigenvector v,

x(t) = eλtv

is a solution for our system. Indeed,

x′(t) = λeλtv = eλt(λv) = eλtAv = A(eλtv) = Ax(t).

Example 3.8.2 The system

x′ = −5x− 8y − 2z

y′ = 5x+ 12y + 4z

z′ = −11x− 19y − 5z

can be rewritten as

x′ =

x′y′
z′

 =

 −5 −8 −2

5 12 4

−11 −19 −5

xy
z

 = Ax.

We can compute the eigenvalues of A by finding the roots of its characteristic
polynomial

det(A− λI) = −λ3 − 2λ2 − λ+ 2 = (λ− 1)(λ+ 1)(λ− 2).
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Thus, the eigenvalues of A are λ = 2, λ = 1, and λ = −1. To find an
eigenvector for λ = 2, we must find a nontrivial solution for system of equations
(A− 2I)x = 0,

−7x− 8y − 2z = 0

−5x+ 10y + 4z = 0

−11x− 19y − 7z = 0.

It is easy to check that (2,−3, 5) is a solution. Similarly, we can determine
that (5,−7, 13) is an eigenvector for λ = 1 and (1,−1, 2) is an eigenvector for
λ = −1. Thus, we have found three solutions for the system x′ = Ax,

x1(t) = e2t

 2

−3

5

 , x2(t) = et

 5

−7

13

 , and x3(t) = e−t

 1

−1

2

 .

The Principle of Superposition also holds for higher-order systems. If x1(t)
and x2(t) are solutions for x′ = Ax, then

c1x1(t) + c2x2(t)

is a solution for the system, since

d

dt
[c1x1(t) + c2x2(t)] = c1

d

dt
x1(t) + c2

d

dt
x2(t)

= c1Ax1(t) + c2Ax2(t)

= A[c1x1(t) + c2x2(t)].

Consequently,

x(t) = c1e
2t

 2

−3

5

+ et

 5

−7

13

+ c3e
−t

 1

−1

2


is a solution for our system. This is, in fact, the general solution for the system.

□
Although we shall not cover the notions of linear independence, canonical

matrices, and change of coordinates for Rn, the same ideas that we used for
systems of first-order linear differential equations in R2 carry over to Rn. The
necessary linear algebra is covered in any good linear algebra course. Also, see
Chapters 5 and 6 in [12]. In addition, finding eigenvalues for matrices greater
than 2×2, we will need to find the roots of a characteristic polynomial of degree
greater than two, which can be difficult. A good course in linear algebra will
cover techniques of finding eigenvalues for larger matrices.
Example 3.8.3 Let us see how the linear algebra works in the previous exam-
ple. If we form the matrix

T =

 2 5 1

−3 −7 −1

5 13 2


from the eigenvectors of A, we can convert the system x′ = Ax to the system

y′ = (T−1AT )y
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 1 −3 −2

−1 1 1

4 1 −1

 −5 −8 −2

5 12 4

−11 −19 −5

 2 5 1

−3 −7 −1

5 13 2

y,

=

2 0 0

0 1 0

0 0 −1

y,

which we can immediately solve:

y(t) = c1e
2t

1

0

0

+ c2e
t

0

1

0

+ c3e
−t

0

0

1

 .

Multiplying our solution by T yields the general solution

x(t) = Ty = c1e
2t

 2

−3

5

+ et

 5

−7

13

+ c3e
−t

 1

−1

2

 ,

the solution to the system x′Ax. □

3.8.2 The Geometry of Solutions
In Section 3.6, we classified all of the geometry of the solutions for planar
systems using the trace-determinant plane. The geometry for linear systems
in three variables is a bit more complicated. For a system

x′ = a1x+ a1y + a3z

y′ = b1x+ b2y + b3z

z′ = c1x+ c2y + c3z,

our solution curves live in R3, and there is simply a lot more room to move
around in three dimensions than in two dimensions. The origin is still an equi-
librium solution for a system of linear differential equations in three variables.
The origin is a stable equilibrium solution if any solution x(t) approaches
0 = (0, 0, 0) as t → ∞; otherwise, 0 is an unstable equilibrium solution. In
the case of planar systems, an unstable solution is a nodal saddle, a nodal
source, a spiral source, or a source with a single unstable line. In the case
of R3, we could have a stable line of solutions and an unstable plane of
solutions. In this case, all solutions of the system with initial condition lying
on the stable line would approach the origin as t → ∞, but all solutions with
initial conditions that are a nonzero point on the unstable plane would move
away from the origin.
Example 3.8.4 In Example 3.8.2, we had solutions

x1(t) = e2t

 2

−3

5

 ,x2(t) = et

 5

−7

13

 , and x3(t) = e−t

 1

−1

2

 .

The straight line through the origin and the point (1,−1, 2) is a stable line.
That is, for any initial condition x(0) = (x0, y0, z0) lying on this line, our
solution will tend toward the origin as t → ∞. On the other hand, the plane
spanned by (2,−3, 5) and (5,−7, 13) is unstable plane. Solutions on this plane
move away from the origin as t → ∞. Of course, (0, 0, 0) is an equlibrium
solution for our system. We say that the origin is a saddle in this example
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(Figure 3.8.5).

z-axis

T

(1,−1, 2)

Figure 3.8.5 A saddle in R3

□
Example 3.8.6 For the system

x′ =

 0 1 0

−1 0 0

0 0 −1

x

we have a very different type of unstable equilibrium solution. The eigenvalues
of this matrix are λ = ±i and λ = −1. Thus, a solution satisfying the initial
condition x(0) = (x0, y0, z0) is given by

x(t) = x0

 cos t
− sin t

0

+ y0

sin t
cos t
0

+ z0e
−t

0

0

1

 .

If z0 = 0, then our initial condition is in the xy-plane and all of the solutions
lie on circles centered at the origin. On the other hand, if x0 = 0 and y0 = 0,
we have a stable line of solutions lying along the z-axis. In fact, each solution
that does not lie on the stable line lies on a cylinder in R3 given by x2+y2 = r2

for some constant r > 0. These solutions spiral towards the circular solution
of radius r in the xy-plane if z0 ̸= 0 (Figure 3.8.7).

Figure 3.8.7 A spiral center in R3

□
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Example 3.8.8 For an example of a stable plane and an unstable line, let us
consider the system

x′ =

−1 1 0

−1 −1 0

0 0 1

x = Ax.

The characteristic equation of the matrix A is

λ3 + λ2 − 2 = (λ− 1)(λ2 + 2λ+ 2) = 0.

Thus, the eigenvalues of A are λ = 1 and λ = −1± i. Solving

[A− (−1 + i)]x = 0

gives us an eigenvector (1, i, 0) for λ = −1 + i. Since1

i

0

 =

1

0

0

+ i

0

1

0

 ,

we will let v1 = (1, 0, 0) and v2 = (0, 1, 0). Since v3 = (0, 0, 1) is an eigenvector
for λ = 1, our system has solution

x(t) = x0e
−t

 cos t
− sin t

0

+ y0e
−t

sin t
cos t
0

+ z0e
t

0

0

1

 ,

where x(0) = (x0, y0, z0). If z0 = 0, our initial condition lies in the xy-plane and
solution curves spiral in towards the origin. Thus, we have a stable plane. On
the other hand, if x0 = 0 and y0 = 0 but z0 ̸= 0, then our solution approaches
±∞ as t→ ∞. In this case, the z-axis is an unstable line (Figure 3.8.9).

Figure 3.8.9 A spiral saddle in R3

□
For an example of a stable equilibrium solution at the origin, consider the

system

x′ =

λ1 0 0

0 λ2 0

0 0 λ3

x,

where λ3 < λ2 < λ1 < 0. For an initial condition (x0, y0, z0) with at least
one coordinate nonzero, the corresponding solution tends towards the origin
tangentially to the x-axis as t→ ∞ (Figure 3.8.10).
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Figure 3.8.10 A sink in R3

Changing the system that in ExampleExample 3.8.8 to be

x′ =

−1 1 0

−1 −1 0

0 0 −1

x,

we obtain the solution satisfying the initial condition x(0) = (x0, y0, z0) to be

x(t) = x0e
−t

 cos t
− sin t

0

+ y0e
−t

sin t
cos t
0

+ z0e
−t

0

0

1

 ,

where x(0) = (x0, y0, z0). In this case, all solutions will approach the origin as
t→ ∞.
Activity 3.8.1 Solving Higher Order Systems.

1. Find the eigenvalues of A. You may find Sage useful.

2. Find the eigenvectors for each eigenvalue of A.

3. What is the general solution of dx/dt = Ax?

4. Describe the nature of the nature of the solution space in R3. Are there
stable lines or planes?

(a)

A =

 4 3 −1

−1 0 −1

1 1 2


(b)

A =

 4 3 −1

−1 0 −1

1 1 2


(c)

A =

 4 3 −1

−1 0 −1

1 1 2


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3.8.3 The Double Spring-Mass Systems Revisited
Let us return to our spring-mass system x′ = Ax, where

A =


0 0 1 0

0 0 0 1

−2k/m1 k/m1 0 0

k/m2 −2k/m2 0 0

 .

To keep matters simple, we will assume that m1 = m2 = k = 1. Thus, our
matrix now becomes

A =


0 0 1 0

0 0 0 1

−2 1 0 0

1 −2 0 0

 .

The characteristic polynomial of A is

det(A− λI) = λ4 + 4λ2 + 3 = (λ2 + 1)(λ2 + 3).

Thus, the eigenvalues of A are λ = ±i and λ = ±i
√
3. We can find eigenvectors

v1 =


i/
√
3

−i/
√
3

−1

1

 ,v2 =


−i/

√
3

i/
√
3

−1

1

 ,v3 =


−i
−i
1

1

 ,v4 =


i

i

1

1

 ,

corresponding to the eigenvalues λ1 = i
√
3, λ2 = −i

√
3, λ3 = i, λ4 = −i,

respectively. Consequently, the general solution to our system is

x(t) = c1e
i
√
3tv1 + c1e

−i
√
3tv2 + c1e

itv3 + c1e
−itv4;

however, this form of the solution is not very useful. By examining real and
imaginary parts of ei

√
3tv1 and c1e

itv3, we can rewrite the solution as

x(t) = c1


cos

√
3t

− cos
√
3t

−
√
3 sin

√
3t√

3 sin
√
3t

+ c2


− sin

√
3t

sin
√
3t

−
√
3 cos

√
3t√

3 cos
√
3t

+ c3


cos t
cos t
− sin t
− sin t

+ c4


sin t
sin t
cos t
cos t

 .

If we have the following initial conditions,

x1(0) = 0

x2(0) = 0

x′1(0) = x3(0) = 2

x′2(0) = x4(0) = 2,

we can determine c1 = c2 = c3 = 0 and c4 = 2. Thus, the solution to our
initial value problem is

x(t) =


2 sin t
2 sin t
2 cos t
2 cos t

 ,

and the two masses will oscillate with a frequency of one and an amplitude of
two. We leave the details as an exercise.
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3.8.4 Important Lessons
•

x′1 = a11x1 + · · · a1nxn
x′2 = a21x1 + · · · a2nxn

...
x′n = an1x1 + · · · annxn

can be written in matrix form x′ = Ax, where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
an1 an2 · · · ann

 and x =


x1
x2
...
xn

 .

• As in the case of R2, we can solve the system x′ = Ax by finding eigen-
values and eigenvectors for A.

• The Principle of Superposition holds for higher-order systems. If x1(t)
and x2(t) are solutions for x′ = Ax, then

c1x1(t) + c2x2(t)

is a solution for the system.

• The geometry for a system in R3 is more complicated than the planar
case. However, the solutions are usually characterized by stable lines or
stable planes.

3.8.5 Reading Questions
1. Is it possible for a 3 × 3 to have a line of stable solutions and a plane of

unstable solutions? Explain.

3.8.6 Exercises

Finding Solutions of 3 × 3 Systems. For each of the linear systems
dx/dt = Ax in Exercise Group 3.8.6.1–8

(a) Find the eigenvalues of A. You may find Sage useful.

(b) Find the eigenvectors for each eigenvalue of A.

(c) What is the general solution of dx/dt = Ax?

(d) Describe the nature of the nature of the solution space in R3. Are there
stable lines or planes?

1.

A =

 4 3 −1

−1 0 −1

1 1 2


2.

A =

−2 −3 4

4 5 −4

5 5 −3


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3.

A =

4 2 0

0 2 0

2 2 2


4.

A =

0 −2 −2

4 6 −1

6 6 −2


5.

A =

11 14 −9

−5 −8 7

4 4 2


6.

A =

11 13 −6

−6 −8 6

1 −2 4


7.

A =

 0 5 2

4 −10 −5

−6 21 10


8.

A =

 5 7 −1

−1 −3 1

6 6 −2


Solving Initial-Value Problems 3×3 Systems. Solve each of initial-value
problems in Exercise Group 3.8.6.9–16

9.

x′ = 4x+ 3y − z

y′ = −x− z

z′ = x+ y + 2z

x(0) = −1

y(0) = 1

z(0) = 0

10.

x′ = −2x− 3y + 4z

y′ = 4x+ 5y − 4z

z′ = 5x+ 5y − 3z

x(0) = 2

y(0) = −1

z(0) = −1

11.

x′ = 4x+ 2y

y′ = 2y

z′ = 2x+ 2y + 2z

x(0) = 1

y(0) = 1

z(0) = 1

12.

x′ = −2y − 2z

y′ = 4x+ 6y − z

z′ = 6x+ 6y − 2z

x(0) = 1

y(0) = 2

z(0) = 3

13.

x′ = 11x+ 14y − 9z

y′ = −5x− 8y + 7z

z′ = 4x+ 4y + 2z

x(0) = −1

y(0) = −2

z(0) = −3

14.

x′ = 11x+ 13y − 6z

y′ = −6x− 8y + 6z

z′ = x− 2y + 4z

x(0) = −2

y(0) = 2

z(0) = 0

15.

x′ = 5y + 2z

y′ = 4x− 10y − 5z

z′ = −6x+ 21y + 10z

x(0) = 1

y(0) = 1

z(0) = 3

16.

x′ = 5x+ 7y − z

y′ = −x− 3y + z

z′ = 6x+ 6y − 2z

x(0) = −1

y(0) = 0

z(0) = 2
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3.9 The Matrix Exponential

Objectives
• To understand that x(t) = etAx0 is the solution to the initial value

problem

x′ = Ax
x(0) = x0,

where etA is the matrix exponential.

• To understand that if λ be an eigenvalue of an n× n matrix A and v is
an eigenvector for λ, then etAv = eλtv.

• To understand and be able to apply the properties of the matrix expo-
nential to n× n matrices A and B.

• To understand and be able to use the matrix exponential to solve a linear
system

x′ = Ax
x(0) = x0.

Consider the linear system

x′ = −17x− 46y − 7z

y′ = 8x+ 21y + 3z

z′ = −7x− 15y − z

The matrix associated with this system is

A =

−17 −46 −7

8 21 3

−7 −15 −1

 .

The characteristic polynomial of A is

p(λ) = det(A− λI) = λ3 − 3λ2 + 3λ− 1 = (λ− 1)3

hence, there is only a single eigenvalue λ = 1. Moreover, we can only find a
single linearly independent eigenvector (1,−1, 4). Thus,

x(t) = ce−t

 1

−1

4


is a solution to our system. However, this is not the general solution to the
system. We can only solve initial value problems where the initial condition
lies on the line through the origin containing the vector (1,−1, 4). To construct
a general solution to our system, we will need two other linearly independent
solutions. One way of doing this is with the matrix exponential.
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3.9.1 The Exponential of a Matrix
Our goal is to construct a solution to the initial value problem

x′ = Ax
x(0) = x0,

where A is an n × n matrix. Recalling that the solution to the initial value
problem

x′ = kx

x(0) = x0

is x(t) = x0e
kt, we might guess that a solution to the initial value problem

x′ = Ax
x(0) = x0

has the form
x(t) = etAx0

if we can make sense of the expression etA.
We will define the exponential of A using the power series for et. Thus,

eA = I +A+
1

2!
A2 +

1

3!
A3 + · · · =

∞∑
k=0

1

k!
Ak,

where A is an n × n matrix, where A0 = I by convention. Each term makes
sense in our definition since each is an expression of n × n matrices; however,
there are some issues surrounding the convergence of the power series. A series,
even a series whose individual terms are matrix expressions, converges if and
only if its partial sums,

SN =

N∑
k=0

1

k!
Ak

converge. Although we shall not provide a proof, the matrix exponential eA
converges for all A.
Example 3.9.1 Let us compute the exponential of

A =

(
s 0

0 t

)
.

Actually, this is quite easy,

eA = I +A+
1

2!
A2 +

1

3!
A3 + · · ·

=

(
1 0

0 1

)
+

(
s 0

0 t

)
+

1

2!

(
s2 0

0 t2

)
+

1

3!

(
s3 0

0 t3

)
+ · · ·

=

(
1 + s+ s2/2! + s3/3! + · · · 0

0 1 + t+ t2/2! + t3/3! + · · ·

)
=

(
es 0

0 et

)
.

□
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Theorem 3.9.2 If A is an n× n matrix, then

d

dt
etA = AetA.

Proof. We simply need to differentiate

etA = I + tA+
t2

2!
A2 +

t3

3!
A3 + · · ·

term by term.a However,

d

dt
etA =

d

dt

(
I + tA+

t2

2!
A2 +

t3

3!
A3 + · · ·

)
= A+ tA2 +

t2

2!
A3 + · · ·

= A

(
I + tA+

t2

2!
A2 +

t3

3!
+ · · ·

)
= AetA.

■
aSince we are differentiating an infinite series, we still need to show that differentiating

term by term is something that can be done. We will, however, leave the details to a course
in advanced calculus.

Corollary 3.9.3 Let A be an n×n matrix. Then x(t) = etAx0 is the solution
to the initial value problem

x′ = Ax
x(0) = x0

Proof. The corollary follows immediately from Theorem 3.9.2. If x(t) = etAx0,
then

x′(t) =
d

dt

(
etAx0

)
=

d

dt

(
etA
)

x0 = AetAx0 = Ax(t).

■
Thus, solving linear systems is simply a matter of computing matrix ex-

ponentials. The problem is that matrix exponentials may not be so easy to
compute.
Example 3.9.4 The matrix

A =

(
4 4

−9 −8

)
has repeated eigenvalues λ = −2. If we try to compute etA, then

etA = I + tA+
t2

2!
A2 +

t3

3!
A3 + · · ·

=

(
1 0

0 1

)
+ t

(
4 4

−9 −8

)
+
t2

2!

(
4 4

−9 −8

)2

+
t3

3!

(
4 4

−9 −8

)3

+ · · ·

=

(
1 0

0 1

)
+ t

(
4 4

−9 −8

)
+
t2

2!

(
−20 −16

−36 28

)
+
t3

3!

(
64 48

−108 −80

)
+ · · ·

=

(
1 + t− 20t2/2! + 64t3/3! + · · · 4t− 16t2/2! + 48t3/3! + · · ·
−9t− 36t2/2!− 108t3/3! + · · · 1− 8t+ 28t2/2!− 80t3/3! + · · ·

)
.

It is not at all clear that this series converges to a matrix whose entries can be
expressed in terms of elementary functions. □
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Now let us see how we can use the matrix exponential to solve a linear
system as well as invent a more direct way to compute the matrix exponential.
Theorem 3.9.5 Let λ be an eigenvalue of an n × n matrix A. If v is an
eigenvector for λ, then etAv = eλtv.
Proof. Since v is an eigenvalue for λ, we know that Av = λv. Using math-
ematical induction, we can show that An has eigenvalue λn with associated
eigenvector v. Indeed,

Anv = A(An−1v) = A(λn−1v) = λn−1Av = λnv.

Hence,

etAv =

(
I + tA+

t2

2!
A2 +

t3

3!
A3 + · · ·

)
v

= v + tAv +
t2

2!
A2v +

t3

3!
A3v + · · ·

= v + tλv +
t2

2!
λ2v +

t3

3!
λ3v + · · ·

=

(
I + tλ+

t2

2!
λ2 +

t3

3!
λ3 + · · ·

)
v

= eλtv.

■
The matrix exponential shares several properties with the exponential func-

tion ex that we studied in calculus.
Theorem 3.9.6 Let A and B be n× n matrices. Then

1. AeA = eAA;

2. if AB = BA, then eAeB = eA+B;

3. eA has inverse e−A.
Proof. To prove (1), we can simply expand both sides of the equality in a
power series,

AeA = A

(
I +A+

1

2!
A2 +

1

3!
A3 + · · ·

)
= A+A2 +

1

2!
A3 +

1

3!
A4 + · · ·

=

(
I +A+

1

2!
A2 +

1

3!
A3 + · · ·

)
A

= eAA.

Proving (2) is a only bit more complicated if we notice that the binomial
expansion holds for matrices,

(A+B)n =

n∑
k=0

(
n

k

)
AkBn−k,

where (
n

k

)
=

n!

k!(n− k)!
,
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providing AB = BA.

eA+B =

∞∑
n=0

1

n!
(A+B)n

=

∞∑
n=0

1

n!

(
n∑

k=0

(
n

k

)
AkBn−k

)

=

∞∑
n=0

(
n∑

k=0

1

k!(n− k)!
AkBn−k

)

=

( ∞∑
n=0

1

n!
An

)( ∞∑
n=0

1

n!
Bn

)
= eAeB .

Simply expand each series out to see that this is true. Part (3) follows directly
from Part (2), since A and −A commute. ■

Example 3.9.7 Now let us compute etA once again for

A =

(
4 4

−9 −8

)
.

First notice that
A = λI + (A− λI).

Since the identity matrix I commutes with every matrix, we know that

etA = et(λI+(A−λI)) = etλIet(A−λI).

We also know that eλtI = eλtI by Example 3.9.1. Thus,

etA = et(λI+(A−λI)) = etλIet(A−λI) = eλtet(A−λI).

The matrix A has repeated eigenvalue λ = −2. Consequently,

A− λI = A+ 2I =

(
6 4

−9 −6

)
,

and (A− λI)2 is the zero matrix. Thus,

etA = eλtet(A−λI)

= eλt
(
I + t(A− λI) +

t2

2!
(A− λI)2 +

t2

3!
(A− λI)3 + · · ·

)
= e−2t

(
I + t(A+ 2I) +

t2

2!
(A+ 2I)2 +

t2

3!
(A+ 2I)3 + · · ·

)
= e−2t (I + t(A+ 2I))

= e−2t

(
1 + 6t 4t

−9t −6t

)
.

□
Our example suggests at the following proposition. We leave the proof of

this proposition as an exercise.
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Proposition 3.9.8 If A is an n × n matrix with a single eigenvalue λ, then
there exists a nonnegative integer k < n such that

etA = eλt
(
I + t(A− λI) +

t2

2!
(A− λI)2 + · · ·+ tk

k!
(A− λI)k

)
.

Example 3.9.9 We are now ready to return to our original system x′ = Ax,
where

A =

−17 −46 −7

8 21 3

−7 −15 −1

 .

This matrix has a single eigenvalue λ = 1. It is easy to show that the only
nonzero powers of A− λI = A− I are

(A+ I) =

−18 −46 −7

8 20 3

−7 −15 −2


(A+ I)2 =

 5 13 2

−5 −13 −2

20 52 8

 .

Therefore,

etA = et
(
I + t(A+ I) +

t2

2!
(A+ I)2

)

= et

1− 18t+ 5t2/2 −46t+ 13t2/2 −7t+ t2

8t− 5t2/2 1 + 20t− 13t2/2 3t− t2

−7t+ 10t2 −15t+ 26t2 1− 2t+ 4t2

 .

Now, to compute three linearly independent solutions for x′ = Ax, we simply
compute etAv for three linearly independent vectors. We will use the standard
basis vectors

e1 =

1

0

0

 , e2 =

0

1

0

 , e3 =

0

0

1

 .

Thus, the general solution to our system is

x(t) = c1e
−t

1− 18t+ 5t2/2

8t− 5t2/2

−7t+ 10t2

+ c2e
−t

 −46t+ 13t2/2

1 + 20t− 13t2/2

−15t+ 26t2


+ c3e

−t

 −7t+ t2

3t− t2

1− 2t+ 4t2

 .

□

3.9.2 Generalized Eigenvalues
Example 3.9.10 Consider the system x′ = Ax, where

A =

 7 −1 2

18 −2 6

−9 2 −1

 .
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The characteristic polynomial of A is

det(A− λI) = λ3 − 4λ2 + 5λ− 2 = (λ− 1)2(λ− 2).

The eigenvalue λ1 = 1 has eigenvector v1 = (2, 6,−3) and the eigenvalue λ2 = 2
has eigenvector v2 = (1, 3,−1). Thus, we can find two linearly independent
solutions in this case

x1(t) = et

 2

6

−3

 and x2(t) = e2t

 1

3

−1

 .

Since λ1 = 1 has multiplicity two and we can find only one linearly independent
eigenvector, it is not possible to apply Proposition 3.9.8 in this case.

If we consider the exponential

etAv = eλ1tet(A−λ1I)v

= eλ1t

(
v + t(A− λ1I)v +

t2

2!
(A− λ1I)

2v +
t2

3!
(A− λ1I)

3v + · · ·
)

where v,v1 and v2 are linearly independent, our goal is to choose v for which
the series truncates. That is, we must look for vectors v such that (A−λ1I)kv =
(A − I)kv = 0. If k = 1, then (A − λ1I)v = (A − I)v = 0, which means that
v is an eigenvector. Thus, v must be a multiple of v1 = (2, 6,−3) in this case.
Since we already know that the eigenspace associated with this eigenvector has
dimension one and is generated by v1, we must consider higher powers.

Since

(A− λI) = (A− I) =

 6 −1 2

18 −3 6

−9 2 −2

 ,

we have

(A− λI)2 = (A− I)2 =

0 1 2

0 3 6

0 −1 −2

 .

The nullspace of this matrix has dimension two. Certainly, v1 = (2, 6,−3) is
in the nullspace of (A− I)2, since it is the nullspace of A− I. We wish to find
a vector that is not a multiple of the vector v1 that is also in the nullspace of
(A− I)2. The vector v = (0, 2,−1) will do. Now our series truncates,

x3(t) = etAv
= eλ1tet(A−λ1I)v
= eλ1t (v + t(A− λ1I)v)

= eλ1t

 0

2

−1

+ t(A− I)

 0

2

−1


= et

 −4t

2− 12t

−1 + 6t


We now have a general solution for our system,

x(t) = c1e
t

 2

6

−3

+ c2e
2t

 1

3

−1

+ c3e
t

 −4t

2− 12t

−1 + 6t

 .

□

If λ is an eigenvalue of A and (A − λI)pv = 0 for some p ≥ 1, then v
is called a generalized eigenvector of A. When eigenvalues have algebraic
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multiplicity greater than one, we can compute extra solutions by looking for
vectors in the nullspace of (A− λI)p for p > 1. The following theorem tells us
that this is always possible. We leave the proof of the theorem as an exercise
in linear algebra.
Theorem 3.9.11 Suppose that λ is an eigenvalue of A with multiplicity q.
Then there exists an integer p ≤ q such that the dimension of the nullspace of
(A− λI)p is q.

We now have a procedure for finding q linearly independent solutions cor-
responding to an eigenvalue λ of multiplicity q.

1. Find the smallest integer p such that the nullspace of (A − λI)p has
dimension q.

2. Find a basis {v1, . . . ,vq} for the nullspace of (A− λI)p.

3. For each vj (j = 1, 2, . . . , q), we have the solution

xj(t) = etAvj

= eλt
(

vj + t(A− λI)vj + · · ·+ tp−1

(p− 1)!
(A− λI)p−1vj .

)
.

This procedure works for complex eigenvalues as well as real. If λ = α + iβ
has eigenvector z = x + iy, then set x = Re z and y = Im z.
Activity 3.9.1 Solving Systems Using the Matrix Exponential. Con-
sider the system dx/dt = Ax, where

A =

−12 26 −1

−8 17 0

3 −5 4


(a) Find the eigenvalue, λ of A (there is only one).

(b) Find eigenvectors, v for the eigenvalue λ.

(c) Compute A− λI, (A− λI)2, . . ..

(d) Compute etA as in Example 3.9.9.

(e) Find the general solution to dx/dt = Ax.

3.9.3 Important Lessons
• If A is an n× n matrix, we define the exponential of A to be

eA = I +A+
1

2!
A2 +

1

3!
A3 + · · · =

∞∑
k=0

1

k!
Ak.

• If A is an n× n matrix, then
d

dt
etA = AetA.

• Let A be an n×n matrix. Then x(t) = etAx0 is the solution to the initial
value problem

x′ = Ax
x(0) = x0
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• Let λ be an eigenvalue of an n× n matrix A. If v is an eigenvector for λ,
then etAv = eλtv.

• Let A and B be n× n matrices. Then

◦ AeA = eAA;
◦ if AB = BA, then eAeB = eA+B ;
◦ eA is nonsingular with inverse e−A.

• If A is an n × n matrix with a single eigenvalue λ, then there exists
nonnegative integer k < n such that

etA = eλt
(
I + t(A− λI) +

t2

2!
(A− λI)2 + · · ·+ tk

k!
(A− λI)k

)
.

• Suppose that λ is an eigenvalue ofA with multiplicity q. Then there exists
an integer p ≤ q such that the dimension of the nullspace of (A− λI)p is
q.

• The procedure for finding q linearly independent solutions corresponding
to an eigenvalue λ of multiplicity q is the following.

◦ Find the smallest integer p such that the nullspace of (A−λI)p has
dimension q.

◦ Find a basis {v1, . . . ,vq} for the nullspace of (A− λI)p.
◦ For each vj (j = 1, 2, . . . , q), we have the solution

xj(t) = etAvj

= eλt
(

vj + t(A− λI)vj + · · ·+ tp−1

(p− 1)!
(A− λI)p−1vj .

)
.

The procedure works for complex eigenvalues as well as real. If λ = α+iβ
has eigenvector z, then set x = Re z and y = Im z.

3.9.4 Reading Questions
1. What is the exponential of a matrix A?
2. Explain what a generalized eigenvector for a matrix A is.

3.9.5 Exercises

Finding Solutions Using the Matrix Exponential. For each of the
linear systems dx/dt = Ax in Exercise Group 3.9.5.1–8

(a) Find the eigenvalues of A. You may find Sage useful.

(b) Find the eigenvectors for each eigenvalue of A.

(c) Compute A− λI, (A− λI)2, . . ..

(d) Compute etA

(e) Find the general solution to dx/dt = Ax.
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1.
A =

(
3 1

−4 −1

) 2.
A =

(
−1 1

−4 −5

)
3.

A =

(
7 1

−4 3

) 4.
A =

(
−2 1

−4 −6

)
5.

A =

 −5 3 −2

−10 6 −3

2 −1 2


6.

A =

 −8 3 −2

−10 3 −3

2 −1 −1


7.

A =

 −3 3 −2

−10 8 −3

2 4 4


8.

A =

−10 3 −2

−10 1 −3

2 −1 −3


Solving Initial-value Problems. Solve each of initial-value problems in
Exercise Group 3.9.5.9–16

9.

x′ = 3x+ y

y′ = −4x− y

x(0) = −1

y(0) = 1

10.

x′ = −x+ y

y′ = −4x− 5y

x(0) = 2

y(0) = −1

11.

x′ = 7x+ y

y′ = −4x+ 3y

x(0) = 1

y(0) = 1

12.

x′ = −2x+ y

y′ = −4x− 6y

x(0) = 1

y(0) = 2

13.

x′ = −5x+ 3y − 2z

y′ = −10x+ 6y − 3z

z′ = 2x− y + 2z

x(0) = −1

y(0) = −2

z(0) = −3

14.

x′ = −8x+ 3y − 2z

y′ = −10x+ 3y − 3z

z′ = 2x− y − z

x(0) = −2

y(0) = 2

z(0) = 0

15.

x′ = −3x+ 3y − 2z

y′ = −10x+ 8y − 3z

z′ = 2x+ 4y + 4z

x(0) = 1

y(0) = 1

z(0) = 3

16.

x′ = −10x+ 3y − 2z

y′ = −10x+ y − 3z

z′ = 2x− y − 3z

x(0) = −1

y(0) = 0

z(0) = 2

17. Prove Proposition 3.9.8.
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3.10 Projects Systems of Linear Differential Equa-
tions
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Project 3.10.1 Project—Parameter Space Analysis. This project is
about classifying all of the possible behaviors for a system of linear differen-
tial equations. Consider the family of systems of linear differential equations,
dx/dt = Ax, where

The goal of this project is to produce a picture of how the values of a, b, and
c affect the behavior of solutions to your system of differential equations. This
means that you will need to precisely describe each possible region of abc-space
and the corresponding types of behaviors in that region (spiral, sink, repeated
eigenvalue, etc.). Representing these regions in three dimensional space can
be difficult, so start early on this project and be creative in your creations.
Your report should address the following questions at a minimum (but you will
likely need to explore more than just these questions to fully understand your
parameter space).

You might want to consider a strategy similar to the following.
1. First examine the case when a = 0. You should compute the eigenvalues

for this case and determine how the behavior of solutions to your system
depend on b and c. Be sure to think about what is happening on the
boundary between different regions and specify what is happening to
solutions for each case. You may want to draw example phase planes
for each of the regions. You should have a clear, accurate, and complete
picture of the bc-space in terms of these behaviors.

2. You should now do the same analysis for the case a = 1 as you did for
a = 0.

3. Describe the behavior of your system when 0 < a < 1 and be specific
about what is changing.

4. Completely describe what behaviors occur when a = −1.

5. You should now use the cases from your previous parts to help make a
general picture. You need to draw the three dimensional parameter space
showing all of the possible behaviors in the system and identify which
regions (in terms of a, b, and c) exhibit which behaviors. Be creative in
your display of this information. You may even want ot build a physical
model to display your findings.

(a) Describe the parameter space for dx/dt = Ax, where

A =

(
a c

b a

)
.

(b) Describe the parameter space for dx/dt = Ax, where

A =

(
a b

c 0

)
.

(c) Describe the parameter space for dx/dt = Ax, where

A =

(
a c

1 b

)
.



Chapter 4

Second-Order Linear Equa-
tions

4.1 Homogeneous Linear Equations

Objectives
• To understand that a second-order linear differential equation with con-

stant coefficients is an equation of the form

ax′′ + bx′ + cx = 0.

and can be solved by examining the roots of the characteristic polynomial
ar2 + br + c = 0.

• To understand that simple harmonic oscillator can be modeled by the
equation

m
d2x

dt2
+ b

dx

dt
+ kx = 0,

where m > 0, k > 0, and b ≥ 0.

A differential equation of the form

a(t)x′′ + b(t)x′ + c(t)x = g(t)

is called a second-order linear differential equation. We will first consider
the case

ax′′ + bx′ + cx = 0,

where a, b, and c are constants and a ̸= 0. An equation of this form is said
to be homogeneous with constant coefficients. We already know how to
solve such equations since we can rewrite them as a system of first-order linear
equations. Thus, we can find the general solution of a homogeneous second-
order linear differential equation with constant coefficients by computing the
eigenvalues and eigenvectors of the matrix of the corresponding system.

4.1.1 RLC Circuits
Recall the RC circuits that we studied earlier (see Section 1.3). Such circuits
contained a voltage source, a capacitor, and a resistor. A battery or generator
is an example of a voltage source, and a toaster or an electric stove is an

233
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example of something that might provide a resistance in a circuit. Capacitors
store an electrical charge and are used in electronic flashes for cameras. We
will now add an inductor such as a solenoid, a coil that generates a magnetic
field. Inductor applications include transformers, power supplies, televisions,
and radios. Our new circuit is called an RLC circuit (Figure 4.1.1).

E(t)

+

−

R

L

C

I(t)

Figure 4.1.1 An RLC Circuit
Current, I(t), is the rate at which a charge flows through this circuit and

is measured in amperes or amps. We assign a direction to the current, and
a current flowing in the opposite direction will be given negative values. The
impressed voltage, E(t), is measured in volts, the resistance R is measured
in ohms, and the capacitance C is measured in farads. The charge on the
capacitor Q(t) at time t is measured in coulombs. Inductance on the coil, L,
is measured in henrys.

The following laws from physics govern how our circuit behaves.

• I =
dQ

dt
.

• The voltage drop across a resistor is IR (Ohm’s Law).

• The voltage drop across a capacitor is Q/C.

• The voltage drop across an inductor is L(dI/dt).

• In a closed circuit the impressed voltage is equal to the sum of the voltage
drops in the rest of the circuit (Kirchhoff’s Second Law).

Applying Kirchhoff’s Second Law to our circuit, we have the differential equa-
tion

L
dI

dt
+RI +

1

C
Q = E(t) (4.1.1)

or
LQ′′ +RQ′ +

1

C
Q = E(t).

Differentiating both sides of (4.1.1), we have

LI ′′ +RI ′ +
1

C
I = E′(t).
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For example, we might consider an RLC circuit with R = 1, L = 1, and
C = 1. At t = 0 when both I(0) = 0 and I ′(0) = Q(0) = 0, the impressed
voltage on the circuit is given by E(t) = sin(t). Our equation becomes

I ′′ + I ′ + I = E′(t) = cos t.

This is an example of a second-order linear differential equation.

4.1.2 Second-Order Linear Equations
Suppose that we have a homogeneous second-order linear differential equation
with constant coefficients,

ax′′ + bx′ + cx = 0. (4.1.2)

The goal of this section is to be able to solve all such equations. However, we did
a great deal of work finding unique solutions to systems of first-order linear
systems equations in Chapter 3. Our efforts are now rewarded. Since each
second-order homogeneous system with constant coefficients can be rewritten
as a first-order linear system, we are guaranteed the existence and uniqueness
of solutions. Indeed, we can rewrite (4.1.2) as a system of first-order linear
equations,

x′ = y

y′ = − c

a
x− b

a
y,

and then find the general solution by computing the eigenvalues and eigenvec-
tors of the matrix of the corresponding system.

Example 4.1.2 Solutions of a linear system x′ = Ax often include terms of
the form ert. It makes sense that solutions to equation (4.1.2) take the same
form. Consider the equation

x′′ + 3x′ − 10x = 0. (4.1.3)

If we assume that a solution is of the form ert, we can substitute this expression
into the left-hand side of (4.1.3) to obtain

d2

dt2
ert +

d

dt
3ert − 10ert = r2ert + 3rert − 10ert

= (r2 + 3r − 10)ert

= (r + 5)(r − 2)ert.

Since ert is never zero, we find that (r + 5)(r − 2) = 0 or r = −5 or 2. Thus,
we have two solutions

x1(t) = e−5t and x2(t) = e2t.

By the Principle of Superposition,

x(t) = c1x1(t) + c2x2(t) = c1e
−5t + c2e

2t (4.1.4)

is a solution to x′′ + 3x′ − 10x = 0.
Indeed, this is the general solution of our second-order equation since we

have a one-to-one correspondence between the solutions of

x′′ + 3x′ − 10x = 0
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and the system

x′ = y

y′ = 10x− 3y.

The matrix associated with this system

A =

(
0 1

10 −3

)
has characteristic polynomial λ2 + 3λ − 10. The eigenvalues of A are λ1 =
−5 and λ2 = 2 with eigenvectors v1 = (1,−5) and v2 = (1, 2), respectively.
Consequently, the solution to our system is(

x(t)

y(t)

)
= c1e

−5t

(
1

−5

)
+ c2e

2t

(
1

2

)
,

which agrees with (4.1.4). □
In general, suppose that

ax′′ + bx′ + cx = 0,

where a ̸= 0. Applying the strategy in Example 4.1.2, we can find the general
solution for this equation by finding the roots of the quadratic polynomial
aλ2 + bλ+ c,

λ = −−b±
√
b2 − 4ac

2a
.

If b2 − 4ac > 0, we have real roots

λ1 =
−b+

√
b2 − 4ac

2a
and λ2 =

−b−
√
b2 − 4ac

2a
,

and the solution to our second-order differential equation is

x(t) = c1e
λ1t + c2e

λ2t, (4.1.5)

where c1 and c2 are arbitrary constants.
To prove that equation (4.1.5) is indeed the general solution to the second-

order equation ax′′+bx′+cx = 0, we can study the equivalent system of linear
equations. If we let y = x′, the corresponding linear system is x′ = Ax, where

A =

(
0 1

−c/a −b/a

)
.

The characteristic polynomial of A is

p(λ) = det(A− λI) = λ2 +
b

a
λ+

c

a
.

The roots of p(λ) are the same as the roots of aλ2 + bλ+ c.
If b2 − 4ac > 0, we have real roots

λ1 =
−b+

√
b2 − 4ac

2a
and λ2 =

−b−
√
b2 − 4ac

2a
.

We can find eigenvectors

v1 =

(
1

(−b+
√
b2 − 4ac )/2a

)
=

(
1

λ1

)
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v1 =

(
1

(−b−
√
b2 − 4ac )/2a

)
=

(
1

λ2

)
for λ1 and λ2, respectively. Thus, the general solution to the system of differ-
ential equations x′ = Ax is

x(t) =
(
x(t)

y(t)

)
=

(
x(t)

x′(t)

)
= c1e

λ1t

(
1

λ1

)
+ c2e

λ2t

(
1

λ2

)
,

which agrees with (4.1.5).

Example 4.1.3 Now let us solve the initial value problem

x′′ + 4x′ + 5x = 0

x(0) = 1

x′(0) = 1.

Again, we will assume that our solution has the form x(t) = ert. Substituting
this function into our differential equation, we find that

0 = x′′ + 4x′ + 5x = r2ert + 4rert + 5ert = (r2 + 4r + 5)ert.

As in Example 4.1.2, r2+4r+5 = 0; however, the roots of this polynomial are
complex,

r =
−4±

√
−4

2
= −2± i.

Using Euler’s formula, we can find a complex solution

x(t) = e(−2+i)t = e−2teit = e−2t(cos t+ i sin t).

The real and imaginary parts of our solution are

x1(t) = e−2t cos t
x2(t) = e−2t sin t,

respectively. We claim that both x1(t) and x2(t) are solutions to our differential
equation. Indeed, since x(t) = x1(t) + ix2(t) is a solution,

0 = ax′′ + bx′ + cx

= a(x1 + ix2)
′′ + b(x1 + ix2)

′ + c(x1 + ix2)

= (ax′′1 + bx′1 + cx1) + i(ax′′2 + bx′2 + cx2).

Since the real part and the imaginary part of x(t) must both be zero, we can
conclude that ax′′1 + bx′1 + cx1 = 0 and ax′′2 + bx′2 + cx2 = 0. Therefore, the
general solution to our equation is

x(t) = c1e
−2t cos t+ c2e

−2t sin t.

To apply our initial conditions x(0) = 1 and x′(0) = 1, we first calculate

x′(t) = −2e−2t(c1 cos t+ c2 sin t) + e−2t(−c1 sin t+ c2 cos t).

Thus,

1 = x(0) = c1

1 = x′(0) = −2c1 + c2,

and c1 = 1 and c2 = 3. Hence, the solution to our initial value problem is

x(t) = e−2t cos t+ 3e−2t sin t.

□
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As before, the corresponding linear sytem is x′ = Ax, where

A =

(
0 1

−c/a −b/a

)
.

If b2 − 4ac < 0, the eigenvalue of A are λ = α+ iβ and λ = α− iβ, where

α = − b

2a
and β =

√
4ac− b2

2a
.

The vector v = (1, α + iβ) is an eigenvector for λ. Thus, a solution to our
system of differential equations is

x(t) =
(
x(t)

y(t)

)
=

(
x(t)

x′(t)

)
= e(α+iβ)t

(
1

α+ iβ

)
= eαt(cosβt+ i sinβt)

(
1

α+ iβ

)
= eαt

(
cosβt

α cosβt− β sinβt

)
+ ieαt

(
sinβt

α sinβt+ β cosβt

)
.

Taking the real and imaginary parts of x(t), we obtain two real solutions to
the system, x1(t) = eαt cosβt and x2(t) = eαt sinβt. Therefore, the general
solution to ax′′1 + bx′1 + cx1 = 0 is

x(t) = c1e
αt cosβt+ c2e

αt sinβt.

Given a second-order linear differential equation with constant coefficients,
ax′′+bx′+cx = 0, our strategy has been to solve the characteristic equation
aλ2+bλ+c = 0 to obtain two linearly independent solutions. We have covered
the case where this equation has two distinct real solutions as well as when
there are complex solutions, but what if there is only a single real solution
λ = −b/2a?

Example 4.1.4 Consider the equation

x′′ + 2x′ + x = 0.

If we choose eλt as our guess, we find

x′′ + 2x′ + x = λ2eλt + 2λeλt + eλt

= eλt(λ+ 1)2

= 0.

Thus, λ = −1 and we have a solution x1(t) = e−t.
In order to find a general solution to x′′ + 2x′ + x = 0, we must find a

second solution that is not a multiple of x1(t) = e−t. Since we already know
that cx1(t) is a solution to our differential equation, we will try to generalize
this observation by replacing c with a nonconstant function v(t) and then try
to determine v(t) so that v(t)x1(t) is a solution to x′′ +2x′ + x = 0. Indeed, if

x(t) = v(t)x1(t) = v(t)e−t,
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then
x′(t) = v(t)x′1(t) + v′(t)x1(t) = −v(t)e−t + v′(t)e−t

and

x′′(t) = v′′(t)x1(t) + 2v′(t)x′1(t) + v(t)x′′1(t)

= v′′(t)e−t − 2v′(t)e−t + v(t)e−t.

Consequently,

x′′ + 2x′ + x = [v′′e−t − 2v′e−t + ve−t] + 2[−ve−t + v′e−t] + [ve−t]

= e−tv′′

= 0,

and v′′ = 0. Therefore, v = c1t+ c2. Letting c1 = 1 and c2 = 0, we can assume
that v(t) = t, and the second solution to our equation is x = te−t. Hence, the
general solution to x′′ + 2x′ + x = 0 is

x(t) = c1e
−t + c2te

−t.

We leave it as an exercise to show that our solution agrees with the solution
that we would obtain from solving the equivalent first-order linear system. □

The technique that we have used in Example 4.1.4 is called reduction of
order. We leave it as an exercise to show that this technique works in general.
That is, given a second-order linear differential equation

ax′′ + bx′ + cx = 0

such that b2 − 4ac = 0, then the general solution is given by

x(t) = c1e
λt + c2te

λt,

where λ = −b/2a.

Activity 4.1.1 Solving Second-Order Homogeneous Linear Differen-
tial Equations. Solve each of the following initial value problems.
(a)

x′′ − 5x′ − 14x = 0

x(0) = 0

x′(0) = 2.

(b)

6x′′ − 11x′ + 3x = 0

x(0) = 0

x′(0) = 2.

(c)

x′′ − 14x′ + 53x = 0

x(0) = 1

x′(0) = 1.

(d)

4x′′ − 20x′ + 41x = 0
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x(0) = 0

x′(0) = 1.

(e)

x′′ − 14x′ + 49x = 0

x(0) = 1

x′(0) = 0.

4.1.3 Classifying Harmonic Oscillators
Recall from Subsection 1.1.3 that we can model harmonic motion using the
equation

m
d2x

dt2
+ b

dx

dt
+ kx = 0.

In the case of a spring-mass system, m is the oscillating mass, b is the damping
coefficient, and k is the spring constant. It is important to remember that both
m and k are positive constants and b ≥ 0.

If b = 0, then the oscillator is undamped In this case,

m
d2x

dt2
+ kx = 0. (4.1.6)

The characteristic equation is

mλ2 + k = 0,

and we have eigenvalues λ = ±i
√
k/m. Hence, the complex solution to our

undamped oscillator is
eiωt = cosωt+ i sinωt,

where ω =
√
k/m. Since both the real and imaginary parts of the complex

solution are also solutions to (4.1.6), the general solution to the undamped
harmonic oscillator is

x(t) = c1 cosωt+ c2 sinωt,

giving us the position of the mass at time t. Now, of course, it is easy to
determine the velocity of the mass at time t to be

v(t) = x′(t) = −c1ω sinωt+ c2ω cosωt.

Example 4.1.5 Suppose that an undamped harmonic oscillator is modeled by
the initial value problem

d2x

dt2
+ 9x = 0

x(0) = 2

x′(0) = 1.

We can quickly determine the solution of this initial value problem to be

x(t) = 2 cos 3t+ 1

3
sin 3t

v(t) = cos 3t− 6 sin 3t,

where v(t) = x′(t) is the velocity of the oscillator (Figure 4.1.6). Examining
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the phase plane of the undamped oscillator, we find that the period of the
oscillations is given by 2π/ω = 2π/3 ≈ 2.094 (Figure 4.1.7).
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Figure 4.1.6 Position and velocity of an undamped harmonic oscillator
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Figure 4.1.7 The phase plane of an undamped harmonic oscillator
□

If we add damping to the oscillator, the equation becomes

m
d2x

dt2
+ b

dx

dt
+ kx = 0. (4.1.7)

where b > 0. The charactersitic equation of (4.1.7) is

mλ2 + bλ+ k = 0,

which has roots
λ =

−b±
√
b2 − 4mk

2m
. (4.1.8)

There are three possible types of types of motion for the oscillator depending
on the nature of the roots of (4.1.8).

• If the damping value of b is small when compared to 4mk, then b2−4mk <
0 and the roots of (4.1.8) will be complex. Furthermore, the real part of
each root, −b/2m, is always negative. In such a situation, we say that
the oscillator is under-damped.
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• If the damping value of b is large , then b2 − 4mk > 0, and we obtain
distinct real negative roots for (4.1.8). The oscillator is over-damped.

• Finally, we say that the oscillator is critically-damped if b2− 4mk = 0.
Example 4.1.8 An Under-Damped Oscillator. Suppose that an oscillator
is modeled by the initial value problem

d2x

dt2
+ 0.4

dx

dt
+ 1.04x = 0

x(0) = 0

x′(0) = 1.

Notice that the damping b = 0.4 is very small compared with the spring con-
stant k = 1.04. The characteristic equation of the differential equation is
λ2 + 0.4λ + 1.04 = 0, which has roots λ = −0.2 ± i. Therefore, the complex
solution must be

x(t) = e(−0.2±i)t = e−0.2t(cos t+ i sin t),

and the general solution must be

x(t) = c1e
−0.2t cos t+ c2e

−0.2t sin t.

Applying the initial conditions, our solution becomes

x(t) = e−0.2t sin t
v(t) = x′(t) = e−0.2t(cos t− 0.2 sin t).

Notice that the period of the oscillations, 2π/ω = 2π ≈ 6.283, does not change;
however, the amplitude slowly decreases (Figure 4.1.9 and Figure 4.1.10).
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Figure 4.1.9 Position and velocity of an under-damped harmonic oscillator
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Figure 4.1.10 The phase plane of an under-damped harmonic oscillator
□

Example 4.1.11 An Over-Damped Oscillator. We can expect a different
type of behavior in the case of an over-damped oscillator. For example,

d2x

dt2
+ 4

dx

dt
+ 3x = 0

x(0) = 0

x′(0) = 1.

The characteristic equation of this initial value problem is

λ2 + 4λ+ 3 = (λ+ 3)(λ+ 1) = 0;

hence, we have the general solution

x(t) = c1e
−t + c2e

−3t.

Applying the initial conditions, our solution is

x(t) = x(t) =
1

2
e−t − 1

2
e−3t

v(t) = x′(t) = −1

2
e−t +

3

2
e−3t.

Notice that the damping is too strong for any oscillations to occur (Figure 4.1.12
and Figure 4.1.13).
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Figure 4.1.12 Position and velocity of an over-damped harmonic oscillator
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Figure 4.1.13 The phase plane of an over-damped harmonic oscillator
□

Example 4.1.14 A Critically-Damped Oscillator. As we increase the
damping, the oscillations will cease to occur for some value of b. This will
happen when b2 − 4mk = 0. the At this point we have critical damping.
Consider the system

d2x

dt2
+ 4

dx

dt
+ 4x = 0

x(0) = 0

x′(0) = 1.

The general solution to this initial value problem is

x(t) = c1e
−2t + c2te

−2t.

The solution to the initial value problem is

x(t) = x(t) = te−2t

v(t) = x′(t) = (1− 2t)e−2t.

Although we see that no oscillations for this oscillator (Figure 4.1.15 and Fig-
ure 4.1.16), oscillations will commence as soon as we start to reduce the damp-
ing constant b = 4.
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Figure 4.1.15 Position and velocity of a critically damped harmonic oscillator
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Figure 4.1.16 The phase plane of a critically damped harmonic oscillator
□

4.1.4 Important Lessons
• A second-order linear differential equation with constant coefficients is

an equation of the form

ax′′ + bx′ + cx = 0.

We can guess the solution to this equation. Since we can rewrite this
equation as a system of first-order linear differential equations, we can
determine the general solution to ax′′ + bx′ + cx = 0.

• Suppose that
ax′′ + bx′ + cx = 0,

where a ̸= 0 and b2 − 4ac > 0. If the roots of ar2 + br + c are r1 and r2,
the general solution to this differential equation is

x(t) = c1e
r1t + c2e

r2t.

• If b2 − 4ac < 0, the differential equation

ax′′ + bx′ + cx = 0

has a general solution

x(t) = c1e
αt cosβt+ c2e

αt sinβt,

where α± iβ are the roots of ar2 + br + c = 0.
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• If b2 − 4ac = 0, the differential equation

ax′′ + bx′ + cx = 0

has a general solution

x(t) = c1e
−bt/2a + c2te

−bt/2a.

• A simple harmonic oscillator can be modeled by the equation

m
d2x

dt2
+ b

dx

dt
+ kx = 0,

where m > 0, k > 0, and b ≥ 0. There are three possible types of motion
for the oscillator depending on the sign of b2 − 4mk.

◦ If b2 − 4mk < 0, the oscillator is under-damped.
◦ If b2 − 4mk > 0, the oscillator is over-damped.
◦ If b2 − 4mk = 0, the oscillator is critically damped.

4.1.5 Reading Questions
1. What is the characteristic equation of ax′′ + bx′ + cx = 0?
2. Describe the possible types of damping of a harmonic oscillator?

4.1.6 Exercises

Finding General Solutions. Find the general solution for each equation
in Exercise Group 4.1.6.1–10.

1. d2y

dx2
− y = 0

2. x′′ − 2x′ − 8x = 0

3. y′′ + 5y = 0
4. d2x

dt2
+ 6

dx

dt
+ 5x = 0

5. x′′ − 10x′ + 25x = 0
6. d2y

dx2
− 2

dy

dx
+ 4y = 0

7. y′′ − 8y′ + 4y = 0
8. d2x

dx2
+ 3

dx

dt
− 10x = 0

9. d2Q

dt2
− 4

dQ

dt
+ 9Q = 0 10. d2y

dt2
+ 6

dy

dt
+ 9y = 0

Solving Initial Value Problems. Solve the initial value problems in Exer-
cise Group 4.1.6.11–20.

11. d2y

dx2
− y = 0, y(0) = 1, y′(0) = 0

12. x′′ − 2x′ − 8x = 0, x(0) = 1, x′(0) = 2

13. y′′ + 5y = 0, y(0) = 1, y′(0) = 1

14. d2x

dt2
+ 6

dx

dt
+ 5x = 0, x(0) = 2, x′(0) = −1

15. x′′ − 10x′ + 25x = 0, x(0) = 1, x′(0) = 0

16. d2y

dx2
− 2

dy

dx
+ 4y = 0, x(0) = −1, x′(0) = 1
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17. y′′ − 8y′ + 4y = 0, y(0) = 1, y′(0) = −2

18. d2x

dx2
+ 3

dx

dt
− 10x = 0, x(0) = 1, x′(0) = 2

19. d2Q

dt2
− 4

dQ

dt
+ 9Q = 0, Q(0) = −1, Q′(0) = 2

20. d2y

dt2
+ 6

dy

dt
+ 9y = 0, y(0) = 0, y′(0) = 0

Harmonic Oscillators. Consider the harmonic oscillators with mass m,
damping coeeficient b, and spring constant k in Exercise Group 4.1.6.21–28.

(a) Write the second-order initial value problem corresponding for the har-
monic oscillator.

(b) Classify the oscillator as undamped, under-damped, over-damped, or crit-
ically damped.

(c) Solve the initial value problem.

(d) Sketch the x(t) and v(t)-graphs of the solution of the initial value prob-
lem.

(e) Sketch the phase portrait of the initial value problem.
21. m = 1, b = 1 k = 1, x(0) = 1, v(0) = 0

22. m = 1, b = 2 k = 3, x(0) = −3, v(0) = 4

23. m = 1, b = 5 k = 3, x(0) = 2, v(0) = −3

24. m = 1, b = 0 k = 25, x(0) = 2, v(0) = 0

25. m = 2, b = 3 k = 5, x(0) = 2, v(0) = −1

26. m = 4, b = 4 k = 1, x(0) = 2, v(0) = 1

27. m = 3, b = 4 k = 1, x(0) = 2, v(0) = 1

28. m = 8, b = 4 k = 1, x(0) = 2, v(0) = 1

Oscillations of a Hanging Mass. In Exercise Group 4.1.6.29–31, we
will consider the motion of a mass m hanging at the end of a vertical spring
as in Figure 4.1.17. The mass stretches the spring in a downward (positive)
direction by length L. There are two forces acting on the point where the mass
is attached to the spring—the force exerted by the spring and gravity. The
force of gravity, the weight of the mass, acts downward with a magnitude of
mg, where g is the acceleration due to gravity. On the other hand, the force
of the spring acts upward and is given by −kL, where L is the length of the
spring.1 When the mass is hanging in equilibrium the force of gravity and the
force of the spring balance each other out; that is,

mg − kL = 0.

1This is commonly known as Hooke’s law. See Subsection 1.1.3.
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mass m

mass m

length ℓ

L

x

ℓ+ L+ x

Figure 4.1.17 A spring-mass system
We would like to investigate the motion of the mass if is initially displaced

or acted on by an external force. Let x(t) be the displacement of the mass
from its equilibrium position, where a downward displacement is positive. The
force acting on the mass are the weight of the mass mg and the force exerted
by the spring, which is the total elongation of the spring, or

−k(L+ x).

By Newton’s second law of motion,

mx′′ = mg − k(L+ x).

Furthermore, it is possible to add a damping term, bx′, or even an external
force F (t) to obtain

mx′′ = mg − k(L+ x) + bx′ + F (t).

Since mg − kL = 0, we obtain the familiar equation

mx′′ + bx′ + kx = F (t).

29. Suppose that a mass of 100 grams stretches a spring 2 centimeters.
(a) Determine the spring constant k.

(b) If the mass is displaced an additional 4 centimeters and released,
write an initial value problem that will model the motion of the
oscillating mass.

(c) Solve the initial value problem.
30. Suppose that a mass of 1 kilogram stretches a spring 5 centimeters.

(a) Determine the spring constant k.

(b) If the mass is displaced an additional 5 centimeters and released,
write an initial value problem that will model the motion of the
oscillating mass.

(c) Suppose the the spring-mass system is suspended in a fluid that
exerts a resistance of 0.25 kilograms when the mass has a velocity
of 2 centimeters per second. Modify the intial-value problem
that you wrote in (b) to take this fact into account.

(d) Solve the initial value problem.
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31. Suppose that a mass weighing 4 lbs stretches a spring 3 inches.
(a) If g = 32ft/sec2, determine m.

(b) Determine the spring constant k.

(c) If the mass is displaced an additional 6 inches and released, write
an initial value problem that will model the motion of the oscil-
lating mass.

(d) Solve the initial value problem.

Hint. Pay careful attention to units.
32. Let ax′′ + bx′ + cx = 0, where a ̸= 0 and b2 − 4ac = 0.

(a) Show that x1(t) = e−bt/2a is a solution to ax′′ + bx′ + cx = 0.

(b) Assume that
y = v(t)x1(t) = v(t)e−bt/2a

is a solution to ax′′ + bx′ + cx = 0 and show that v(t) = c1 + c2t.
Thus,

x(t) = c1e
−bt/2a + c2te

−bt/2a

is a general solution for ax′′ + bx′ + cx = 0.

Hint.

(a) Observe that

ax′′1 + b′1 + cx1 = a

(
−b
2a

)2

e−bt/2a + b

(
−b
2a

)
e−bt/2a + ce−bt/2a

= e−bt/2a

(
b2

4a
− b2

2a
+ c

)
= e−bt/2a

(
−b2 + 4ac

4a

)
= 0.

(b) If y = v(t)x1(t) = v(t)e−bt/2a is a solution to our differential equa-
tion, then

ay′′ + by′ + cy = a(v′′x1 + 2v′x′1 + vx′′1) + b(v′x1 + vx′1) + cvx1

= av′′x1 + 2av′x′1 + bv′x1 + v(ax′′1 + bx′1 + cx1)

= av′′e−bt/2a +

[
2a

(
−b
2a

)
e−bt/2a + be−bt/2a

]
v′

= av′′e−bt/2a

= 0.

Since a ̸= 0, we know that v′′ = 0. Hence, v(t) = c1 + c2t.
33. Reduction of Order. Suppose that x1(t) is a solution (not identically zero)

to the equation
x′′ + p(t)x′ + q(t)x = 0.

(a) Assume that x(t) = v(t)x1(t) is a solution to x′′+ p(t)x′+ q(t)x = 0
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and derive the equation

x1v
′′ + (2x′1 + px1)v

′ = 0. (4.1.9)

(b) Let u = v′ and show that (4.1.9) is a first-order linear differential
equation in u.

(c) Show that x1(t) = 1/t is a solution to

2t2x′′ + 3tx′ − x = 0 (4.1.10)

for t > 0 and find a second linearly independent solution to (4.1.10).

Hint.

(a)

x′′ + px′ + qx = (v′′x1 + 2v′x′1 + vx′′1) + p(v′x1 + vx′1) + q(vx1)

= x1v
′′ + 2v′x′1 + px1v

′ + v(x′′1 + px′1 + qx1)

= x1v
′′ + (2x′1 + px1)v

′

= 0.

(b) If u = v′, then x1u
′ + (2x′1 + px1)u = 0.

(c) If x1(t) = 1/t, then

2t2x′′1 + 3tx′1 − x1 = 2t2
(

2

t3

)
+ 3t

(
−1

t2

)
− 1

t
= 0.

If we assume that x = v/t is a second solution, then

2t2x′′ + 3tx′ − x = 2tv′′ − v′ = 0.

If we let u = v′, then a solution of 2tu′ − u = 0 is u =
√
t and v =∫ √

t dt = 2t3/2/3. Therefore, the second solution to our equation is

x =
v

t
=

2

3

√
t.

34. Let ax′′ + bx′ + cx = 0, where a ̸= 0 and b2 − 4ac = 0.
(a) Show that x1(t) = e−bt/2a is a solution to ax′′ + bx′ + cx = 0.

(b) Assume that
y = v(t)x1(t) = v(t)e−bt/2a

is a solution to ax′′ + bx′ + cx = 0 and show that v(t) = c1 + c2t.
Thus,

x(t) = c1e
−bt/2a + c2te

−bt/2a

is a general solution for ax′′ + bx′ + cx = 0.
35. Consider the equation

y′′ − (2α− 1)y′ + α(α− 1)y = 0.

Determine all values of α, if any, for which all solutions tend toward zero
as t → ∞. Also, determine the values of α, if any, for which all nonzero
solutions become unbounded as t→ ∞.
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36. Solve each of the following initial value problems.
(a)

y′′ − 2y′ + 5y = 0

y(π/2) = 0

y′(π/2) = 2

(b)

9y′′ − 12y′ + 4y = 0

y(0) = 2

y′(0) = −1

(c)

y′′ + 8y′ − 9y = 0

y(1) = 1

y′(1) = 0

(d)

y′′ + 2ay′ + (a2 + 1)y = 0

y(0) = 1

y′(0) = 0

37. Reduction of Order. Suppose that x1(t) is a solution (not identically zero)
to the equation

x′′ + p(t)x′ + q(t)x = 0.

(a) Assume that x(t) = v(t)x1(t) is a solution to x′′+ p(t)x′+ q(t)x = 0
and derive the equation

x1v
′′ + (2x′1 + px1)v

′ = 0. (4.1.11)

(b) Let u = v′ and show that ((4.1.11)) is a first-order linear differential
equation in u.

(c) Show that x1(t) = 1/t is a solution to

2t2x′′ + 3tx′ − x = 0 (4.1.12)

for t > 0 and find a second linearly independent solution to ((4.1.12)).
38. Euler Equations. An important class of second-order linear differential

equations are equations of the form

t2y′′ + αty′ + βy = 0,

where t > 0 and α and β are real constants. An equation of this form is
called an Euler equation.

(a) Show that the substitution x = ln t transforms an Euler equation
into an equation of constant coefficients. {\em Hint}: Show that

dy

dt
=
dx

dt

dy

dx
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d2y

dt2
=

(
dx

dt

)2
d2y

dx2
+
d2x

dt2
dy

dx
.

(b) Solve the equation
t2y′′ + 4ty′ + 2y = 0.

4.1.7 Solving Second Order Linear Equations with Sage
Second order homogeneous linear differential equations with constant coeffi-
ceints can be solved sybolically using Sage. For example,

x′′ + 2x′ + x = 0

can be solved using the following Sage commands.

t = var( ' t ' )
x = function( ' x ' )(t)
DE = diff(x,t,2) + 2*diff(x,t) + x == 0
desolve(DE, [x,t])

_K1*e^(-t) + _K2*e^(-2*t)

We can even solve initial value problems such as

x′′ + 2x′ + x = 0

x(0) = 1

x′(0) = 2

t = var( ' t ' )
x = function( ' x ' )(t)
DE = diff(x,t,2) + 2*diff(x,t) + x == 0
desolve(DE, [x,t], ics=[0, 1, 2])

4*e^(-t) - 3*e^(-2*t)

Of course, we can add a forcing term to our initial value problem,

x′′ + 2x′ + x = t cos 2t
x(0) = 1

x′(0) = 2

t = var( ' t ' )
x = function( ' x ' )(t)
DE = diff(x,t,2)+3* diff(x,t)+2*x == t*cos(2*t)
desolve(DE, [x,t], ics=[0, 1, 2])

-1/100*(5*t - 12)*cos(2*t) + 1/200*(30*t - 7)*sin(2*t) +
97/25*e^(-t) - 3*e^(-2*t)

4.1.8 Exercises
Solve each of the following differential equations using Sage.

1. d2y

dx2
− y = 0
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2. d2y

dx2
− y = 0, y(0) = 1, y′(0) = 0

3. d2y

dx2
− y = cos 2t

4. d2y

dx2
− y = cos 2t, y(0) = 1, y′(0) = 0

5. d2y

dx2
− y = cos t

6. d2y

dx2
− y = cos t, y(0) = 1, y′(0) = 0

7. x′′ − 2x′ − 8x = 0

8. x′′ − 2x′ − 8x = 0, x(0) = 1, x′(0) = 2

9. x′′ − 2x′ − 8x = e−2t

10. x′′ − 2x′ − 8x = e−2t + e4t

4.2 Forcing

Objectives
• To understand that the general solution to the equation

x′′ + p(t)x′ + q(t)x = g(t)

is x = xh+xp, where xp is a particular solution xp to x′′+p(t)x′+q(t)x =
g(t) and xh is the general solution of the corresponding homogeneous
equation

x′′ + p(t)x′ + q(t)x = 0.

• To understand and be able to apply the Method of Undetermined
Coefficients to find particular solutions to x′′ + p(t)x′ + q(t)x = g(t).
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Harmonic oscillators such as a spring-mass system (Subsection 1.1.3) or an
RLC circuit (Section 4.1) can be modeled with second-order linear differential
equations. Indeed, we can model a spring-mass system with the equation

mx′′(t) + bx′(t) + kx(t) = g(t),

where m is the mass, b is the damping coefficient, k is the spring constant,
and F (t) = g(t) represents some external force applied to our system. RLC
circuits can also be modeled to provide another example of forcing. If I(t)
is the rate at which a charge flows through a circuit (measured in amperes or
amps), R is the resistance (measured in ohms), C is the capacitance (measured
in farads), and the inductance, L, is (measured in henrys), then the derivative
of the impressed voltage (measured in volts), E(t), is the forcing term

LI ′′ +RI ′ +
1

C
I = E′(t).

What is different about these two equations from those that we considered in
Section 4.1 is that the terms on the righthand side, g(t) and E′(t), are not zero.
Such a term is called a forcing term.

4.2.1 Nonhomogeneous Equations
A nonhomogeneous second-order linear differential equation is an
equation of the form

x′′ + p(t)x′ + q(t)x = g(t).

We have already seen how examples of such equations arise when examining
models of harmonic oscillators with forcing terms. Our goal is to be able
to solve such equations. In general, these equations can be difficult to solve
for an arbitrary function g(t). Before we attempt to find solutions for some
of the more common functions that might occur for g(t), let us derive some
fundamental facts about second-order linear differential equations.
Theorem 4.2.1 Suppose that

x′′ + p(t)x′ + q(t)x = g(t) (4.2.1)

has solutions x1 = x1(t) and x2 = x2(t). Then x1(t) − x2(t) is a solution of
the homogeneous linear differential equation

x′′ + p(t)x′ + q(t)x = 0.

Proof. Since x1 and x2 are solutions of (4.2.1), we know that

x′′1 + p(t)x′1 + q(t)x1 = g(t)

x′′2 + p(t)x′2 + q(t)x2 = g(t).

Thus,

d2

dt2
(x1 − x2) + p(t)

d

dt
(x1 − x2) + q(t)(x1 − x2)

=

(
d2x1
dt2

+ p(t)
dx1
dt

+ q(t)x1

)
−
(
d2x2
dt2

+ p(t)
dx2
dt

+ q(t)x2

)
= g(t)− g(t) = 0.

■
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We can use Theorem 4.2.1 to derive the fact that the general solution to

x′′ + p(t)x′ + q(t)x = g(t). (4.2.2)

can be written in the form
x = xh + xp,

where xh is the general solution of the homogeneous equation

x′′ + p(t)x′ + q(t)x = 0,

and xp is any solution of (4.2.2). Indeed, suppose that xq is another solution
to (4.2.2). Then xq − xp is a solution to the homogeneous equation

x′′ + p(t)x′ + q(t)x = 0.

Therefore,
xq − xp = xh

or
xq = xh + xp.

We state this fact in the following theorem.
Theorem 4.2.2 Let xp be a particular solution of the equation

x′′ + p(t)x′ + q(t)x = g(t),

and xh be the general solution of the corresponding homogeneous equation

x′′ + p(t)x′ + q(t)x = 0.

Then the general solution to x′′ + p(t)x′ + q(t)x = g(t) is x = xh + xp.

4.2.2 Forcing Terms
The equation

mx′′ + bx′ + kx = g(t)

can be used to model a harmonic oscillator where forcing occurs. In general,
we will not be able to solve this equation explicitly for a given g(t); however,
certain forcing functions often occur in practice. Some of the more important
forcing functions are g(t) = e−at, where the external force decreases exponen-
tially over time; g(t) = k, where a constant force is applied; and g(t) = cosωt
or g(t) = sinωt, where a force is applied periodically.

In the case of the unforced damped harmonic oscillator,

mx′′ + bx′ + kx = 0,

we know that m > 0, b > 0, and k > 0. Thus, we can rewrite this equation as

x′′ + px′ + qx = 0,

where p = b/m and q = k/m are both positive. As a first-order linear system,
the harmonic oscillator is

x′ = y

y′ = −qx− py.
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The matrix corresponding to this system,

A =

(
0 1

−q −p

)
,

has trace of −p and determinant q. Since tr(A) < 0 and det(A) > 0, we know
that any solution of the unforced equation tends toward the origin as t → ∞.
That is, the solution is a sink. This leads us to the following conclusion.
Theorem 4.2.3 Suppose

x′′ + px′ + qx = g(t)

has solution x = xh + xp, where p > 0 and q > 0. If

x = xh + xp

is the general solution to the equation, then

x = xh + xp → xp

as t→ ∞.
In other words, all solutions of a damped harmonic oscillator with nonzero

damping are essentially the same for large values of t.

4.2.3 The Method of Undetermined Coefficients
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Example 4.2.4 Let us solve the differential equation
x′′ + 5x′ + 4x = 1, (4.2.3)

a harmonic oscillator with a constant forcing function. It is easy to check that
the general solution to the homogeneous equation

x′′ + 5x′ + 4x = 0

is
xh = c1e

−t + c2e
−4t.

A particular solution to (4.2.3) is given by xp = 1/4. Thus, the general solution
is

x(t) = c1e
−t + c2e

−4t +
1

4
.

As t→ ∞, all solutions approach the constant solution x = 1/4 (Figure 4.2.5).

2 4 6 8 10
t

1.5

1.0

0.5

0.5

1.0

1.5

2.0

2.5 x(t)
dx/dt

Figure 4.2.5
□

Example 4.2.6 Now let us consider a more complicated example. Suppose
that we wish to solve

x′′ + 5x′ + 4x = e−2t. (4.2.4)

This is the equation of a harmonic oscillator with a forcing function that de-
creases exponentially with time. We already know the solution to the homoge-
neous equation. We will use the Method of Undetermined Coefficients to
find a particular solution to (4.2.4). It is reasonable to guess that a particular
solution will have the form

xp = Ae−2t.

Substituting this expression into (4.2.4), we find that

e−2t = x′′p + 5x′p + 4xp = 4Ae−2t − 10Ae−2t + 4Ae−2t = −2Ae−2t.

Hence, A = −1/2. Therefore, the solution that we seek is

x = c1e
−t + c2e

−4t − 1

2
e−2t.

Again, all solutions approach zero as t→ ∞ (Figure 4.2.7).
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2 4 6 8 10
t
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2.5 x(t)
dx/dt

Figure 4.2.7
□

Example 4.2.8 Now let us examine what happens if we have a periodic forcing
function. Let us assume that the particular solution to the equation

x′′ + 5x′ + 4x = 2 cos t.

takes the form
xp = A cos t+B sin t.

Then

x′p = −A sin t+B cos t
x′′p = −A cos t−B sin t.

Substituting these expressions into the differential equation, we see that

2 cos t = x′′p + 5x′p + 4xp

= (−A cos t−B sin t) + 5(−A sin t+B cos t) + 4(A cos t+B sin t)
= (3A+ 5B) cos t+ (−5A+ 3B) sin t.

We must solve the following system of equations to find a particular solution:

3A+ 5B = 2

−5A+ 3B = 0.

The solution of this system is A = 3/17 and B = 5/17. Consequently,

xp =
3

17
cos t+ 5

17
sin t

is a particular solution to x′′ + 5x′ + 4x = 2 cos t. The general solution to our
equation is

x = c1e
−t + c2e

−4t +
3

17
cos t+ 5

17
sin t.

The solutions to this equation are given in Figure 4.2.9.
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dx/dt

Figure 4.2.9
□

Example 4.2.10 As a final example, consider the equation
x′′ + 5x′ + 4x = e−t.

Recall that the solution to the homogeneous equation x′′ + 5x′ + 4x = 0 is
xh = c1e

−t + c2e
−4t.

Our guess of xp(t) = Ae−t for a particular solution will no longer work since
e−t is a solution to the homogeneous equation. We must therefore consider a
function of a different form. Such a function must yield a multiple of e−t when
differentiated. The simplest such function is of the form

xp = Ate−t.

Using this guess,

e−t =
d2

dt2
Ate−t + 5

d

dt
Ate−t + 4Ate−t

= A(−e−t − e−t + te−t) + 5A(e−t − te−t) + 4Ate−t

= 3Ae−t.

Thus, A = 1/3 and our general solution is

x = c1e
−t + c2e

−4t +
1

3
te−t.

Solutions to the differential equation x′′ + 5x′ + 4x = e−t are given in Fig-
ure 4.2.11.
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2.5 x(t)
dx/dt

Figure 4.2.11
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□
Activity 4.2.1 Solving Forced Second-Order Linear Differential Equa-
tions. Find (1) a particular solution and (2) a general solution for each of the
following differential equations.
(a) x′′ + 4x′ − 21x = 2e4t

(b) x′′ + 4x′ − 21x = 3e3t

(c) x′′ − 4x′ + 20x = 3 sin 3t

(d) x′′ − 4x′ + 20x = 2 cos 4t

(e) x′′ − 14x′ + 49x = sin 3t

4.2.4 A Strategy
We outline a general strategy for choosing xp for the Method of Undetermined
Coefficients in Table 4.2.12. Here s = 0, 1, 2 is the smallest integer that will
ensure that no term in xp is a solution of the corresponding homogeneous
equation.

Table 4.2.12 Particular solutions of x′′ + px′ + qx = g(t).

g(t) xp
Pn(t) = ant

n + · · ·+ a1t+ a0 ts(Ant
n + · · ·+A1t+A0)

Pn(t)e
αt ts(Ant

n + · · ·+A1t+A0)e
αt

Pn(t)e
αt

{
sinβt
cosβt tseαt[(Ant

n + · · ·+A1t+A0) cosβt

+(Bnt
n + · · ·+B1t+B0) sinβt]

4.2.5 Important Lessons
• A nonhomogeneous second-order linear differential equation is

an equation of the form

x′′ + p(t)x′ + q(t)x = g(t).

Forced harmonic oscillators and RLC circuits provide good examples of
nonhomogeneous second-order linear differential equations.

• Suppose that
x′′ + p(t)x′ + q(t)x = g(t)

has solutions x1 = x1(t) and x2 = x2(t). Then x1(t)− x2(t) is a solution
of the homogeneous linear differential equation

x′′ + p(t)x′ + q(t)x = 0.

• Let xp be a particular solution of the equation

x′′ + p(t)x′ + q(t)x = g(t),

and xh be the general solution of the corresponding homogeneous equa-
tion

x′′ + p(t)x′ + q(t)x = 0.

Then the general solution to x′′ + p(t)x′ + q(t)x = g(t) is x = xh + xp.
In particular, if the solution to x′′ + p(t)x′ + q(t)x = 0 has a sink at the
origin, all solutions of the equation x′′ + p(t)x′ + q(t)x = g(t) approach
xp(t) as t→ ∞.
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• The Method of Undetermined Coefficients is useful for solving the
equation x′′ + p(t)x′ + q(t)x = g(t), when g is of the form

g(t) = Pn(t)e
αt

{
sinβt
cosβt

4.2.6 Reading Questions
1. Suppose that xp(t) and xq(t) are two solutions for ax′′ + bx′ + cx = g(t).

How are these two solutions related?
2. Describe the Method of Undetermined Coefficients in your own

words.

4.2.7 Exercises

Finding Particular Solutions. Find a particular solution for each equation
in Exercise Group 4.2.7.1–8.

1. y′′ − 2y′ − 3y = 3e2t 2. y′′ − y′ − 2y = 4x2

3. d2x

dx2
− 6

dx

dt
+ 25x = 64e−t

4. y′′ + 16y = 2 sin 2t

5. y′′ + 16y = 2 sin 4t 6. y′′ + 2y′ + y = 2e−t

7. y′′ + 6y′ + 8y = cos 3t 8. u′′ + ω2
0y = cosωt, ω2 ̸= ω2

0

Finding General Solutions. Find the general solution for each equation
in Exercise Group 4.2.7.9–16.

9. y′′ − 2y′ − 3y = 3e2t 10. y′′ − y′ − 2y = 4x2

11. d2x

dx2
− 6

dx

dt
+ 25x = 64e−t

12. y′′ + 16y = 2 sin 2t

13. y′′ + 16y = 2 sin 4t 14. y′′ + 2y′ + y = 2e−t

15. y′′ + 6y′ + 8y = cos 3t 16. u′′ + ω2
0y = cosωt, ω2 ̸= ω2

0

Solving Initial Value Problems. Solve the initial problems in Exercise
Group 4.2.7.17–24.

17. y′′ − 2y′ − 3y = 3e2t, y(0) = 1, y′(0) = 0

18. y′′ − y′ − 2y = 4x2, y(0) = −1, y′(0) = 1

19. d2x

dx2
− 6

dx

dt
+ 25x = 64e−t, x(0) = 1, x′(0) = −2

20. y′′ + 16y = 2 sin 2t, y(0) = 1, y′(0) = 0

21. y′′ + 16y = 2 sin 4t, y(0) = 1, y′(0) = 0

22. y′′ + 2y′ + y = 2e−t, y(0) = −1, y′(0) = 3

23. y′′ + 6y′ + 8y = cos 3t, y(0) = −2, y′(0) = 1

24. u′′ + ω2
0y = cosωt, ω2 ̸= ω2

0 , u(0) = 1, u′(0) = −1

25. We define two functions, f(t) and g(t), to be linearly independent on
an open interval I = (a, b) if there do not exist nonzero constants c1 and
c2 such that

c1f(t) + c2g(t) = 0

for all t ∈ I. Equivalently, two functions are linearly independent, if
one function is not a multiple of the other. Otherwise, f(t) and f(t) are
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linearly dependent. Suppose that f(t) and g(t) are solutions to the
homogeneous linear equation

y′′ + py′ + qy = 0.

Show that f(t) and g(t) are linearly dependent on an interval I = (a, b) if
and only if W [f, g](t) ≡ 0, where W [f, g](t) = f(t)g′(t) − g(t)f ′(t) is the
Wronskian of f and g.
Hint. Suppose that that f(t) and g(t) are linearly dependent on an
interval I = (a, b). Then one function is a multiple of the other, say
f(t) = cg(t). Thus, f ′(t) = cg′(t).

W (f, g)(t) = det
(
f(t) g(t)

f ′(t) g′(t)

)
= f(t)g′(t)−f ′(t)g(t) = cg(t)g′(t)−cg′(t)g(t) = 0.

Conversely, suppose that

W (f, g)(t) = det
(
f(t) g(t)

f ′(t) g′(t)

)
= 0,

for all t in (a, b). If g = 0, then 0f = g and the two functions are
linearly dependent. Assume that g(t0) ̸= 0 for some t0 in (a, b). Since
g is differentiable, it must also be continuous and there is some interval
(c, d) contained in (a, b) such that t0 ∈ (c, d) and g does not vanish on this
interval. Therefore,

d

dt

(
f

g

)
=
f ′g − fg′

g2
= −W (f, g)

g2
= 0,

and f/g is constant on the interval (c, d). Thus, f(t0) = cg(t0) and
f ′(t0) = cg′(t0). Since f and cg are both solutions to the differential
equation y′′+py′+qy = 0 and have the same initial condition, f(t) = cg(t)
for all t ∈ (a, b) by the existence and uniqueness theorem. Consequently,
f and g are linearly dependent.

26. Abel’s Theorem. If y1 and y2 are solutions of the homogeneous equation

y′′ + p(t)y′ + q(t)y = 0,

where p and q are continuous on an open interval I = (a, b), show that

W [y1, y2](t) = c exp
(
−
∫
p(t) dt

)
,

for some constant c that depends on y1 and y2 but not on t.
(a) Use Abel’s Theorem to find the Wronskian of 2t2y′′ + 3ty′ − y = 0

up to a constant multiple, where t > 0.

(b) Prove Abel’s Theorem.

Hint.
(a) We can rewrite 2t2y′′ + 3ty′ − y = 0 as

y′′ +
3

2t
y′ − 1

2t2
y = 0.

Since p(t) = 1/2t, Abel’s Theorem tells us that

W [y1, y2](t) = c exp
(
−
∫

3

2t
dt

)
= c exp

(
−3

2
ln t
)

= ct−3/2.
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(b) Since y1 and y2 are solutions to our differential equation, we know
that

y′′1 + p(t)y′1 + q(t)y1 = 0

y′′2 + p(t)y′2 + q(t)y2 = 0.

Multiplying the first equation by y2 and the second equation by y1
and subtracting, we obtain

(y1y
′′
2 − y′′1 y2) + p(t)(y1y

′
2 − y′1y2) = 0. (4.2.5)

If
W (t) =W (y1, y2)(t) = y1y

′
2 − y′1y2,

then
W ′ = y1y

′′
2 − y′′1 y2,

and equation (B.0.1) becomes

W ′ + p(t)W = 0.

This equation is separable with solution

W (t) = c exp
(
−
∫
p(t) dt

)
.

27. The Method of Variation of Parameters. In this problem we will
describe another method of finding a particular solution to a nonhomoge-
neous equation,

y′′ + p(t)y′ + q(t)y = f(t), (4.2.6)
if we know know that the general solution to the homogeneous equation
y′′ + p(t)y′ + q(t)y = 0 is

yh = c1y1 + c2y2.

(a) Assume that a particular solution of (4.2.6) has the form

yp(t) = u1(t)y1(t) + u2(t)y2(t),

where
u′1(t)y1(t) + u′2(t)y2(t) = 0.

Substitute yp into the left-hand side of (4.2.6) to show that

u′1(t)y
′
1(t) + u′2(t)y

′
2(t) = f(t).

(b) Show that

u′1(t) =
−y2(t)f(t)
W [y1, y2](t)

u′2(t) =
y1(t)f(t)

W [y1, y2](t)
,

where W [y1, y2](t) = y1(t)y
′
2(t) − y2(t)y

′
1(t) is the Wronskian of y1

and y2.

(c) If p, q, and f are continuous on an interval I, show that

u1(t) = −
∫ t

t0

y2(s)f(s)

W [y1, y2](s)
ds
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u2(t) =

∫ t

t0

y1(s)f(s)

W [y1, y2](s)
ds

for any point t0 in I. Consequently, a particular solution to (4.2.6)
is

yp = −y1(t)
∫ t

t0

y2(s)f(s)

W [y1, y2](s)
ds+ y2(t)

∫ t

t0

y1(s)f(s)

W [y1, y2](s)
ds.

(d) Find the general solution of the differential equation

y′′ + 4y = 3 csc t.

Hint.

(a) If yp = u1y1 + u2y2, then

y′p = u′1y1 + u1y
′
1 + u′2y2 + u2y

′
2 = u1y

′
1 + u2y

′
2

y′′p = u′1y
′
1 + u1y

′′
1 + u′2y

′
2 + u2y

′′
2 .

Substituting these expressions into equation (4.2.6), we have

y′′p + py′p + qyp = (u′1y
′
1 + u1y

′′
1 + u′2y

′
2 + u2y

′′
2 ) + p(u1y

′
1 + u2y

′
2)

+ q(u1y1 + u2y2)

= u1[y
′′
1 + py′1 + qy1] + u2[y

′′
2 + py′2 + qy2] + u′1y

′
1 + u′2y

′
2

= u′1y
′
1 + u′2y

′
2

= f(t).

(b) If we solve the system

u′1(t)y1(t) + u′2(t)y2(t) = 0

u′1(t)y
′
1(t) + u′2(t)y

′
2(t) = f(t).

for u′1 and u′2, we obtain

u′1(t) =
−y2(t)f(t)
W [y1, y2](t)

u′2(t) =
y1(t)f(t)

W [y1, y2](t)
.

(c) Integrate the two equations from part (2).

(d) The general solution to the homogeneous equation y′′ + 4y = 0 is

yh = c1 cos 2t+ c2 sin 2t.

To find a particular solution, assume that the solution has the form

yp = u1(t) cos 2t+ u2(t) sin 2t.

By part (2)

u′1(t) = −3 cos t

u′2(t) =
3

2
csc t− 3 sin t.



CHAPTER 4. SECOND-ORDER LINEAR EQUATIONS 265

Integrating, we obtain

u1(t) = −3 sin t

u2(t) =
3

2
ln | csc t− cot t|+ 3 cos t.

Therefore,

yp(t) = u1(t)y1(t) + u2(t)y2(t)

= −3 sin t cos 2t+
[
3

2
ln | csc t− cot t|+ 3 cos t

]
sin 2t,

and the general solution is

y = yh + yp

= c1 cos 2t+ c2 sin 2t− 3 sin t cos 2t+
[
3

2
ln | csc t− cot t|+ 3 cos t

]
sin 2t.

4.3 Sinusoidal Forcing

Objectives
• To understand and be able to use Euler’s formula and complexification

to solve the equation
x′′ + px′ + qx = g(t),

where the forcing function g(t) is sinωt or cosωt.

• To understand and be able to use complex numbers to express solutions
in the form

x(t) = A cos(ωt− ϕ),

where A is the amplitude of the solution, ω is the frequency of the solution,
and ϕ is the phase angle.

If we consider different forcing functions g(t) for the equation

x′′ + px′ + qx = g(t),

functions that are periodic are especially important. Recall that a function
g(t) is periodic if

g(t+ T ) = g(t)

for all t and some fixed constant T . The most familiar periodic functions are

g(t) = sinωt and g(t) = cosωt.

The period for each of these two functions is 2π/ω and the frequency is ω/2π.
These two functions share the additional property that their average value is
zero. That is,

1

T

∫ T

0

g(t) dt = 0.

We say that sinusoidal forcing occurs in the differential equation

x′′ + px′ + qx = A cosωt+B sinωt.
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4.3.1 Complexification
Given a second-order linear differential equation

ax′′ + bx′ + cx = A cosωt+B sinωt,

we can use Euler’s formula, eiβt = cosβt+i sinβt to derive a particular solution.
That is, we will assume that our particular solution has the form

xc = xRe + ixIm

and use the properties of complex numbers.1

Example 4.3.1 Let us consider the equation

x′′ + 6x′ + 5x = sin 2t. (4.3.1)

The solution to the corresponding homogeneous equation, x′′ + 6x′ + 5x = 0,
is

xh = c1e
−5t + c2e

−t.

To find a particular solution, we can use the method of undetermined coeffi-
cients and assume that the solution has the form

xp = A cos 2t+B sin 2t.

If we carry out the appropriate calculations, we will obtain a particular solution

xp = − 12

145
cos 2t+ 1

145
sin 2t.

Thus, the general solution is

x = xh + xp = c1e
−5t + c2e

−t − 12

145
cos 2t+ 1

145
sin 2t.

Notice that all solutions of (4.3.1) will approach the particular solution as
t→ ∞. □
Example 4.3.2 Now let us solve (4.3.1) using complex numbers. If we assume
that the equation has a complex solution of the form xc = xRe + ixIm, then

d2

dt2
xc + 6

d

dt
xc + 5xc =

d2

dt2
(xRe + ixIm) + 6

d

dt
(xRe + ixIm) + 5(xRe + ixIm)

= e2it

= cos 2t+ i sin 2t.

Equating the real and imaginary parts of this equation, we obtain

x′′Re + 6x′Re + 5xRe = cos 2t
x′′Im + 6x′Im + 5xIm = sin 2t.

Thus, if we can find a complex solution, we can find a solution to

x′′ + 6x′ + 5x = sin 2t

simply by examining the imaginary part of the solution.
Now let us assume that our solution has the form xc = Ae2it. Then

x′′c + 6x′c + 5xc = −4Ae2it + 12Aie2it + 5Ae2it

1If complex numbers make you uncomfortable, the alternative is to become an expert in
trigonometric identities
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= (1 + 12i)Ae2it

= (1 + 12i)A(cos 2t+ i sin 2t).

Equating the real and imaginary parts of this equation, we obtain

x′′Re + 6x′Re + 5xRe = cos 2t
x′′Im + 6x′Im + 5xIm = sin 2t

and we immediately see that

A =
1

1 + 12i
=

1

145
− 12

145
i.

Therefore, the complex solution to

x′′ + 6x′ + 5x = e2it

is

xc = Ae2it

=

(
1

145
− 12

145
i

)
· (cos 2t+ i sin 2t)

=

(
1

145
cos 2t+ 12

145
sin 2t

)
+ i

(
− 12

145
cos 2t+ 1

145
sin 2t

)
.

The imaginary part of this function is

xIm = − 12

145
cos 2t+ 1

145
sin 2t,

which is the particular solution that we have been seeking. Thus, our general
solution agrees with what we found in Example 4.3.1. □
Activity 4.3.1 Second-Order Linear Differential Equations and Com-
plexification. Find (1) a particular solution and (2) a general solution for
each of the following differential equations.
(a) x′′ + 4x′ − 21x = 2e4t

(b) x′′ + 4x′ − 21x = 3e3t

(c) x′′ − 4x′ + 20x = 3 sin 3t

(d) x′′ − 4x′ + 20x = 2e2t cos 4t

(e) x′′ − 14x′ + 49x = sin 3t

4.3.2 Qualitative Analysis
We can use the complex solution of ax′′ + bx′ + cx = A cosωt + B sinωt to
analyze the qualitative behavior of solutions.
Example 4.3.3 We discovered that the complex solution of

x′′ + 6x′ + 5x = e2it

to be xc = Ae2it, where A = (1 − 12i)/145. Let us rewrite A in polar form.
Since

|A| = 1√
145

,
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we know that
A =

1√
145

eiθ,

where θ = arctan(−12) ≈ −1.4877. Therefore,

xc = Ae2it =
1√
145

eiθe2it =
1√
145

ei(2t+θ).

Our particular solution is the imaginary part of xc,

xp(t) =
1√
145

sin(2t+ θ) =
1√
145

cos
(
2t+ θ − π

2

)
=

1√
145

cos (2t− ϕ) ,

where ϕ ≈ 3.058451. We say that ϕ is the phase angle of our solution. The
amplitude of our solution is 1/

√
145 and the period is π (Figure 4.3.4).

π 2π 3π 4π 5π

t

−0.08

−0.060000000000000005

−0.04000000000000001

−0.020000000000000004

0.01999999999999999

0.04000000000000001

0.06

0.07999999999999999

x(t)

Figure 4.3.4 Steady state solution to x′′ + 6x′ + 5x = sin 2t

□
Activity 4.3.2 Finding Particular Solutions of the Form yp = A cos(ωt−
ϕ). Consider the differential equation

y′′ + 10y′ + 34y = sin 2t. (4.3.2)

(a) Find the general solution to the homogeneous equation y′′+10y′+34y =
0.

(b) Find the complex solution particular solution, yc to y′′+10y′+34y = e2it.
That is, find a for yp = ae2it.

(c) Determine A and B, so that yp = A cos 2t+B sin 2t is a particular solution
to (4.3.2)

(d) Write a from Task 4.3.2.b in polar form, |a|eiθ to obtain the solution
yc = |a|e2t+θ.

(e) Find a real particular solution in the form yp = A cos(ωt− ϕ).

(f) Plot the solution you found in Task 4.3.2.e, labeling the amplitude, period,
and frequency of your solution.

The corresponding first order system for the differential equation

x′′ + px′ + qx = g(t),
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is
x′ = y

y′ = −qx− py + g(t).

This is a nonautonomous system, and the tangent vector of a solution curve
in the phase plane depends not only on the position (x, y), but also on the time
t. In other words, the direction field changes with time. Since the direction
field changes with time, two solutions with the same (x, y) value at different
times can follow different paths. Consequently, solutions can cross each other
in the xy-plane without violating the Existence and Uniqueness Theorem.
Example 4.3.5 Consider the harmonic oscillator that is modeled by the dif-
ferential equation

x′′ + 2x′ + 17x = −2 sin 3t. (4.3.3)

The solution to the homogeneous equation x′′ + 2x′ + 17x = 0 is

xh = c1e
−t cos 4t+ c2e

−t sin 4t

The complex version of this equation is

x′′ + 2x′ + 17x = −2e3it,

and we will use the Method of Undetermined Coefficients and assume that we
can find a particular solution of the form xc = Ae3it. Substituting xc into
equation (4.3.3), we find that

(8 + 6i)Ae3it = −2e3it.

Thus, xc is a solution if

A =
−2

8 + 6i
= − 4

25
+

3

25
i

We have

xc(t) =

(
− 4

25
+

3

25
i

)
(cos 3t+ i sin 3t)

=

(
− 4

25
cos 3t− 3

25
sin 3t

)
+ i

(
3

25
cos 3t− 4

25
sin 3t

)
.

The imaginary part of this function is the solution that we seek,

xp =
3

25
cos 3t− 4

25
sin 3t.

Thus, the general solution to (4.3.3) is

x(t) = c1e
−t cos 4t+ c2e

−t sin 4t+
3

25
cos 3t− 4

25
sin 3t.

Now suppose that x(0) = 0 and x′(0) = 0. We can quickly determine that

x′(t) = c1e
−t(− cos 4t− 4 sin 4t)+ c2e

−t(4 cos 4t− sin 4t)− 12

25
cos 3t− 9

25
sin 3t

To solve this initial value problem, we must solve the linear system

c1 +
3

25
= 0
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−c1 + 4c2 −
12

25
= 0.

We obtain c1 = −3/25 and c2 = 9/100, and the solution to our initial value
problem is

x(t) = − 3

25
e−t(− cos 4t− 4 sin 4t) +

3

20
e−t(4 cos 4t− sin 4t)− 12

25
cos 3t− 9

25
sin 3t

= − 3

100
(4 cos 4t− 3 sin 4t))e−t − 12

25
cos 3t− 9

25
sin 3t

The graph of our solution is given in Figure 4.3.6.
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Figure 4.3.6 Solution to x′′ + 2x′ + 17x = −2 sin 3t, x(0) = 0, x′(0) = 0

Since y = x′(t), we can now graph the solution curve in the phase plane
(Figure 4.3.7). Notice how the solution curve can intersect itself. The restoring
force and damping are proportional to x and y = x′, respectively. When x
and y are close to the origin, the external force is as large or larger than the
restoring and damping forces. In this part of the xy-plane, the external force
overcomes the damping and pushes the solution away from the origin.

0.20 0.15 0.10 0.05 0.05 0.10 0.15 0.20
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0.2

0.4

0.6

y

Figure 4.3.7 Phase Plane for x′′ + 2x′ + 17x = −2 sin 3t, x(0) = 0, x′(0) = 0

On the other hand, suppose we have initial conditions x(0) = 2 and x′(0) =
2, we can solve the linear system

c1 +
3

25
= 2
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−4c1 − c2 −
9

25
= 2.

to obtain c1 = 47/25 and c2 = 109/100. Thus, solution to our initial value
problem is

x(t) =
47

25
e−t cos 4t+ 109

100
e−t sin 4t+

3

40
cos 2t− 3

20
sin 2t.

The graph of our solution is given in Figure 4.3.8.
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Figure 4.3.8 Solution to x′′ + 2x′ + 17x = −2 sin 3t, x(0) = 2, x′(0) = 2

If we examine the phase plane for this solution (Figure 4.3.9), we see that
the initial damping and restoring forces are much larger than the external force.
Thus, if we are far from the origin, the solutions in the xy-plane tend to spiral
towards the origin and are similar to the solutions of the unforced equation.

1.0 0.5 0.5 1.0 1.5 2.0
x

6

4

2

2

y

Figure 4.3.9 Phase Plane for x′′ + 2x′ + 17x = −2 sin 3t, x(0) = 2, x′(0) = 2

□

4.3.3 Important Lessons
• The functions sinωt and cosωt are periodic with period 2π/ω and fre-

quency ω/2π. These average value of each of these functions is zero.
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• We can use Euler’s formula and complexification to solve the equation

x′′ + px′ + qx = g(t),

where the forcing function g(t) is sinωt or cosωt. Furthermore, we can
use complex numbers to express our solution in the form

x(t) = A cos(ωt− ϕ),

where A is the amplitude of the solution, ω/2π is the frequency of the
solution, and ϕ is the phase angle.

• If we write the equation

x′′ + px′ + qx = g(t),

as a first-order system,

x′ = y

y′ = −qx− py + g(t),

we obtain a nonautonomous system. In this case the direction field
changes with time, and two solutions with the same (x, y) value at differ-
ent times can follow different paths. Therefore, solutions can cross each
other without violating the Existence and Uniqueness Theorem.

• If we are far from the origin, the solutions in the xy-plane tend to spi-
ral towards the origin and are similar to the solutions of the unforced
equation. When x and y are close to the origin, the external force is as
large or larger than the restoring and damping forces. In this part of
the xy-plane, the external force overcomes the damping and pushes the
solution away from the origin.

4.3.4 Reading Questions
1. What does complexification mean?
2. Is it possible for solution curves to intersect in the phase plane of a nonau-

tonomous system? Why or why not?

4.3.5 Exercises

Finding Particular Solutions. Find a particular solution for each equation
in Exercise Group 4.3.5.1–10 using complexification.

1. y′′ + 4y = 3 cos 2t 2. y′′ + 7y′ + 10y = −4 sin 3t

Hint. Assume the complex
solution has form yc = Ae3it.

3. d2x

dx2
+ 2

dx

dt
+ 2x = 2 cos 2t

4. x′′ − 2x′ + 5x = 3 cos t

5. y′′ + 6y′ + 7y = 3 sin 2t 6. y′′ + 4y′ + 13y = 3 cos 2t
7. y′′ + 6y′ + 8y = cos 3t

8. d2x

dx2
+ 2

dx

dt
+ 3x = 2 sin 2t

9. u′′ + 4u′ + 20u = −3 sin 3t 10. u′′ + 4u′ + 20u = − cos 5t

Finding Frequencies, Amplitudes, and Phase Angles. Find a par-
ticular solution of the form yp = A cos(ωt − ϕ) for each equation in Exercise



CHAPTER 4. SECOND-ORDER LINEAR EQUATIONS 273

Group 4.3.5.11–17 and determine the frequency ω, amplitude A, and phase
angle ϕ of the solution.

11. y′′ + 4y = 3 cos 2t 12. y′′ + 7y′ + 10y = −4 sin 3t

Hint. Assume the complex
solution has form yc = Ae3it.

13. d2x

dx2
+ 2

dx

dt
+ 2x = 2 cos 2t

14. x′′ − 2x′ + 5x = 3 cos t

15. y′′ + 6y′ + 7y = 3 sin 2t 16. y′′ + 4y′ + 13y = 3 cos 2t
17. y′′ + 6y′ + 8y = cos 3t

Solving Initial Value Problems. Solve the initial problems in Exercise
Group 4.3.5.18–24 and discuss the long-term behavior of the solution.

18. y′′ + 4y = 3 cos 2t, y(0) = 0, y′(0) = 0

19. y′′ + 7y′ + 10y = −4 sin 3t, y(0) = 0, y′(0) = 0

20. d2x

dx2
+ 2

dx

dt
+ 2x = 2 cos 2t, x(0) = 0, x′(0) = 0

21. x′′ − 2x′ + 5x = 3 cos t, x(0) = 0, x′(0) = 0

22. y′′ + 6y′ + 7y = 3 sin 2t, y(0) = 0, y′(0) = 0

23. y′′ + 4y′ + 13y = 3 cos 2t, y(0) = 0, y′(0) = 0

24. y′′ + 6y′ + 8y = cos 3t, y(0) = 0, y′(0) = 0

4.4 Forcing and Resonance

Objectives
• To understand how the natural frequency, omega0, interacts with the

frequency of the forcing term, ω in an undamped harmonic oscillator

x′′ + ω2
0x = A cosωt.

If the two frequencies are the same, we can observe a phenomenon called
resonance. If the two frequencies are close, we can observe a phenome-
non called beats.

• To understand that the gain (or frequency response) G(ω) of a forced
damped harmonic oscillator,

x′′ + 2cx′ + ω2
0x = A cosωt

is defined as the absolute value of the ratio of the output amplitude to
the steady-state input amplitude and that the amplitude and phase of
the steady-state solution is given by

xp(t) = G(ω)A cos(ωt− ϕ).

Resonance happens when the natural frequency and the forcing frequency
of an undamped harmonic oscillator are the same. There are many real world
examples of resonance. For example, it is possible for a trained singer to
shatter a champagne glass by simply singing the correct note (see www.youtube.

com/watch?v=IZD8ffPwXRo). Shattering a glass by singing the correct note can be

https://www.youtube.com/watch?v=IZD8ffPwXRo
https://www.youtube.com/watch?v=IZD8ffPwXRo
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modeled by an equation of an undamped harmonic oscillator with sinusoidal
forcing. While a certain amount of damping occurs in all physical systems, the
damping is often so small that it makes sense to use an undamped harmonic
oscillator.

4.4.1 Resonance
Resonance was responsible for the collapse of the Broughton suspension bridge
near Manchester, England in 1831. The collapse occurred when a column of
soldiers marched in cadence over the bridge, setting up a periodic force of
rather large amplitude. The frequency of the force was approximately equal
to the natural frequency of the bridge. Thus, the bridge collapsed when large
oscillations occurred. For this reason soldiers are ordered to break cadence
whenever they cross a bridge.

The Millennium Bridge, the first new bridge to span the Thames River in
London in over 100 years, is a modern example of how resonance can effect
a bridge (Figure 4.4.1). This pedestrian bridge, which opened to the public
in June 2000, was quickly closed after the bridge experienced high amplitude
horizontal oscillations during periods of high traffic. Studies by designers found
that the bridge experienced high amplitude horizontal oscillations in response
to horizontal forcing at a rate of one cycle per second. Typically, people walk
at a rate of two steps per second, so the time between two successive steps
of the left foot is about one second. Thus, if people were to walk in cadence,
they could set up strong horizontal forcing that would place a destructive load
on the bridge. The engineers did not envision this to be a problem since
tourists do not generally march in time. However, a video of tourists crossing
the bridge revealed the opposite. When the bridge began oscillating, people
tended to walk in cadence in order to keep their balance (www.youtube.com/
watch?v=gQK21572oSU).

https://www.youtube.com/watch?v=gQK21572oSU
https://www.youtube.com/watch?v=gQK21572oSU
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Figure 4.4.1 The Millennium Bridge
Consider the case of an undamped harmonic oscillator with a sinusoidal

forcing function. We know that we can model this situation with the second-
order linear differential equation

x′′ + ω2
0x = A cosωt.

Since the homogeneous solution to this equation is

xh(t) = c1 cosω0t+ c2 sinω0t,

we can see that the natural frequency of the harmonic oscillator is ω0. This
is the frequency of the oscillations if there is no forcing term. Depending on
whether or not the frequency of the forcing term ω is equal to the natural
frequency, we will have two very different situations. If the two frequencies
are equal, then they will re-enforce one another and we will have resonance.
If the two frequencies are close but not equal, we will see the phenomenon of
beats. We wish to investigate what happens when the driving frequency ω
is equal to the natural frequency and when it is not.

Let us examine the case where the forcing frequency and the natural fre-
quency of the oscillator are the same,

x′′ + ω2
0x = A cosω0t. (4.4.1)

Since A cosω0t is a solution to the homogeneous equation x′′ + ω2
0x = 0, we

cannot assume that a particular solution to equation (4.4.1) has the form
a cosω0t + b sinω0t. Equivalently, if we use the complex method, we cannot
assume that our solution has the form aeiω0t. Therefore, we will look for a
complex solution of the form

xc = ateiω0t
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for the complex equation that corresponds to (4.4.1),

x′′ + ω2
0x = Aeiω0t. (4.4.2)

In this case,

x′c = a(1 + iω0t)e
iω0t

x′′c = a(2iω0 − ω2
0t)e

iω0t.

Substituting xc and x′′c into the left-hand side of (4.4.2), we have

x′′c + ω2
0xc = a(2iω0 − ω2

0t)e
iω0t + ω2

0ate
iω0t

= 2aiω0e
iωt.

In order for xc = ateiω0t to be a solution to (4.4.2), we must have

a =
A

2iω0
.

Thus, our solution to the complex form of the differential equation is

xc =
A

2iω0
teiω0t

= − Ai

2ω0
teiω0t

= − Ai

2ω0
t(cosω0t+ i sinω0t)

=
A

2ω0
t sinω0t− i

A

2ω0
t cosω0t.

The real part of xc,
xp(t) =

A

2ω0
t sinω0t,

is a particular solution to (4.4.1). Thus, our general solution is

x(t) = xh(t) + xp(t) = c1 cosω0t+ c2 sinω0t+
A

2ω0
t sinω0t.

Example 4.4.2 Now let us consider the initial value problem

x′′ + 144x = 4 cos 12t
x(0) = 0

x′(0) = 0.

where A = 4 and ω0 = 12. The solution to the homogeneous equation x′′ +
144x = 0 is

xh(t) = c1 cos 12t+ c2 sin 12t.

To find a particular solution to x′′ + 144x = 4 cos 12t, we will use the complex
method and try to find a particular solution to x′′ + 144x = 4e12it. We must
assume that the solution has the form xc(t) = ate12it, since ae12it is a solution
to the homogeneous equation. As before, we have x′′c = a(24i − 144t)e12it. If
we substitute xc and x′′c into the left-hand side of our differential equation, we
have

x′′c + 144xc = a(24i− 144t)e12it + 144ate12it = 24aie12it.
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Therefore,
a =

4

24i
= −1

6
i,

and our complex solution is

−1

6
ite12it = −1

6
it(cos 12t+ i sin 12t) =

1

6
t sin 12t− 1

6
it cos 12t.

Taking the real part of our complex solution, we have a particular solution

xp(t) =
1

6
t sin 12t.

Thus, the general solution to x′′ + 144x = 4 cos 12t is

x(t) = xh(t) + xp(t) = c1 cos 12t+ c2 sin 12t+
1

6
t sin 12t.

Applying the initial conditions, both c1 = 0 and c2 = 0. Consequently, the
solution to the initial value problem is

x(t) =
1

6
t sin 12t.

The graph of this solution is given in Figure 4.4.3. Notice that our solution
grows with time. This growth is due to the fact that the frequency of the
forcing term is equal to the natural frequency of the oscillator. Since the force
pulls and pushes at a frequency equal to the natural frequency of the oscillator,
the amplitude increases with time. This type of behavior is called resonance.

π 2π 3π 4π

t
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−1.5
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−0.5

0.5

1.0

1.5

2.0

x(t)

Figure 4.4.3 The solution to x′′ + 4x = 4 sin 2t, x(0) = 0, x′(0) = 0.
□

Activity 4.4.1 Resonance. Solve each of the following initial value problems
and plot the solution for t ≥ 0. In each case, what is the natural (and forcing)
frequency of the harmonic oscillator?
(a)

x′′ + 121x = 3 cos 11t
x(0) = 0

x′(0) = 0.
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(b)

x′′ + 169x = 5 cos 13t
x(0) = 0

x′(0) = 0.

4.4.2 Beats or the Case ω ̸= ω0

If the forcing frequency and natural frequency are not equal but close, then
we have the phenomenon of beats. For example, a piano tuner uses this phe-
nomenon to make certain that a particular string is correctly tuned. The
tuner will strike a tuning fork which vibrates at the correct frequency. Next,
the tuner hits the poorly tuned piano string. This modulation gives rise to
beats in the tone that are readily audible. When the string is properly tuned,
the beats will go away. To see another example of beats, watch the video
www.youtube.com/watch?v=pRpN9uLiouI.

To understand the situation where the forcing and natural frequencies differ
by a small amount, ω ̸= ω0, we will first consider the equation,

x′′ + ω2
0x = A cosωt. (4.4.3)

The solution to the homogeneous equation x′′ + ω2
0x = 0 is

xh(t) = c1 cosω0t+ c2 sinω0t.

Since the forcing frequency is not equal to the natural frequency, we can look
for a particular solution to the complex of the form of equation (4.4.3),

x′′ + ω2
0 = Aeiωt. (4.4.4)

If we assume that our solution has the form xc = aeiωt and substitute xc into
the left-hand side of (4.4.4), we find

x′′c + ω2
0xc = −aω2eiωt + ω2

0ae
iωt

= a(ω2
0 − ω2)eiωt.

Therefore, for xc = aeiωt to be a solution for

x′′ + ω2
0x = Aeiωt,

we must have
a =

A

ω2
0 − ω2

.

The real part of xc is a particular solution to (4.4.3),

xp(t) =
A

ω2
0 − ω2

cosωt.

Thus, the general solution to (4.4.3) is

x(t) = xh(t) + xp(t) = c1 cosω0t+ c2 sinω0t+
A

ω2
0 − ω2

cosωt.

Now let us examine the case where the motion starts at equilibrium. That
is, we will investigate what happens when x(0) = 0 and x′(0) = 0. In this

https://www.youtube.com/watch?v=pRpN9uLiouI
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case, we can easily determine that c1 = −A/(ω2
0 − ω2) and c2 = 0. Hence the

solution to our initial value problem is

x(t) =
A

ω2
0 − ω2

(cosωt− cosω0t). (4.4.5)

Thus, we have a superposition to two oscillations of different frequencies.
To understand how the superposition of the two frequencies works, we will

let
ω =

ω0 + ω

2

be the mean frequency and

δ =
ω0 − ω

2

be the half difference. Since ω = ω − δ and ω0 = ω + δ, we know that

x(t) =
A

ω2
0 − ω2

(cosωt− cosω0t)

=
A

(ω + δ)2 − (ω − δ)2
(cos[(ω − δ)t]− cos[(ω + δ)t])

=
A

4ωδ
[cos(ωt− δt)− cos(ωt+ δt)]

=
A

4ωδ
[cos(ωt) cos(δt) + sin(ωt) sin(δt)− cos(ωt) cos(δt) + sin(ωt) sin(δt)]

=
A

4ωδ
[2 sin(ωt) sin(δt)]

=
A sin δt
2ωδ

sinωt.

Thus, we have a sine function, sinωt whose amplitude varies according to
|(A/2ωδ) sin δt|, and

x(t) =
A sin δt
2ωδ

sinωt. (4.4.6)

Example 4.4.4 In the initial value problem

x′′ + 144x = 4 cos(13t) (4.4.7)
x(0) = 0 (4.4.8)
x′(0) = 0, (4.4.9)

we have A = 4, ω0 = 12, and ω = 13. The solution to this equation is

x(t) =
4

25
(cos 12t− cos 13t).

The graph of this solution is given in Figure 4.4.5 and illustrate the phenomenon
of beats. The two frequencies are almost equal and interfere with each other.
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Figure 4.4.5 Solution to the initial value problem (4.4.7)
In our example, δ = −1/2 and ω = 25/2. The factor sin δt = sin(−t/2)

in (4.4.6) oscillates very slowly in comparison to sin(ω) = sin(25t/2). Thus,
we can view the solution (4.4.6) as a fast oscillation with a frequency ω and
amplitude ∣∣∣∣A sin δt

2ωδ

∣∣∣∣ = ∣∣∣∣ 825 sin
(
t

2

)∣∣∣∣ , (4.4.10)

which oscillates much more slowly. If we superimpose the graph of (4.4.10)
onto the graph in Figure 4.4.5, we obtain an envelope of the faster oscillation.
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x(t)
|(A/2ωδ)sin δt|

Figure 4.4.6 Envelope for the initial value problem (4.4.7)
□

Activity 4.4.2 Beats. Consider the initial value problem
x′′ + 196x = 4 cos(15t)

x(0) = 0

x′(0) = 0.

(a) Solve the initial value problem and plot its solution.

(b) Calculate the mean frequency, ω = (ω0 + ω)/2, and the half difference,
δ = (ω0 − ω)/2, where ω0 is the natural frequency and ω is the forcing
frequency and rewrite the solution to the initial value problem in the
form (4.4.6).

(c) Plot the envelope, |(A sin δt)/(2ωδ)|, over the plot of the solution to the
initial value problem.
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(d) Discuss what is going on in this activity.

4.4.3 Forced Damped Harmonic Motion
Since perpetual motion does not really exist, we should consider what happens
when we add some damping to our harmonic oscillator,

x′′ + 2cx′ + ω2
0x = A cosωt. (4.4.11)

Example 4.4.7 Let us consider the differential equation

x′′ + 2x′ + 2x = 3 cos 4t. (4.4.12)

The corresponding homogeneous equation is

x′′ + 2x′ + 2x = 0,

which has solution
xh(t) = c1e

−t cos t+ c2e
−t sin t.

To find a particular solution for the equation (4.4.12), we will look for a solution
of the form xc = ae4it to the equation

x′′ + 2x′ + 2x = 3e4it (4.4.13)

and then set xp(t) to the real part of the solution. Substituting xc into the
lefthand side of (4.4.13), we obtain

x′′c + 2x′c + 2xc = (−14 + 8i)ae4it = P (4i)ae4it = 3e4it,

where P (λ) = λ2+2λ+2 is the characteristic polynomial of x′′+2x′+2x = 0.
Therefore,

a =
3

P (4i)
=

3

−14 + 8i
= − 3

130
(7 + 4i),

and the solution to the complex equation is

xc = − 3

130
(7 + 4i)e4it

= − 3

130
(7 + 4i)(cos 4t+ i sin 4t)

=
3

130
[(−7 cos 4t+ 4 sin 4t) + i(−4 cos 4t− 7 sin 4t)].

Thus, we can determine a particular solution by taking the real part of xc,

xp(t) =
3

130
(−7 cos 4t+ 4 sin 4t).

The general solution for (4.4.12) is

x(t) = xh(t) + xp(t) = c1e
−t cos t+ c2e

−t sin t+ 3

130
(−7 cos 4t+ 4 sin 4t).

It is easy to see that all solutions approach xp(t) as t→ ∞ no matter what the
initial conditions may be. However, it would be much more useful if we would
write the particular solution in the form

xp(t) = K cos(4t− ϕ)

for some constants K and ϕ rather than a linear combination of cos 4t and
sin 4t. □
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Returning to the general case, the associated homogeneous equation for
(4.4.11) is

x′′ + 2cx′ + ω2
0x = 0. (4.4.14)

The characteristic polynomial of (4.4.14),

P (λ) = λ2 + 2cλ+ ω2
0 , (4.4.15)

has roots
λ = −c±

√
c2 − ω2

0 .

If our harmonic oscillator is undedamped (c < ω0), then the solution to the
homogeneous equation (4.4.14) is

xh = e−ct(c1 cosβt+ c2 sinβt),

where β =
√
ω2
0 − c2.

As in Example 4.4.7, we will look for a particular solution to (4.4.11) by
examining the equivalent complex differential equation. That is, we shall look
for a solution of the form xc = aeiωt to the equation

x′′c + 2cx′c + ω2
0xc = Aeiωt, (4.4.16)

and then set xp equal to the real part of our solution. Substituting xc into the
right-hand side of (4.4.16), we obtain

x′′c + 2cx′c + ω2
0xc = [(iω)2 + 2c(iω) + ω2

0 ]ae
iωt = P (iω)aeiωt,

where P is the characteristic polynomial (4.4.15). Thus, equation (4.4.16)
becomes

P (iω)aeiωt = Aeiωt,

and
xc(t) = aeiωt =

A

P (iω)
eiωt = H(iω)Aeiωt,

where
H(iω) =

1

P (iω)
.

We say that H(λ) = 1/P (λ) is the transfer function.
Let us examine the transfer function more closely to see if we can use it to

write our particular solution in a more useable form. First, let us write

P (iω) = (iω)2 + 2c(iω) + ω2
0 = (ω2

0 − ω2) + 2icω.

in polar form,
P (iω) = Reiϕ = R(cosϕ+ i sinϕ),

where
R =

√
(ω2

0 − ω2)2 + 4c2ω2

and ϕ is the angle defined by the equations

cosϕ =
ω2
0 − ω2√

(ω2
0 − ω2)2 − 4c2ω2

,

sinϕ =
2cω√

(ω2
0 − ω2)2 − 4c2ω2

.



CHAPTER 4. SECOND-ORDER LINEAR EQUATIONS 283

Since 2cω > 0, we know that sinϕ > 0. Equivalently, 0 < ϕ < π. Thus,

ϕ = ϕ(ω) = cot−1

(
ω2
0 − ω2

2cω

)
.

Therefore, we can write the transfer function as

H(iω) =
1

P (iω)
=

1

R
e−iϕ.

We define the gain to be

G(ω) =
1

R
=

1√
(ω2

0 − ω2)2 + 4c2ω2
,

and we will rewrite the transfer function as

H(iω) = G(ω)e−iϕ(ω).

Thus, the solution to
x′′c + 2cx′c + ω2

0xc = Aeiωt

is
xc(t) = H(iω)Aeiωt = G(ω)Aei(ωt−ϕ). (4.4.17)

Taking the real part of (4.4.17), our particular solution is

xp(t) = Re(xc(t)) = G(ω)A cos(ωt− ϕ).

It is now clear that particular solution has the same frequency as the forcing
term. In addition, xp is out of phase with the driving force by the amount

ϕ = ϕ(ω) = cot−1

(
ω2
0 − ω2

2cω

)
.

The general solution to

x′′ + 2cx′ + ω2
0x = A cosωt

is

x(t) = xh(t) + xp(t) = e−ct(c1 cos(ηt) + c2 sin(ηt)) +G(ω)A cos(ωt− ϕ).

Since xh has the factor e−ct, the homogeneous part of the solution quickly
decays to zero as t → ∞. For this reason, xh is called the transient term
while xp is called the steady-state term.

Example 4.4.8 Let us examine the steady-state solution of the harmonic
oscillator in Example 4.4.7. We have already determined that the second-order
linear differential equation

x′′ + 2x′ + 2x = 3 cos 4t

has solution

x(t) = xh(t) + xp(t) = c1e
−t cos t+ c2e

−t sin t+ 3

130
(−7 cos 4t+ 4 sin 4t).

The natural frequency is ω0 =
√
2 ≈ 1.4142 If we choose the initial conditions

so that c1 = 0 and c2 = 1, our transient term is

xh(t) = e−ct sinβt = e−t sin t.
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Since c = 1, ω = 4, and A = 3, the gain is G(4) ≈ 0.0620, the amplitude of
the steady state solution is G(4) · 4 ≈ 0.2481. The phase is ϕ = ϕ(4) ≈ 2.6224.
The solution and the steady-state solution are given in Figure 4.4.9. As we
can see, transient solutions can be quite large when compared to steady-state
solutions.
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Figure 4.4.9 A forced damped harmonic oscillator and the steady-state solu-
tion.

□
Large transient currents can be destructive in electrical circuits. For ex-

ample, a light bulb usually burns out when a large transient flows through
an already weakened bulb. This, usually occurs at the time the light bulb is
turned out or turned off. Large transient currents are particularly harmful to
the hard drive in a computer. For this reason, computers should be left on
except in the case that they are not being used for a period of several days.

4.4.4 Important Lessons
• A forced damped harmonic oscillator,

x′′ + 2cx′ + ω2
0x = A cosωt

has homogeneous solution

xh = e−ct(c1 cos ηt+ c2 sin ηt),

where η =
√
ω2
0 − c2. A particular solution is given by

xp(t) = Re(xc(t)) = G(ω)A cos(ωt− ϕ),

where the phase angle ϕ is

ϕ = ϕ(ω) = cot−1

(
ω2
0 − ω2

2cω

)
and the gain G is given by

G(ω) =
1√

(ω2
0 − ω2)2 + 4c2ω2

.

• The amplitude and phase of the steady-state solution,

xp(t) = G(ω)A cos(ωt− ϕ),
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are determined by

ω2
0G =

1√
(1− s2)2 +D2s2

,

where ω = sω0 and D = 2c/ω0.

• In an undamped harmonic oscillators with a sinusoidal forcing term, the
natural frequency of the solution interacts with the frequency of the forc-
ing term. As the frequency of the forcing term approaches the natural
frequency of the equation, we can observe a phenomenon called reso-
nance. We can use the equation

x′′ + ω2
0x = A cosωt

to model an undamped harmonic oscillator with sinusoidal forcing.

• If the driving frequency is not equal to the natural frequency (ω ̸= ω0),
we have a particular solution

xp(t) =
A

ω2
0 − ω2

(cosωt− cosω0t).

If the two frequencies are close, we can see a phenomenon called beats.

• If the driving frequency is equal to the natural frequency, we have a
particular solution

xp(t) =
A

2ω0
t sinω0t.

In this case, we can see the resonance phenomenon.

• A forced damped harmonic oscillator,

x′′ + 2cx′ + ω2
0x = A cosωt

has homogeneous solution

xh = e−ct(c1 cos ηt+ c2 sin ηt),

where η =
√
ω2
0 − c2. A particular solution is given by

xp(t) = Re(xc(t)) = G(ω)A cos(ωt− ϕ),

where the phase angle ϕ is

ϕ = ϕ(ω) = cot−1

(
ω2
0 − ω2

2cω

)
and the gain G is given by

G(ω) =
1√

(ω2
0 − ω2)2 + 4c2ω2

.

4.4.5 Reading Questions
1. Describe what resonance means in your own words.
2. Describe in words alone what the steady state solution of a damped har-

monic oscillator is.

4.4.6 Exercises

Beats and Resonance. Solve the initial problems in Exercise Group 4.4.6.1–
6. Do you find any beats or resonance?
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1. y′′ + y = cos t, y(0) = 0, y′(0) = 0

2. y′′ + y = cos(11t/10), y(0) = 0, y′(0) = 0

3. y′′ + 4y = sin 2t, y(0) = 1, y′(0) = 0

4. y′′ + 4y = 3 sin(13t/12), y(0) = 1, y′(0) = −1

5. y′′ + 16y = 5 cos 4t, y(0) = 1, y′(0) = 0

6. y′′ + 16y = 5 cos(4t+ 1), y(0) = 0, y′(0) = 0

Plotting the Envelope for Beats. For each of the functions in Exer-
cise Group 4.4.6.7–10 compute the envelope function. Then plot y(t) and the
envelope function on the same set of axes.

7. y = cos 10t− cos 11t. 8. y = cos 11t− cos 12t.
9. y = sin 11t− sin 10t. 10. y = sin 12t− sin 11t.

11. Consider the function y = cos 10t− cos 11t.
(a) Find the mean frequency ω = (ω0 + ω)/2 and half difference δ =

(ω0 − ω)/2.

(b) Use (a) to show that

y = cos 10t− cos 11t = 2 sin
(
1

2
t

)
sin(

(
21

2
t

)
.

You will find the following trigonmetric identity very useful,

2 sinA sinB = cos(A−B)− cos(A+B).

(c) Using (b), plot the graph of y and 2 sin(t/2) on the same axes.
12. For large t, every solution of

y′′ + py′ + qy = cosωt

oscillates with angular frequency ω and amplitude A given by

A(ω, p, q) =
1√

(q − ω2)2 + p2ω2
.

That is, the amplitude of A is a function of the parameters ω, p, and q.

(a) Compute ∂A

∂ω
.

(b) For fixed p and q, let M(p, q) denote the maximum value of A(ω, p, q)
as a function of ω. Compute an expression for M(p, q).

(c) Set q = 1 and plot M(p, q) as a function of p.

(d) Explain why M(p, q) is proportional to 1/p as p→ 0.
13. Let us examine the amplitude and phase of the steady-state solution,

xp(t) = G(ω)A cos(ωt− ϕ),

where
G(ω) =

1√
(ω2

0 − ω2)2 + 4c2ω2
.

Now let s = ω/ω0 and D = 2c/ω0. These new constants, s and D, measure
the ratio of the driving frequency to the natural frequency and the effect
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of the damping force, respectively. Thus,

G =
1

ω2
0

√
(1− s2)2 +D2s2

or
ω2
0G =

1√
(1− s2)2 +D2s2

.

This expression shows us how the gain varies as s = ω/ω0 varies. The
natural frequency is fixed in

x′′ + 2cx′ + ω2
0x = A cosωt

and D = 2c/ω0 is proportional to the damping constant.

4.5 Projects for Second-Order Differential Equa-
tions

Project 4.5.1 Project—Tuning a Circuit. Differential equations prove
exceptional at modeling electrical circuits. In Subsection 4.1.1, we modeled
a simple RLC circuit, which is fundamental to larger circuit building. We
found that circuits with the three of the most fundamental electrical objects,
resistors, capacitors, and inductors, can be modeled by constant coefficient,
linear, second order differential equations. Consider the circuit in Figure 4.1.1.
We found that the circuit can be modeled by

LI ′′ +RI ′ +
1

C
I = E′(t), (4.5.1)

where I(t) is the current flowing through the circuit, E(t) is the impressed
voltage, R is the resistance R, and C is the capacitance. Of course we will
also need to know I(0) and I ′(0) if we wish to formulate an initial value prob-
lem. Notice that (4.5.1) is very similar to the spring-mass model developed in
Subsection 2.1.2,

mx′′ + bx′ + kx = f(t),

where m is the mass, b is the damping coefficient, and k is the spring constant
(Table 4.5.1).1

Table 4.5.1 Comparison of terms between spring-mass and RLC cir-
cuit differential equations

Spring-Mass Model RLC Circuit
mass m inductance L

damping b resistance R
spring constant k inverse of capacitance 1/C

forcing function f(t) derivative of induced voltage E′(t)

(a) Simple RLC Circuit Model, Solution, and Interpretation.
We now examine a circuit in which a current is present and does not have
a driving E(t), expecting things to dampen out, in this case current to
run out. Let us consider an RLC circuit as depicted in Figure 4.1.1 in
which we have an initial current, I(0) = 3.2 amps with a resistance of
R = 7 ohms, an inductance of L = 1 henry, and a capacitance of C = 0.1
farads. Since we have some current in the circuit already I(0) = 3.2 at
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the start we shall not need an inducing E(t), so E(t) = 0. Let us see
what happens to the current in the circuit by solving the appropriate
RLC circuit differential equation

1 · I ′′ + 7I ′ +
1

0.1
I = 0, I(0) = 3.2, I ′(0) = 0.

Of course, this initial value problem might be easier analyze in the form,

I ′′ + 7I ′ + 10I = 0, I(0) = 3.2, I ′(0) = 0. (4.5.2)

(i) Solve the RLC circuit differential equation (4.5.2) for I(t). If you
use Sage to solve this equation, remember that I is the reserved
symbol for i, the square root of −1.

(ii) Consider the values of R to be 0.007, 0.07, 0.7, 7, 70, and then 700,
and solve (4.5.2) in each case, keeping all other values the same.
Plot the solutions for the current in the circuit over the time interval
[0, 25] s with a vertical plot interval [−3, 3] in each case. Identify
each plot with its associated R value and describe what is happening
to the current, I(t), in each corresponding circuit over time, t.

Let us consider the differential (4.5.3) for an RLC circuit with driving
voltage E(t) = sin(ωt) (current I(t) = y(t)),

Ly′′ +Ry′ +
1

C
y = ω cos(ωt). (4.5.3)

We can use Sage to solve this equation.

t =var( ' t ' );
y = function( ' y ' )(t);
L = var( ' L ' ); assume(L < 0)
R = var( ' R ' ); assume(R > 5)
C = var( ' C ' ); assume(C > 5)
assume(C*R^2 + 4*R^2 - 4*L - 400 >0)
omega = var( ' omega ' ); assume(omega > 0)
DE = L*diff(y,t,2) + R*diff(y,t) + y/C ==

omega*cos(omega*t)
sol = desolve(DE, y, ivar = t, ics=[0, 0, 0])
sol.show()

The solution is pretty long, but notice that is the transient solution that
approaches zero as t→ ∞ and then there is the steady state solution,

ysteady state =
C2Rω2 sin (ωt)−

(
C2Lω3 − Cω

)
cos (ωt)

C2L2ω4 + (C2R2 − 2CL)ω2 + 1
. (4.5.4)

We would like to study gain, the ratio of the amplitude of the steady
state output voltage, Vout to the amplitude of the input voltage, Vin, or
Vout/Vin. We measure Vout as the amplitude of the steady state voltage
across the resistance R in the circuit or

Vout = R · Amplitude(ysteady state(t)).

In our case Vin is just 1 for E(t) = sin(ωt).
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(b) Trigonometry Pause and Phase Angle.
The initial value problem

ay′′ + by′ + cy = 0, y(0) = y0, y′(0) = 0

has the following solution when the discriminant b2 − 4ac < 0,

y(t) = Ae−bt/2a sin
(√

4ac− b2

2a
t

)
+Be−bt/2a cos

(√
4ac− b2

2a
t

)
(4.5.5)

= e−bt/2a

(
A sin

(√
4ac− b2

2a
t

)
+B cos

(√
4ac− b2

2a
t

))
. (4.5.6)

If we let ω =
√
4ac− b2/2a, then (4.5.5) simplifies to

y(t) = e−bt/2a(A sin(ωt) +B cos(ωt)). (4.5.7)

We wish to combine the sine and cosine terms in (4.5.7) into one sine
function with a phase angle. We can do this because of the trigonometric
identity,

sin(α+ β) = sinα cosβ + sinβ cosα.

Letting α = ωt and β = θ, we have

A sin(ωt) +B cos(ωt) =
√
A2 +B2

(
A√

A2 +B2
sin(ωt) + B√

A2 +B2
cos(ωt)

)
=
√
A2 +B2(cos θ sin(ωt) + sin θ cos(ωt))

=
√
A2 +B2 sin(ωt+ θ)

where θ = arctan(B/A) (Figure 4.5.2). The angle θ is called the phase
shift.

A

B
√
A2 +B2

θ

Figure 4.5.2 A triangle diagram that is used in obtaining a single phase
shifted solution from the sum of sine and cosine terms in solution

The differential equation

y′′ + 6y′ + 25y = 0, y(0) = 1, y′(0) = 0

has solution
y(t) =

1

4
e−3t(3 sin(4t) + 4 cos(4t)). (4.5.8)
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The phase shifted form of (4.5.8) is

y(t) =
5

4
e−3t sin

(
4t+ arctan

(
4

3

))
=

5

4
e−3t sin

(
4

(
t+

(arctan(4/3)
4

))
=

5

4
e−3t sin(4(t+ 0.231824)),

where ω = 4 and θ = arctan(4/3) = 0.231824 radians.

0.5 1.0 1.5 2.0
t

6

4

2

2

4

6

y

0.231824

sin(4t)
3sin(4t) + 4cos(4t)

Figure 4.5.3 A plot of the oscillating portion (not damped), 3 sin(4t) +
4 cos(4t), of the solution (4.5.7) with its simple frequency curve sin(ωt).
Notice the phase angle here of 0.2318 radians from bottom to bottom
illustrating what we mean by out of phase by a phase angle of 0.2318
radians.

(i) Solve the initial value problem

y′′ + 10y′ + 29y = 0, y(0) = 1, y′(0) = 0

(ii) Convert the solution to phase angle format and compute the phase
angle θ in radians.

(iii) Plot both solutions in Task 4.5.1.b.i and Task 4.5.1.b.ii on the same
axis over the interval [0, 2] to confirm your analysis. What should
you see?

(c) Back to the Circuit.
In our study of phase angle representation in the previous section we saw
that the sin(ωt) and cos(ωt) terms of (4.5.4) can be combined into one
sine term (albeit with a phase angle) with one amplitude,

Amplitude(ysteady state) = R

√
C2ω2

C2L2ω4 + (C2R2 − 2CL)ω2 + 1
.

(4.5.9)
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Thus, our gain (recall, gain is the ratio of the amplitude of the steady
state output voltage, Vout, to the amplitude of the input voltage, Vin) is

gain = R

√
C2ω2

C2L2ω4 + (C2R2 − 2CL)ω2 + 1
.

Here, Vin = 1 for E(t) = sin(ωt) and has amplitude 1, which is a function
of R, L, C, and ω. Gain is a measure of the response of the circuit to
input voltage E(t), which in this case is E(t) = sin(ωt).
Let us fix R at 1 ohm and L at 1 henry and see what gain is in this case
as a function of C over a range of ω values. Let us “tune” this circuit by
changing C, the size of the capacitance in the circuit and see how gain
changes as input voltage frequency, ω, changes.

10 20 30 40 50
input frequency - ω

0.1

0.2

0.3

0.4

0.5

0.6

0.7

gain
C= 0.0005
C= 0.005
C= 0.05
C= 0.5

Figure 4.5.4 Plot of gain as a function of input frequency, ω, for various
values of capacitance, C = 0.5, 0.05, 0.005, 0.0005 farads in with R = 1
ohm and L = 1 henry.

Figure 4.5.4 illustrates the power of differential equation modeling. For
we can alter parameters in our equation and see the results in a physi-
cal (in this case electrical) system. Indeed, we see in this plot that for
a capacitance of C = 0.0005 farads if we have an input voltage with a
frequency around ω = 45 (44.7214 to be precise) then the gain is great-
est. Optimization is a calculus problem and we merely have to take the
derivative of gain with respect to ω and find where it is 0. All other
frequencies give smaller gain for this particular capacitance. In fact, we
can say that as we decrease our capacitance the optimal frequency; i.e.,
frequency which gives highest gain, decreases and we might want to look
into this for a more exact relationship. We shall do that in Task 4.5.1.d.
Put another way, we see that if our input voltage has a specific frequency,
ω, there is a unique capacitance, C, for this circuit that will maximize
our gain. By changing C we can tune our circuit to maximize gain for
a given input frequency, ω. This is, in fact, how we tune a radio, for we
change the capacitance of the radio’s circuit so as to maximize the gain
for the frequency (on our dial) that we wish to hear. So, the next time
you try to find the station where Cousin Brucie is dedicating a Top Ten
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song from “Billie Bob” to “Sally May” know that a differential equation
describes exactly what you are doing. How’s that for cool?

(i) Use your understanding of RLC circuits to show for an imposed
E(t) = sin(ωt) on the RLC circuit given by

Ly′′ +Ry′ +
1

C
y = ω cos(ωt), y(0) = 0, y′(0) = 0

the maximum gain is obtained when ω = 1/
√
LC and thus we could

tune our radio by changing the inductance L as well, if that were as
convenient as changing the capacitance, which it is not. So let us
stick to tuning by changing the capacitance C.

(d) Tune the Radio.
Tune the Radio. The Amplitude Modulated (AM) radio carrier fre-
quencies are in the frequency range 535–1605 kHz. One Hz means 1
cycle per second while kHz means 1, 000 cycles per second. The unit Hz
is called a hertz. Carrier frequencies of 540 to 1600 kHz are assigned at
10 kHz intervals. The (Frequency Modulated (FM) radio band is from
88 to 108 MHz.2 Recall 1 kHz means 1,000 cycles per second. So 660
kHz is oscillation at the rate of 660,000 cycles per second. We offer up a
“radio”,

L
dI2

dt2
+R

dI

dt
+

1

C
I = E′(t), (4.5.10)

where E(t) = sin(ωt), and ask you to tune in several stations by changing
the capacitance and computing the optimal gain for these stations.
We will have to tell the circuit what initial current is present; i.e., I(0) = 0
usually until we turn the switch on and also we can presume there is no
change in the current intially; i.e., I ′(t) = 0. Let us build this radio with
the following values: E(t) = sin(ωt), L = 0.033 henrys, R = 100 ohms,
and C in farads can vary as needed to tune to various input frequencies
ω. We note that if we wish to have, say 540 kHz, then ω = 540,000 · 2π,
and in general to have x kHz we will need ω = x · 1000 · 2π.

(i) Solve the differential equation (4.5.10) for the radio circuit.
(ii) Collect the coefficients A and B of the steady state sin(ωt) and

cos(ωt) terms, respectively. Show that all other terms will dissipate,
i.e. go to zero quickly, leaving only sin(ωt) and cos(ωt) terms.

(iii) Using the information above compute the gain as a function of ca-
pacitance C and input voltage frequency ω.

(iv) For a given input voltage frequency ω determine the maximum gain
for this circuit.

(v) For several AM frequencies, say 540 kHz (ω = 540000 · 2 · π), 880
kHz (ω = 880000 · 2 · π), and 1520 kHz (ω = 1520000 · 2 · π), plot
gain as a function of the capacitance C to demonstrate that your
maximum gain is what your formula in Task 4.5.1.d.iii predicts and
that your radio is tuned in.

1This project is adapted from Brian Winkel (2016), “4-060-S-CircuitTuner,” www.simiode.
org/resources/2848.

2HyperPhysics. 2009. AM and FM Radio Frequencies. yperphysics.phy-astr.gsu.

https://www.simiode.org/resources/2848
https://www.simiode.org/resources/2848
http://hyperphysics.phy-astr.gsu.edu/hbase/audio/radio.html
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edu/hbase/audio/radio.html Accessed 18 September 2016.

http://hyperphysics.phy-astr.gsu.edu/hbase/audio/radio.html
http://hyperphysics.phy-astr.gsu.edu/hbase/audio/radio.html


Chapter 5

Nonlinear Systems

5.1 Linearization

Objectives
• To understand that a nonlinear system

x′(t) = f(x, y)

y′(t) = g(x, y)

can be approximated near each equilibrium point (x0, y0) by a linear
system by using a Taylor series approximation for f and g.

• To understand that the Jacobian matrix,

J =

(
fx(x0, y0) fy(x0, y0)

gx(x0, y0) gy(x0, y0)

)
,

of a nonlinear system

x′(t) = f(x, y)

y′(t) = g(x, y)

is useful for classifying equilibrium solutions of the system as stable or
unstable.

• To understand that linearization can fail for some systems.

In Chapter 3, we explored how to solve linear systems. However, if we are
asked to solve a nonlinear system such as

dx

dt
= x− 3y + xy2

dy

dt
= 2x− 4y − x2y,

we are faced with a much more difficult task. In general, it may not be possi-
ble to find solutions for a nonlinear system in terms of elementary functions.
However, for a given modeling problem, we can ask many questions that may
be answered without finding an explicit solution for the associated system of
differential equations. For example, what are the equilibrium points? Are the
equilibrium points stable? Do closed solution curves exist in the phase plane?

294
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5.1.1 Equilibrium Solutions
An equilibrium solution for a first-order system of differential equations

x′(t) = f(x, y)

y′(t) = g(x, y)

is a point (x0, y0) such that

f(x0, y0) = g(x0, y0) = 0.

Notice that neither x nor y is changing at this point. If we have the initial
conditions, x(0) = x0 and y(0) = y0, then the solution to the system is x(t) =
x0 and y(t) = y0. Of course the interesting question is what happens if our
initial conditions are close to an equilibrium solution. Do solutions tend toward
the equilibrium solution, away from the equilibrium solution, or is there a
combination of the two?

One of the most useful methods of determining the nature of an equilibrium
solution for a given nonlinear system is to approximate the nonlinear system
with a linear system. More specifically, an equilibrium solution occurs for the
linear system

dx

dt
= f(x, y)

dy

dt
= g(x, y)

when an x-nullcline intersects a y-nullcline. That is, when a curve defined
by dx/dt = f(x, y) = 0 intersects a curve defined dy/dt = g(x, y) = 0, we
have an equilibrium solution. Since the x and y-nullclines are simply curves in
the xy-plane, we can approximate them locally by intersecting straight lines.
Translating the pair of intersection lines to the origin, we obtain a linear system,
and we can apply everything that we learned about such systems in Chapter 3.
Example 5.1.1 Consider the system

dx

dt
= x− 3y + xy2

dy

dt
= 2x− 4y − x2y.

From

dx

dt
= x− 3y + xy2 = 0

dy

dt
= 2x− 4y − x2y = 0,

we can quickly conclude that the only equilibrium solution to the system is
(0, 0). The phase portrait for this system is given in Figure 5.1.2. If we have
the initial conditions x(0) = 1 and y(0) = 1, we can see that the solution tends
toward the origin as t → ∞. However, it is unclear from the phase portrait if
the solution curves of all initial value problems with initial conditions near the
origin tend towards the equilibrium solution as t→ ∞.
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Figure 5.1.2 Phase Portrait for x′ = x− 3y + xy2 and 2x− 4y − x2y

Since the nonlinear terms of the system do not contribute much towards
dx/dt and dy/dt for values of x and y near zero, we can determine the nature
of the equilibrium solution by examining the system consisting of only linear
terms on the right-hand side of the equation,

dx

dt
= x− 3y

dy

dt
= 2x− 4y.

The matrix for this linear system,

A =

(
1 −3

2 −4

)
,

has eigenvalues λ = −1 and µ = −2 with eigenvectors u = (3, 2) and v = (1, 1),
respectively. The general solution for this linear system is

x(t) = 3c1e
−t + c2e

−2t

y(t) = 2c1e
−t + c2e

−2t.

This indeed suggests that solutions near the origin tend towards the origin as
t→ ∞. In this case, we say that the equilibrium solution is stable. Of course,
if we are given an initial condition such as x(0) = −0.5 and y(0) = 1. □
Example 5.1.3 A Competing Species Model. Suppose that x and y are
the population of two distinct species that compete for the same resources. For
example, two species of fish may compete for the same food in a lake or sheep
and cattle competing for the same grazing land. Recall from Section 2.2 that
we can model two competing species using the following system of first-order
differential equations,

dx

dt
= αx

(
1− x

M

)
− βxy

dy

dt
= γy

(
1− y

N

)
− δxy.

The first term in each equation is the logistic growth of each species. The
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second term in each equation tells how each species is affected by interacting
with the competing species.

More specifically, let us consider the following system,

dx

dt
= 2x

(
1− x

2

)
− xy (5.1.1)

dy

dt
= 3y

(
1− y

3

)
− 2xy. (5.1.2)

It is easy to see that the four equilibrium solutions: (0, 0), (0, 3), (2, 0), and
(1, 1). We can view the direction field, the phase plane, and some solution
curves for this system in Figure 5.1.4.

0 1 2 3 4
x(t)

0

1

2

3

4
y(
t)

Figure 5.1.4 A Competing Species Model
Let us analyze what happens at the equilibrium solution (1, 1). If we decide

on an appropriate change of variables, we can translate the entire system so
that this equilibrium solution is at the origin. If we let

u = x− 1

v = y − 1,

then

du

dt
=

d

dt
(x− 1) =

dx

dt
,

dv

dt
=

d

dt
(y − 1) =

dy

dt
.

Equations (5.1.1) and (5.1.2) now become

du

dt
= −u− v − u2 − uv, (5.1.3)

dv

dt
= −2u− v − 2uv − v2. (5.1.4)

As before we consider only the linear part of equations (5.1.4) and (5.1.4) are

du

dt
= −u− v, (5.1.5)
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dv

dt
= −2u− v. (5.1.6)

The idea is that the linear part is a good local approximation to the original
equations much like a tangent line is a good local approximation to a smooth
function in calculus. We can determine the local nature of the equilibrium
solution by examining the eigenvalues of the matrix

A =

(
−1 −1

−2 −1

)
.

The eigenvalues of A are λ = −1 +
√
2 = 0.4142 and µ = −1−

√
2 ≈ −2.4142

with eigenvectors u = (1,
√
2 ) ≈ (1, 1.4142) and v = (1,−

√
2 ) ≈ (1,−1.4142),

respectively. The solution to the linear system is now

x(t) = c1e
λt

(
1√
2

)
+ c2e

µt

(
1

−
√
2

)
.

or

x(t) = c1e
λt + c2e

µt (5.1.7)
y(t) = c1

√
2eλt − c2

√
2eµt. (5.1.8)

If we have initial conditions x(0) = 3 and y(0) = 4, one can quickly de-
termine that c1 = 3/2 +

√
2 ≈ 2.9142 and c2 = 3/2 −

√
2 ≈ 0.0859, and

equations (5.1.7) and (5.1.8) become

x(t) = 2.9142e0.4142t + 0.0859e−2.4142t (5.1.9)
y(t) = 4.1213e0.4142t − 0.1213e−2.4142t. (5.1.10)

As t → ∞ notice that both x(t) and y(t) become very large and tend away
from the origin.

We can conclude that the equilibrium solution (1, 1) is unstable. That is,
tend away from the equilibrium solution as t→ ∞ if one population begins with
a slight advantage over the other. If neither popluation has an initial advantage
over the other, then the solution curve will approach the equilibrium solution
as t→ ∞. □
Example 5.1.5 A Nonpolynomial Example. If systems such as the
following can be approximated by linear systems,

dx

dt
= y

dy

dt
= −y − sinx.

Certainly, this sytems has an equilibrium solution at (0, 0) (Figure 5.1.6). We
can expand sinx into a power series,

dy

dt
= −y − sinx = −y −

(
x− x3

3!
+
x5

5!
− · · ·

)
.

Thus, this system can be approximated by the linear system

dx

dt
= y

dy

dt
= −y − x.
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See Figure 5.1.7.
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Figure 5.1.6 Phase portrait of x′ = y and y′ = −y − sinx
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Figure 5.1.7 Phase portrait of x′ = y and y′ = −y − x

□
Example 5.1.8 For example, consider the system

dx

dt
= x2 − 4x− y + 4 (5.1.11)

dy

dt
= x3 − y. (5.1.12)

The x and y-nullclines of this system are the curves y = x2−4x+4 and y = x3,
respectively. Since the two nullclines intersect only at (1, 1), we have a single
equilibrium solution. From the phase plane, it appears that (1, 1) is a stable
equilibrium solution. That is, all solution curves starting sufficiently close to
(1, 1) will approach the equilibrium solution as t→ ∞ (Figure 5.1.9).
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Figure 5.1.9 Phase portrait for the system (5.1.11)–(5.1.12)
Making the substitution u = x − 1 and v = y − 1, simply translates the

entire system to the origin, and we obtain the system

du

dt
= u(u− 2)− v (5.1.13)

dv

dt
u(u2 + 3u+ 3)− v. (5.1.14)

Our new system has u and v-nullclines v = u(u − 2) and v = u(u2 + 3u + 3),
respectively. Notice that we have simply moved the phase portrait of the orig-
inal system so that our equilibrium solution is now at the origin. Furthermore,
we can approximate the u and v-nullclines by their tangent lines v = −2u and
v = 3u, respectively. From Figure 5.1.9, it appears that we are approximating
our original system with a linear system.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
u(t)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

v(
t)

Figure 5.1.10 Phase portrait for the system (5.1.13)–(5.1.14)
□

To determine the general case, we must approximate a nonlinear system

x′(t) = f(x, y) (5.1.15)
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y′(t) = g(x, y) (5.1.16)

near each equilibrium point (x0, y0) with a linear system. The idea is to move
the equilibrium solution to the origin with a change of coordinates and then
approximate the nonlinear system with a linear system. In order to move the
equilibrium solution to the origin, we will introduce new variables

u = x− x0

v = y − y0.

If (x, y) is close to the equilibrium solution (x0, y0), then (u, v) will be close to
the origin. Under this change of coordinates,

du

dt
=

d

dt
(x− x0) =

dx

dt
= f(x, y) = f(x0 + u, y0 + v).

Similarly, dv/dt = dy/dt = g(x0 + u, y0 + v).
In order to approximate the nonlinear system with a linear system, we will

use a Taylor series in two variables. That is, we can write

f(x0 + u, y0 + v) = f(x0, y0) + fx(x0, y0)u+ fy(x0, y0)v

+
1

2
fxx(x0, y0)u

2 + fxy(x0, y0)uv +
1

2
fyy(x0, y0)v

2 + · · · .

If we only use the linear terms of the Taylor series, we obtain a fairly accurate
approximation of f provided we are near the equilibrium solution. Of course,
f and its linear approximation may be quite different for values far away from
the equilibrium solution. The linearization of the system of equations (5.1.15)–
(5.1.16) now becomes

du

dt
= f(x0, y0) + fx(x0, y0)u+ fy(x0, y0)v

dv

dt
= g(x0, y0) + gx(x0, y0)u+ gy(x0, y0)v.

Since (x0, y0) is an equilibrium solution, the constant terms vanish in each
equation and

du

dt
= fx(x0, y0)u+ fy(x0, y0)v

dv

dt
= gx(x0, y0)u+ gy(x0, y0)v.

If we write our linearization in matrix form, we have(
du/dt

dv/dt

)
=

(
fx(x0, y0) fy(x0, y0)

gx(x0, y0) gy(x0, y0)

)(
u

v

)
.

The matrix
J =

(
fx(x0, y0) fy(x0, y0)

gx(x0, y0) gy(x0, y0)

)
is the Jacobian matrix of the system. We can now classify equilibrium
solutions of nonlinear systems by examining the eigenvalues of the Jacobian
matrix of the system or by using the trace-determinant plane. For example, if
D = det(J) > 0 and T = tr(J) < 0, we have a sink. We can determine the
sink to be spiral or nodal by examining whether (T,D) lies above or below the
parabola T 2 = 4D in the trace-determinant plane.

It is important to note that linearization only tells us the local story. A so-
lution curve might behave quite differently if it is far away from the equilibrium
solution.
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Example 5.1.11 In Example 5.1.8, we considered the system

dx

dt
= x2 − 4x− y + 4

dy

dt
= x3 − y.

The Jacobian matrix of this system is

J =

(
fx(x0, y0) fy(x0, y0)

gx(x0, y0) gy(x0, y0)

)
=

(
2x0 − 4 −1

3x20 −1

)
For the equilibrium solution (1, 1),

J =

(
−2 −1

3 −1

)
.

Since J has eigenvalues λ = (−3 ± i
√
11)/2, the equilibrium solution will act

as a spiral sink for initial values close to (1, 1). □
Activity 5.1.1 Classifying Equilibrium Solutions for Nonlinear Sys-
tems. Find all of the nullclines and equilbrium solutions for each of the fol-
lowing systems. Classify each equilibrium solution as stable or unstable. Plot
the nullclines and a direction field for each system.1

(a)

dx

dt
= x(2 + x) + 2xy

dy

dt
= y(2 + y) + 2xy

(b)

dx

dt
= x(2 + x)− 2xy

dy

dt
= y(2 + y)− 2xy

(c)

dx

dt
= x(2 + x) + 2xy

dy

dt
= y(2 + y)− 2xy

(d)

dx

dt
= x(2 + x) + 2xy

dy

dt
= y2(2 + y)− 2xy

1You will probably find Sage very useful.
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5.1.2 When Linearization Fails
There are at least two cases when linearization does not give us the information
that we seek. First, it might well be the case that the linear terms vanish in
the nonlinear system. For example, the system

dx

dt
= xy

dy

dt
= −x2 + xy

has an equilibrium solution at the origin, but this linearization of this system
vanishes.

A more subtle example is the system

dx

dt
= y − (x2 + y2)x

dy

dt
= −x− (x2 + y2)y.

The origin is an equilibrium solution, and the linearization of this system is

dx

dt
= y

dy

dt
= −x.

The eigenvalue of the matrix corresponding to the linear system,

A =

(
0 1

−1 0

)
,

are λ = ±i. Thus, the solution curves of the linear system are simply circles
about the origin. However, the nonlinear system acts quite differently. In the
nonlinear system, solutions spiral out slowly from the origin (Figure 5.1.12).
This system has no periodic solutions.

0.200.150.100.050.000.050.100.150.20
x(t)

0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20

y(
t)

Figure 5.1.12 When linearization fails

5.1.3 Important Lessons
• We can approximate a nonlinear system

x′(t) = f(x, y)



CHAPTER 5. NONLINEAR SYSTEMS 304

y′(t) = g(x, y)

near each equilibrium point (x0, y0) with a linear system by using a Taylor
series approximation for f and g. The matrix of our linear approximation,

J =

(
fx(x0, y0) fy(x0, y0)

gx(x0, y0) gy(x0, y0)

)
,

is the Jacobian matrix of the system. We can classify nonlinear systems
by examining the Jacobian matrix of the system and using the trace-
determinant plane.

• Linearization only tells us how solutions behave near the equilibrium
point. A solution curve might behave quite differently if it is far away
from the equilibrium solution.

• In some cases, linearization can fail.

5.1.4 Reading Questions
1. What does it mean to linearize a nonlinear system?
2. How might the linearization of a nonlinear system fail?

5.1.5 Exercises

Linearization. For each of the systems in Exercise Group 5.1.5.1–6,

(a) Plot and label the nullclines for equation in the system.

(b) Find all of the equilibrium solutions for the system.

(c) Use the Jacobian to classify each equilibrium solution (spiral source,
nodal sink, etc.).

1.

dx

dt
= −6x− 2x2 − 3xy

dy

dt
= y − xy − y2

2.

dx

dt
= x(2− x− y)

dy

dt
= 2y(2− x− 2y)

3.

dx

dt
= x(5− x− y)

dy

dt
= y(20− x− 2y)

4.

dx

dt
= x(−x2 − y2 + 25)

dy

dt
= y(x+ 2y − 10)

5.

dx

dt
= x(y2 − x)

dy

dt
= y(y − 1)

6.

dx

dt
= y

dy

dt
= − cosx+ y

7. Consider the following three systems
(a)

x′ = 3 sinx+ y

y′ = 4x+ cos y − 1
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(b)

x′ = −3 sinx+ y

y′ = 4x+ cos y − 1

(c)

x′ = −3 sinx+ y

y′ = 4x+ 3 cos y − 3

All three systems have an equilibrium solution at (0, 0). Which two sys-
tems have phase portraits with the same “local picture” near (0, 0)? Jus-
tify your answer.

8. Let us consider an epidemic model for a city. We make the following
additional assumptions about our model.

• The city has a constant birth rate rate of α persons per day. All
new born babies are susceptible to the disease.

• Infected people either recover or die after a certain number of days.
If an individual recovers, he or she is immune.

If we let S(t) be the number of susceptible individuals at time t and I(t)
be the number of infected individuals at time t, our assumptions give rise
to the following system of differential equations,

dS

dt
= −αSI + β

dI

dt
= −γI + αSI.

The constant α is determined by the probability of an interaction between
a susceptible individual and an infected individual, and γ is the rate at
which infected individuals are removed from the population. If

dS

dt
= −αSI + β = 0

dI

dt
= −γI + αSI = 0,

then both the susceptible and infected populations do not change. This
will occur at

S0 =
γ

α

I0 =
β

γ
.

We are interested in the behavior of solutions near (S0, I0). If solutions
approach this equilbrium point, then the disease will become endemic to
the population.

9. Consider the predator-prey system modeled by the following equations,

dx

dt
= ax− αxy = x(a− αy)

dy

dt
= −by + βxy = y(−b+ βx).
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(a) Find the equilibrium solutions of this system.

(b) What are the eigenvalues of the Jacobian for each equilibrium solu-
tion?

(c) What, if anything, can be said about the nature of the equilibrium
solutions of the system?

5.2 Hamiltonian Systems

Objectives
• To understand that a Hamiltonian system is a system of the form

dx

dt
=
∂H

∂y
(x, y)

dy

dt
= −∂H

∂x
(x, y),

where H : R2 → R2 is a smooth function. In particular, H is called a
Hamiltonian function for the system.

• To understand that if

dx

dt
=
∂H

∂y
(x, y)

dy

dt
= −∂H

∂x
(x, y),

is a Hamiltonian system, then H is constant along any solution curve. In
particular, the solution curves of a Hamiltonian system are the level sets
of H.

• To understand how to compute H for a Hamiltonian system

• To understand that a Hamiltonian system has no spiral sinks or sources.

An undamped harmonic oscillator, my′′ + ky = 0, can be written as the
system

y′ = v

v′ = − k

m
y.

Now suppose that (y(t), v(t)) is a solution curve in the yv-plane. We will
calculate the slope of the solution curve, dv/dy. Using the fact from calculus
that the derivative of an inverse function is

d

dx
f−1(x) =

1

f ′(x)
,

we have
dv

dy
=
dv

dt
· dt
dy

=
dv/dt

dy/dt
= − ky

mv
.

In general for the system

dx

dt
= f(x, y)
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dy

dt
= g(x, y),

we have
dy

dx
=
g(x, y)

f(x, y)
.

Using separation of variables to solve the equation
dv

dy
= − ky

mv
,

we obtain the solution
1

2
mv2 +

1

2
ky2 = C, (5.2.1)

where C is a constant. The first term of (5.2.1) is the kinetic energy function
of the harmonic oscillator

K =
1

2
mv2,

while the second term is the potential energy function

U =

∫ y

0

ks ds =
1

2
ky2.

For this reason, we call the function

E = K + U =
1

2
mv2 +

1

2
ky2

the total energy function of the harmonic oscillator. Equation (5.2.1) tells
us that energy is conserved. That is, the sum of the potential energy and the
kinetic energy is constant.

5.2.1 The Nonlinear Pendulum
While pendulums have long been used in clocks to keep time, they have also
been used to measure gravity as well as used in early seismometers to measure
the effect of earthquakes. One of the more interesting uses of a pendulum
has been to measure the rotation of the earth. In 1851, the French physicist,
Léon Foucault, used a pendulum (Figure 5.2.1) to demonstrate that the earth
actually rotated on its axis. The fact that the earth rotates had been known
for a long time, but Foucault’s experiment gave the first simple proof of this
phenomena.

Figure 5.2.1 Foucault Pendulum Clock—California Academy of Sciences
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Let us consider a pendulum made of a light rod of length L called the arm of
the pendulum with a massm on the end of the rod called the bob (Figure 5.2.2).
We will ignore the mass of the arm in our system. The position of the bob is
given by θ(t), which we will measure in a counterclockwise direction. We will
assume that θ(0) is when the bob is in the vertical position.

m

Lθ

Figure 5.2.2 The nonlinear pendulum
There are two forces acting on the pendulum—gravity and friction. The

position of the bob at time t is

(L sin θ(t),−L cos θ(t)),

and the velocity of the bob is L(dθ/dt), the length of the velocity vector (Fig-
ure 5.2.3). The component of the acceleration that points along the direction
of motion of the bob is

L
d2θ

dt2
.

We can take the force due to friction to be proportional to the velocity,

−bLdθ
dt
,

where b ≥ 0. Thus, Newton’s second law tells us that

mL
d2θ

dt2
= −bLdθ

dt
−mg sin θ

or
d2θ

dt2
+

b

m

dθ

dt
+
g

L
sin θ = 0.

As a system, we can model the pendulum as
dθ

dt
= v

dv

dt
= − b

m
v − g

L
sin θ.

Lθ

mg sin θ

mg

Figure 5.2.3 Forces on the nonlinear pendulum
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If there is no damping for our pendulum, we say that we have an ideal
pendulum. In this case,

dθ

dt
= v

dv

dt
= − g

L
sin θ.

Since
dv

dθ
= −g sin θ

Lv
,

we know that the energy function for the pendulum is

E(θ, v) =
1

2
v2 − g

L
cos θ.

Of course, E(θ, v) is constant on the ideal pendulum.

5.2.2 Hamiltonian Systems
The ideal pendulum and the undamped harmonic oscillator are examples of
Hamiltonian systems. More specifically, a Hamiltonian system is a system
of the form

dx

dt
=
∂H

∂y
(x, y)

dy

dt
= −∂H

∂x
(x, y),

where H : R2 → R is a smooth function.
Example 5.2.4 The system

dx

dt
= −2x− 3y2

dy

dt
= −3x2 + 2y

is Hamiltonian since for H(x, y) = x3 − 2xy − y3

∂H

∂y
= −2x− 3y2

∂H

∂x
= −(−3x2 + 2y).

□
Example 5.2.5 In the case of the harmonic oscillator and ideal pendulum,
H is just the energy function. For the harmonic oscillator, the Hamiltonian
function is

E = K + U =
1

2
mv2 +

1

2
ky2.

In this case,

∂E

∂v
= y′ = mv

−∂E
∂y

= v′ = −ky.

A change of variables (y = my) tells us that this system is equivalent to the
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system

y′ = v

v′ = − k

m
y.

For the ideal pendulum

∂E

∂v
=
dθ

dt
= v

−∂E
∂θ

=
dv

dt
= − g

L
sin θ,

where
E(θ, v) =

1

2
v2 − g

L
cos θ.

□
The following theorem tells the importance of Hamiltonian systems. That

is, the solution curves of the system are simply the level sets of the Hamiltonian
function.
Theorem 5.2.6 Let

dx

dt
=
∂H

∂y
(x, y)

dy

dt
= −∂H

∂x
(x, y),

be a Hamiltonian system, where H : R2 → R. Then H is constant along any
solution curve.
Proof. Let (x(t), y(t)) be a solution curve for the system. Using the chain rule

dH

dt
=
∂H

∂x

dx

dt
+
∂H

∂y

dy

dt

=
∂H

∂x

(
∂H

∂y

)
+
∂H

∂y

(
−∂H
∂x

)
= 0.

■
Theorem 5.2.6 tells us how to draw the solution curves in the phase plane

without solving the system. Assuming that the Hamiltonian function H is
not constant on any open set in R2, we simply need to plot the level curves,
H(x, y) = C. The solutions of the system live on these level sets, and all we
need to do is find the direction of the solution curve. However, this is quite
easy since we know the vector field of the system. Furthermore, the equilibrium
points of the Hamiltonian system occur at the critical points of H (where the
partials of H vanish). For example, we can see the solution curves of

∂H

∂y
= −2x− 3y2

∂H

∂x
= −(−3x2 + 2y).

in Figure 5.2.7.
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Figure 5.2.7 Solution curves of x′ = x− 3y2 and y′ = −y

5.2.3 The Ideal Pendulum Revisited
The ideal pendulum

dθ

dt
= v

dv

dt
= − g

L
sin θ.

is Hamiltonian, since the total energy function

H(θ, v) = E(θ, v) =
1

2
v2 − g

L
cos θ. (5.2.2)

is the Hamiltonian function for the system. If we set g/L = 1, then the solution
curves of the system are just the level curves of (5.2.2). In Figure 5.2.8, the
closed ellipses correspond to the normal motion of a pendulum, while cosine
curves correspond to a pendulum that always rotates in the same direction.
The curves that join the equilibrium points correspond to the pendulum that
rotates exactly to the top of the arc and then rotates back in the other direction.

−4π −3π −2π −π 0 π 2π 3π 4π

θ(t)

−4

−3

−2

−1

0

1

2

3

4

v(
t)

Figure 5.2.8 The ideal pendulum
Hamiltonian systems are rather rare. Given a system, we need a test to see

if it is indeed Hamiltonian. For the system
dx

dt
= f(x, y)
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dy

dt
= g(x, y),

we wish to find a function H(x, y) such that

∂H

∂y
= f(x, y)

∂H

∂x
= −g(x, y).

If such a function exists, then

∂f

∂x
=

∂2H

∂x∂y
=

∂2H

∂y∂x
= −∂g

∂y
.

Thus,
∂f

∂x
= −∂g

∂y
,

if our system is Hamiltonian.
Example 5.2.9 We already know that the system

dx

dt
= −2x− 3y2

dy

dt
= −3x2 + 2y

is Hamiltonian. Indeed,
∂f

∂x
= −∂g

∂y
= −2.

□
The condition that

∂f

∂x
= −∂g

∂y
,

is also sufficient for
dx

dt
= f(x, y)

dy

dt
= g(x, y),

to be a Hamiltonian system. That is, we can construct a Hamiltonian function
if ∂f/∂x = −∂g/∂y. If

f(x, y) =
∂H

∂y
(x, y),

then
H(x, y) =

∫
f(x, y) dy + ϕ(x).

Differentiating H with respect to x, tells us that

∂H

∂x
(x, y) =

∂

∂x

∫
f(x, y) dy + ϕ′(x) = −g(x, y).

Now we can determine ϕ(x) by solving the first-order differential equation

ϕ′(x) = −g(x, y)− ∂

∂x

∫
f(x, y) dy.

We summarize our results in the following theorem.
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Theorem 5.2.10 Let

dx

dt
= f(x, y)

dy

dt
= g(x, y),

where f and g are continuously differentiable.
1. If the system is Hamiltonian, then

∂f

∂x
= −∂g

∂y
. (5.2.3)

2. If equation (5.2.3) is true on a rectangle R, then the system is Hamilton-
ian on R and

H(x, y) =

∫
f(x, y) dy + ϕ(x),

where
ϕ′(x) = − ∂

∂x

(∫
f(x, y) dy

)
− g(x, y).

Example 5.2.11 As an example, we will show how we constructed the Hamil-
tonian function given in Example 5.2.4 for the system

dx

dt
= −2x− 3y2

dy

dt
= −3x2 + 2y

First,

H(x, y) =

∫
f(x, y) dy+ ϕ(x) =

∫
(−2x− 3y2) dy+ ϕ(x) = −2xy− y3 + ϕ(x).

Consequently,

ϕ′(x) = −g(x, y)− ∂

∂x

∫
f(x, y) dy

= −(−3x2 + 2y)− ∂

∂x
(−2xy − y3)

= 3x2 − 2y + 2y

= 3x2,

and ϕ(x) = x3 + C, where C is any constant. If we choose C = 0, our
Hamiltonian function is

H(x, y) = −2xy − y3 + ϕ(x) = −2xy − y3 + x3.

□
Example 5.2.12 As a second example, suppose

dx

dt
= −x2 cos y sinx

dy

dt
= x2 cosx sin y + 2x(sinx sin y − 1).
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Since
∂f

∂x
= x2 cosx cos y − 2x cos y sinx = −∂g

∂y

our system is Hamiltonian. To find a Hamiltonian, we compute

H(x, y) =

∫
f(x, y) dy+ϕ(x) =

∫
(−x2 cos y sinx) dy+ϕ(x) = −x2 sinx sin y+ϕ(x).

Thus,

ϕ′(x) = −g(x, y)− ∂

∂x

∫
f(x, y) dy

= −(x2 cosx sin y + 2x(sinx sin y − 1))− (2x sinx sin y − x2 cosx sin y)
= 2x,

and ϕ(x) = x2 + C. Letting C = 0, our Hamiltonian function is

H(x, y) = x2 − x2 sinx sin y = x2(1− sinx sin y).

Solution curves for this system are given in Figure 5.2.13.

6 4 2 0 2 4 6
x(t)

6

4

2

0

2

4

6

y(
t)

Figure 5.2.13 Solution curves for Example 5.2.12
□

Activity 5.2.1 Hamiltonian Systems. For each of the systems,
1. Show that the system is Hamiltonian.

2. Find a Hamiltonian function H(x, y) for the system.

3. Plot the level sets of H(x, y).

4. Plot the phase portrait of the system, describing any equilibrium solu-
tions.1

(a)

dx

dt
= −ex sin y

dy

dt
= −ex cos y
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(b)

dx

dt
= x2 cosx sin y

dy

dt
= −x2 cos y sinx+ 2x(cosx cos y − 1)

5.2.4 Equilibrium Solutions of Hamiltonian Systems
The system that we studied in Example 5.2.4,

dx

dt
= −2x− 3y2

dy

dt
= −3x2 + 2y

has equilibrium solutions at (0, 0) and (−2/3, 2/3). Referring to the phase
portrait for the system (Figure 5.2.7), we might guess that (0, 0) is a saddle,
and (−2/3, 2/3) is either a center or a spiral sink. Since solution curves must
follow contours for the Hamiltonian function H(x, y) = x3 − 2xy − y3, spiral
sinks do not make sense.

Let us examine the possible types of equilibrium solutions for a Hamiltonian
system. Suppose that (x0, y0) is an equilibrium solution for the system

dx

dt
= f(x, y) =

∂H

∂y
(x, y)

dy

dt
= g(x, y) = −∂H

∂x
(x, y).

In order to determine the nature of the equilibrium solution, we will compute
the Jacobian matrix of the system at (x0, y0),

J =

(
fx(x0, y0) fy(x0, y0)

gx(x0, y0) gy(x0, y0)

)
=

(
Hyx(x0, y0) Hyy(x0, y0)

−Hxx(x0, y0) −Hxy(x0, y0)

)
.

If we let

α = Hxy(x0, y0) = Hyx(x0, y0)

β = Hyy(x0, y0)

γ = −Hxx(x0, y0),

then J becomes (
α β

γ −α

)
.

The characteristic polynomial of this matrix is

λ2 − α2 − βγ.

Therefore, our matrix has eigenvalues

λ = ±
√
α2 + βγ,

and we have the following possibilities.

• If α2+βγ > 0, we have two real eigenvalues of opposite signs. Therefore,
our equilibrium solution is a saddle.

1Use technology.
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• If α2 + βγ = 0, the only eigenvalue is zero.

• If α2 + βγ < 0, we have two purely imaginary eigenvalues.
In particular, a Hamiltonian system has no spiral sinks or sources.

Returning to Example 5.2.4, the Jacobian matrix is

J =

(
Hyx(x0, y0) Hyy(x0, y0)

−Hxx(x0, y0) −Hxy(x0, y0)

)
=

(
−2 −6y0

−6x0 2

)
.

For the equilibrium solution (0, 0), we have eigenvalues λ = ±2, which tells
us that the origin is a nodal saddle. The Jacobian matrix corresponding to
(x0, y0) = (−2/3, 2/3) is

J =

(
−2 −4

−4 2

)
.

Since J has eigenvalues λ = ±2
√
5 i. Therefore, solution curves near (−2/3, 2/3)

should look like closed orbits.

5.2.5 Important Lessons
• A pendulum can be modeled by the equation

d2θ

dt2
+

b

m

dθ

dt
− g

L
sin θ = 0.

or the system
dθ

dt
= v

dv

dt
= − b

m
v − g

L
sin θ.

• A Hamiltonian system is a system of the form
dx

dt
=
∂H

∂y
(x, y)

dy

dt
= −∂H

∂x
(x, y),

where H : R2 → R2 is a smooth function.

• If
dx

dt
=
∂H

∂y
(x, y)

dy

dt
= −∂H

∂x
(x, y),

is a Hamiltonian system, then H is constant along any solution curve. In
particular, the solution curves of a Hamiltonian system are the level sets
of H.

• If the system
dx

dt
= f(x, y)

dy

dt
= g(x, y),

is Hamiltonian, then
∂f

∂x
= −∂g

∂y
.
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• If fx = −gy is true on a rectangle R, then the system

dx

dt
= f(x, y)

dy

dt
= g(x, y),

is Hamiltonian on R and

H(x, y) =

∫
f(x, y) dy + ϕ(x),

where
ϕ′(x) = − ∂

∂x

(∫
f(x, y) dy

)
− g(x, y).

• A Hamiltonian system has no spiral sinks or sources.

5.2.6 Reading Questions
1. Explain in your own words what a Hamiltonian system is.
2. What types of equilibrium solutions are possible in a Hamiltonian system?

5.2.7 Exercises

Hamiltonian Systems. For each of the systems in Exercise Group 5.2.7.1–4,

(a) Show that the system is Hamiltonian.

(b) Find a Hamiltonian function H(x, y) for the system.

(c) Plot the level sets of H(x, y).

(d) Plot the phase portrait of the system, describing any equilibrium solu-
tions.

1.

dx

dt
= 3y2

dy

dt
= −3x2

2.

dx

dt
= 3y2 − 4x

dy

dt
= 3x2 + 4y

3.

dx

dt
= x cos y + 2y

dy

dt
= − sin y

4.

dx

dt
= −x sin y − cos y

dy

dt
= − cos y

5. Consider an ideal pendulum with bob mass m and arm length l given by
dθ

dt
= v

dv

dt
= −g

l
sin θ.

(a) What is the linearization of the ideal pendulum system at the equi-
librium point (0, 0)?

(b) Using g = 9.8 m/s2, how should l and m be chosen so that small
swings of the pendulum have period 1 second?



CHAPTER 5. NONLINEAR SYSTEMS 318

(c) For the linearization of the ideal pendulum at (0, 0), the period of
oscillation is independent of the amplitude. Does the same state-
ment hold for the ideal pendulum itself? Is the period of oscillation
the same no matter how high the pendulum swings? If not, will the
period be shorter or longer for high swings?

(d) An ideal pendulum clock— a clock containing an ideal pendulum
that “ticks” once for each swing of the pendulum arm— keeps perfect
time when the pendulum makes very high swings. Will the clock rum
fast or slow if the amplitude of the swings is very small?

(e) If the arm length of the ideal pendulum is doubled from l to 2l, what
is the effect on the period of small amplitude swinging solutions?

(f) What is the rate of change of the period of small amplitude swings
as l varies?

(g) Will an ideal pendulum clock that keeps perfect time on earth run
fast or slow on the moon?

6. Describe the phase portrait for

x′ = x2 − 1

y′ = −xy + a(x2 − 1),

when a < 0.
7. Consider the autonomous system

x′ = y2 + cosx
y′ = 1 + 2x+ y sinx.

(a) Show that this system is a Hamiltonian system.

(b) Find a Hamiltonian function for this system.

5.3 More Nonlinear Mechanics

Objectives
• To understand that the equation for the nonlinear pendulum with damp-

ing

dθ

dt
= v

dv

dt
= − b

m
v − g

L
sin θ.

can be analyzed by examining dH/dt, where H is the Hamiltonian func-
tion for the ideal pendulum. The function H for this system is an example
of a Lyapunov function.

• To understand how to use Lyapunov functions to determine the stability
of an equilibrium solution for a nonlinear system.

• To understand gradient systems and the types of solutions for gradient
systems.
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The equation for the nonlinear pendulum with damping is

d2θ

dt2
+

b

m

dθ

dt
+
g

L
sin θ = 0.

As a system, we can model the pendulum as

dθ

dt
= v (5.3.1)

dv

dt
= − b

m
v − g

L
sin θ. (5.3.2)

This system is not Hamiltonian since

∂v

∂θ
= 0,

but
− ∂

∂v

(
− b

m
v − g

L
sin θ

)
=

b

m
̸= 0.

We shall have to invent new techniques to analyze such systems.

5.3.1 The Nonlinear Pendulum and Damping
To find the nullclines of the nonlinear pendulum, let

dθ

dt
= v = 0

dv

dt
= − b

m
v − g

L
sin θ = 0.

The θ-nullcline is v = 0, while the v-nullcline is

v = −mg
bL

sin θ.

It follows that the equilibrium solutions for the nonlinear pendulum occur at

(θ, v) = (0, 0), (±π, 0), (±2π, 0), . . . .

This makes sense since the pendulum should not move if the bob is initially
hanging downward (θ = 2πn) or is at the very top or the very bottom of
a swing (θ = (2n + 1)π). Since our first goal is to determine the nature of
each equilibrium solution, we will compute the Jacobian of the system (5.3.1)–
(5.3.2). This is just (

0 1

−(g/L) cos θ −b/m

)
.

At the equilibrium solutions (θ, v) = (0, 0), (±2π, 0), (±4π, 0), . . ., the pendu-
lum is hanging downward, and the Jacobian matrix becomes

J1 =

(
0 1

−g/L −b/m

)
.

On the other hand, if (θ, v) = (±π, 0), (±3π, 0), (±5π, 0), . . ., the pendulum is
at the top of its swing, and the Jacobian matrix is

J2 =

(
0 1

g/L −b/m

)
.
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We will first examine the case where the pendulum is hanging downward.
The characteristic polynomial of J1 is

λ2 +
b

m
λ+

g

L
.

Thus, the eigenvalues of J1 are

λ = − b

2m
±

√(
b

2m

)2

− g

L
. (5.3.3)

We can analyze the nature of these eigenvalues by examining the sign of

∆ =

(
b

2m

)2

− g

L
.

• If ∆ < 0, the eigenvalues of the Jacobian are complex. Since the real
part of (5.3.3) is negative, these equilibrium solutions are spiral sinks.

• If ∆ > 0, we have two distinct real eigenvalues. Since(
b

2m

)2

− g

L
<

(
b

2m

)2

,

we know that (
b

2m

)
>

√(
b

2m

)2

− g

L
.

Thus, both of our eigenvalues must be negative. Therefore, we have a
nodal sink.

• If ∆ = 0, we have a single real negative eigenvalue. Thus, we also have a
sink.

Consequently, if we assume that b is small, then ∆ < 0 and we will only have
spiral sinks (Figure 5.3.1).

−3π −2π −π 0 π 2π 3π

θ(t)

−4

−3

−2

−1

0

1

2

3

4

v(
t)

Figure 5.3.1 Nullclines of the damped pendulum
Now let us consider the type of equilibrium solutions that we will obtain

when the pendulum is standing upright. These solutions will occur at (θ, v) =
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(±π, 0), (±3π, 0), (±5π, 0), . . .. The characteristic polynomial of the Jacobian
matrix J2 at these points is

λ2 +
b

m
λ− g

L
;

hence, the eigenvalues of J2 are

λ = − b

2m
±

√(
b

2m

)2

+
g

L
. (5.3.4)

Furthermore, we have distinct real eigenvalues since(
b

2m

)2

+
g

L
> 0.

In fact, the eigenvalues will have opposite sign

λ1 = − b

2m
+

√(
b

2m

)2

+
g

L
> 0

λ2 = − b

2m
−

√(
b

2m

)2

+
g

L
< 0.

Thus, the equilibrium solutions are saddles.

5.3.2 Lyapunov Functions
The function

H(θ, v) =
1

2
v2 − g

L
cos θ

is a Hamiltonian function for the ideal pendulum

dθ

dt
= v

dv

dt
= − g

L
sin θ,

since dH/dt = 0. However, if b > 0, then our system

dθ

dt
= v

dv

dt
= − b

m
v − g

L
sin θ.

has damping and

dH

dt
=
∂H

∂θ

dθ

dt
+
∂H

∂v

dv

dt

=
( g
L

sin θ
)
v + v

(
− b

m
v − g

L
sin θ

)
= − b

m
v2 ≤ 0.

Thus, H is decreasing whenever v ̸= 0. Hence, solution curves in the θv-plane
cross the level sets of H moving from larger to smaller H values.
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We can now devise a strategy for sketching the phase plane of the damped
pendulum. If b/m and v are both small, the value of H decreases slowly along
the solutions (Figure 5.3.1).

The function H in the case of the damped pendulum is an example of
a Lyapunov function. Specifically, a function L(x, y) is called a Lyapunov
function for the system

dx

dt
= f(x, y)

dy

dt
= g(x, y)

if for every solution of the system, (x(t), y(t)), that is not an equilibrium solu-
tion of the system,

dL

dt
≤ 0,

with strict inequality except possible for a discrete set of ts.
As an example, let us return to the damped harmonic oscillator

dy

dt
= v

dv

dt
= −qy − pv.

If p = 0, then
H(y, v) =

1

2
v2 +

q

2
y2

is a Hamiltonian function for our system. Recall that we also call H the energy
function of the system. However, if p > 0 and (y(t), v(t)) is a solution for our
system, we have

dH

dt
(y, v) =

∂H

∂y

dy

dt
+
∂H

∂v

dy

dt

= (qy)v + v(−qy − pv)

= −pv2 ≤ 0.

Consequently, H(y(t), v(t)) decreases at a nonzero rate (except when v = 0),
and H is a Lyapunov function. The level sets of H are ellipses in the yv-plane.
As H decreases, the energy dissipates and the ellipses become spiral sinks.

It is easy to see that the system

dx

dt
= y + αx(x2 + y2) (5.3.5)

dy

dt
= −x+ αy(x2 + y2) (5.3.6)

has an equilibrium solution at the origin no matter what the value of α is. The
Jacobian of this system is

J =

(
3αx2 + αy2 1 + 2αxy

−1 + 2αxy αx2 + 3αy2

)
.

Since our equilibrium solution is the origin,

J =

(
0 1

−1 0

)
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and the linearization of our system at the origin is

dx

dt
= y

dy

dt
= −x.

Since the eigenvalues of

J =

(
0 1

−1 0

)
,

are ±i, the linearization has a center at the origin. The phase plane consists of
circles about the origin (Figure 5.3.2). Notice that the linearization does not
depend on α.

3 2 1 0 1 2 3
x(t)

3

2

1

0

1

2

3

y(
t)

Figure 5.3.2 Solution curves for the linearization.
Now let us consider what happens to system (5.3.5)–(5.3.6) if we consider

different values of α. If α = 5, the situation is quite different than the lin-
earization of our system. A solution curve spirals out from the origin as t→ ∞
(Figure 5.3.3). As t→ −∞, the solution curve spirals back into the origin, but
it seems to stop before actually reaching the origin. If α = −5 on the other
hand, we seem to have the opposite behavior with the solution curves spiraling
into the origin as t → ∞. As before, the solutions do not seem to reach the
origin (Figure 5.3.4).
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Figure 5.3.3 Solution curves α = 5.
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Figure 5.3.4 Solution curves for α = −5.
Suppose that (x(t), y(t)) is a solution to the nonlinear system. The function

r(t) =
√
x(t)2 + y(t)2

is the distance of a point on the solution curve to the origin in the xy-plane. To
see how r changes as t → ±∞, we can compute the derivative of r. Actually,
it is easier to work with the equation r(t)2 = x(t)2 + y(t)2. Thus,

d

dt
r2 =

d

dt
(x(t)2 + y(t)2)

= 2x
dx

dt
+ 2y

dy

dt

= 2x(y + αx(x2 + y2)) + 2y(−x+ αy(x2 + y2))

= 2α(x2 + y2)2

= 2αr4.



CHAPTER 5. NONLINEAR SYSTEMS 325

Since (r2)′ = 2rr′, we have
r′ = αr3 (5.3.7)

for r ̸= 0.
Equation (5.3.7) is separable, and it is quite easy to determine the solution

as
r(t) =

1√
C − 2αt

.

However, we do not need to know this solution to determine the nature of the
equilibrium solution at the origin. If α > 0 and t→ −∞, equation (5.3.7) tells
us that r(t) → 0. Thus, any solution to the system (5.3.5)–(5.3.6) we have a
spiral sink at the origin if α = −5. Even though linearization fails to tell us
the nature of the equilibrium solution at the origin, we were able to determine
the nature of the equilibrium solution with further analysis.

We will now try to exploit what we have learned from our last example
and from Hamiltonian systems to see if it is possible to analyze more general
systems. If we consider solutions, (x(t), y(t)), of the system

dx

dt
= f(x, y)

dy

dt
= g(x, y),

we might ask how a function V (x, y) varies along the solution curve. We already
have an answer if our system is Hamiltonian, and V is the corresponding
Hamiltonian function. In this case dV /dt = 0. In general, we know that

dV

dt
(x(t), y(t)) =

∂V

∂x

dx

dt
+
∂V

∂y

dy

dt

=
∂V

∂x
f(x, y) +

∂V

∂y
g(x, y).

Thus, if we let
V̇ =

∂V

∂x
f(x, y) +

∂V

∂y
g(x, y),

we know that
dV

dt
(x(t), y(t)) = V̇ (x(t), y(t)).

Thus, V is increasing along a solution curve if V̇ (x, y) > 0 and decreasing along
a solution curve if V̇ (x, y) < 0. Our example suggests that we can determine
this information without finding the solution.

Recall that the gradient of a function V : R2 → R is

∇V =

(
∂V

∂x
,
∂V

∂y

)
.

If
F(x, y) =

(
f(x, y)

g(x, y)

)
,

then
V̇ = ∇V · F,

is the directional derivative of V in the direction of F.
Let us use this new information about V to obtain information about equi-

librium solutions of our system. We do know that V (x, y) graphs as a surface
in R3 and

V (x, y) = constant
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gives the contour lines or level curves of the surface in the xy-plane.1 We also
know that the gradient of V points in the direction that V is increasing the
fastest and that the gradient is orthogonal to the level curves of V . Thus, if
V̇ (x, y) > 0, we know that V is increasing in the direction of the vector field F
and the elevation of the solution curve through (x, y) in R3 is increasing. That
is, the solution curve is traveling uphill. Similarly, if V̇ (x, y) < 0, we know
that the solution curve at (x, y) is going downhill.2

Now suppose that V is a real-valued function defined on a set S in the xy-
plane, where the point x0 = (x0, y0) is in S. We say that V is positive definite
if V (x) > 0 for all x in S, where x ̸= x0, and V is positive semidefinite
if V (x) ≥ 0. Similarly, we say that V is negative definite and negative
semidefinite if V (x) < 0 and V (x) ≤ 0, respectively.

For example, if we consider the system for a harmonic oscillator

y′ = v

v′ = − k

m
y − b

m
v,

then the energy function,

E(y, v) =
1

2
mv2 +

1

2
ky2,

is positive definite.
Theorem 5.3.5 Suppose that the system

dx

dt
= f(x, y)

dy

dt
= g(x, y)

has an equilibrium solution at (x0, y0). Let V be a continuously differentiable
function defined on a neighborhood U of (x0, y0) that is positive definite with
minimum at (x0, y0).

1. If V̇ is negative semidefinite on U , then (x0, y0) is a stable equilibrium
solution. That is, any solution that starts near the equilibrium solution
will stay near the equilibrium solution.

2. If V̇ is negative definite on U , then (x0, y0) is an asymptotically stable
equilibrium solution or a sink.

Recall our example,

dx

dt
= y + αx(x2 + y2)

dy

dt
= −x+ αy(x2 + y2).

The function V (x, y) = x2 + y2 is positive definite on R2, with an isolated
minimum at the origin. We can compute

V̇ =
∂V

∂x
(x, y)f(x, y) +

∂V

∂y
(x, y)g(x, y)

= 2x(y + αx(x2 + y2)) + 2y(−x+ αy(x2 + y2))

1See Figures 1 and 2 in John Polking, Albert Boggess, and David Arnold. {\it Differential
Equations}. Prentice Hall, Upper Saddle River, NJ, 2001, p. 611.

2The argument that we have made here also works in higher dimensions.
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= 2α(x2 + y2)2.

If α < 0, then V̇ is negative definite on R2. Theorem 5.3.5 tells us that the
origin is a stable equilibrium point.

The function V in Theorem 5.3.5 is called a Lyapunov function. If we
compare Theorem 1 to using linearization to determine stability of an equilib-
rium solution, we will find that we can apply this result where linearization fails.
Also, Lyapunov functions are defined on a domain U , where linearization only
tells us what happens on a small neighborhood around the equilibrium solution.
Unfortunately, there are no general ways of finding Lyapunov functions.

5.3.3 Gradient Systems
Let S be a real-valued function on the xy-plane. The gradient of S is

∇S =

(
∂S

∂x
,
∂S

∂y

)
.

The system

dx

dt
= f(x, y)

dy

dt
= g(x, y)

is a gradient system if

f(x, y) =
∂S

∂x

g(x, y) =
∂S

∂y
.

For example, the system

dx

dt
= x− x3

dy

dt
= −y

is a gradient system, where

S(x, y) =
x2

2
− x4

4
− y2

2
+ 8.

Now, let us see what happens on the solution curves of this gradient system.
If (x(t), y(t)) is a solution curve,

dS

dt
=
∂S

∂x

dx

dt
+
∂S

∂y

dy

dt
= (x− x3)2 + y2 ≥ 0.

Thus, S increases at the point on the solution curve where the gradient of S
is nonzero. That is, S increases at every point on the solution curve except at
the equilibrium points.

In general, suppose that

dx

dt
=
∂S

∂x
dy

dt
=
∂S

∂y
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is a gradient system. Since

dS

dt
(x(t), y(t)) =

∂S

∂x

dx

dt
+
∂S

∂y

dy

dt
=

(
∂S

∂x

)2

+

(
∂S

∂y

)2

≥ 0,

we know that S increases on every solution to the system except at the critical
points of S(x(t), y(t)).

Let us see what this means in terms of the linearization of the system. The
Jacobian matrix of (f, g) is

J =

(
fx fy
gx gy

)
=

(
Sxx Sxy

Syx Syy

)
.

Since Sxy = Syx, the matrix J must have the form

J =

(
α β

β γ

)
,

where α = Sxx, β = Sxy, and γ = Syy. The characteristic polynomial of J is

λ2 − (α+ γ)λ+ αγ − β2.

Therefore, the eigenvalues are

λ =
1

2
(α+ β)± 1

2

√
(α− γ)2 + 4β2.

Since we have real eigenvalues, a gradient system can have no spiral sources,
spiral sinks, or centers.

For example, x2 + y2 is a Lyapunov function for the system

dx

dt
= −x+ y

dy

dt
= −x− y.

However, the origin is a spiral sink, so this system cannot be a gradient sys-
tem.

5.3.4 Important Lessons
• The equation for the nonlinear pendulum with damping

dθ

dt
= v

dv

dt
= − b

m
v − g

L
sin θ.

can be analyzed by examining dH/dt, where H is the Hamiltonian func-
tion for the ideal pendulum. The functionH for this system is an example
of a Lyapunov function.

• Let V be a real-valued function defined on a set S in the xy-plane such
that the point x0 = (x0, y0) is in S and V (x0) = 0.

◦ We say that V is positive definite if V (x) > 0 for all x in S, where
x ̸= x0.

◦ We say that V is positive semidefinite if V (x) ≥ 0 for all x in S.
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◦ We say that V is negative definite if V (x) < 0 for all x in S,
where x ̸= x0.

◦ We say that V is negative semidefinite if V (x) ≤ 0 for all x in
S.

• Suppose that the system

dx

dt
= f(x, y)

dy

dt
= g(x, y)

has an equilibrium solution at (x0, y0). Let V be a continuously differen-
tiable function defined on a neighborhood U of (x0, y0) that is positive
definite with minimum at (x0, y0).

1. If V̇ is negative semidefinite on U , then (x0, y0) is a stable equilib-
rium solution. That is, any solution that starts near the equilibrium
solution will stay near the equilibrium solution.

2. If V̇ is negative definite on U , then (x0, y0) is an asymptotically
stable equilibrium solution or a sink.

We can use these results to analyze the behavior of equilibrium solutions
where linearization fails. The function V is called a Lyapunov function.
We have no general methods for finding Lyapunov functions.

• The system

dx

dt
= f(x, y)

dy

dt
= g(x, y)

is a gradient system if

f(x, y) =
∂S

∂x

g(x, y) =
∂S

∂y
,

where S is a real-valued function on the xy-plane. Since

dS

dt
(x(t), y(t)) =

(
∂S

∂x

)2

+

(
∂S

∂y

)2

≥ 0,

S increases on every solution to the system except at the critical points
of S(x(t), y(t)). Since the eigenvalues of a gradient system are real, a
gradient system has no spiral sources, spiral sinks, or centers.

5.3.5 Reading Questions
1. Explain in your own words what a Lyapunov function is.
2. Explain in your own words what a gradient system is.
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5.3.6 Exercises

Positive Definite Functions. Consider each of the functions in Exercise
Group 5.3.6.1–6 on a neighborhood of (0, 0). Determine if the function is
positive definite, positive semidefinite, negative definite, negative semidefinite,
or none of the previous. Justify your conclusion.

1. V (x, y) = 2x2 + y2 2. V (x, y) = −3x2

3. V (x, y) = x2 + y 4. V (x, y) = 9x2 − 6xy + y2

5. V (x, y) = −2x2 − y2 6. V (x, y) = −(x+ y)2

7. Consider the system

dx

dt
= −x+ y2

dy

dt
= 3x2 − 2y.

(a) Find the equilibrium solutions of the system. Which one of the
equilibrium solutions is stable?

(b) Verify that the function

V (x, y) =
x2

2
+
y2

4

is a Lyapunov function for the system, and calculate V̇ (x, y).

(c) Sketch the level sets of V .

(d) Sketch the phase portrait of the system.
8. Consider the system

dx

dt
= y

dy

dt
= − sinx.

(a) Verify that the function

V (x, y) =
y2

2
− cosx+ 1

is a Lyapunov function for the system, and calculate V̇ (x, y).

(b) Sketch the level sets of V .

(c) Sketch the phase portrait of the system.
9. Consider the system

dx

dt
= y

dy

dt
= −x− y

4
+ x2.

(a) Verify that the function

V (x, y) =
y2

2
+
x2

2
− x3

3
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is a Lyapunov function for the system.

(b) Sketch the level sets of V .

(c) Sketch the phase portrait of the system.

Gradient Systems. Which of the systems in Exercise Group 5.3.6.10–13 are
gradient systems. If the system is a gradient system, find a gradient function.

10.

dx

dt
= 12x2 − 6xy2

dy

dt
= −6x2y + 2y

11.

dx

dt
= 10xy − y cotx

dy

dt
= 5x2 − tanx

12.

dx

dt
= 2 cosx cos y

dy

dt
= −2 sinx sin y.

13.

dx

dt
= 3x+ 4y

dy

dt
= −4x+ 3y

14. Suppose that S = x2 + 2y3.
(a) What is the gradient system with the vector field given by the gra-

dient of S?

(b) Sketch graph of S and the level sets of S for −5 ≤ x ≤ 5 and
−5 ≤ y ≤ 5.

(c) Sketch the phase portrait of the system that you found in (a) for
−5 ≤ x ≤ 5 and −5 ≤ y ≤ 5.

15. Suppose that S = x3 − 2xy2.
(a) What is the gradient system with the vector field given by the gra-

dient of S?

(b) Sketch graph of S and the level sets of S for −5 ≤ x ≤ 5 and
−5 ≤ y ≤ 5.

(c) Sketch the phase portrait of the system that you found in (a) for
−5 ≤ x ≤ 5 and −5 ≤ y ≤ 5.

16. Suppose that S = x cos y + y cosx.
(a) What is the gradient system with the vector field given by the gra-

dient of S?

(b) Sketch graph of S and the level sets of S for −5 ≤ x ≤ 5 and
−5 ≤ y ≤ 5.

(c) Sketch the phase portrait of the system that you found in (a) for
−5 ≤ x ≤ 5 and −5 ≤ y ≤ 5.

17. Lobster Navigation. Lobsters are a family (Nephropidae, synonym
Homaridae) of marine crustaceans. They have long bodies with muscular
tails and live in crevices or burrows on rocky, sandy, or muddy bottoms
from the shoreline to beyond the edge of the continental shelf. Lobsters
are omnivores and typically eat live prey such as fish, mollusks, other crus-
taceans, worms, and some plant life. They scavange if necessary. Because
lobsters live in murky environments at the bottom of the ocean, they
mostly use their antennae as sensors. Lobsters can ”smell” their food by
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using four small antennae on the front of their heads and tiny sensing
hairs that cover their bodies.

Let us assume that a lobster moves in a plane. If the position of the
lobster is (x(t), y(t)) at time t, then the lobster will head in the direction
of a velocity vector, (x′(t), y′(t)), at time t. If S(x, y) is the concentration
of the chemicals emanating from a potential food source, say a dead fish,
then the lobster will move in the direction of the greatest increase S.
However, this direction is just the gradient vector of S, (∂S/∂x, ∂S/∂y).
Therefore, the motion of the lobster is described by the system

dx

dt
=
∂S

∂x
dy

dt
=
∂S

∂y
.

Suppose that S(x, y) is defined on the rectangle −3 ≤ x ≤ 3 and
−3 ≤ y ≤ 3 by

S(x, y) =
y2

2
− y4

4
− x2

2
+ 6.

(a) What is the gradient system for S?

(b) Show that

d

dt
S(x(t), y(t)) =

∂S

∂x

dx

dt
+
∂S

∂y

dy

dt
≥ 0.

Hence, we can deduce that S is increasing whenever ∇S ̸= 0.

(c) Sketch the level sets of S for −3 ≤ x ≤ 3 and −3 ≤ y leq3.

(d) Sketch the vector field given by

dx

dt
=
∂S

∂x
dy

dt
=
∂S

∂y
.

What do you notice about the two plots?

(e) If

S(x, y) = x2 + y2 − x4 + y4

4
− 5x2y2 + 50,

how many dead fish will there be? Where are the dead fish located?

Hint. You may find Sage useful.

5.4 The Hopf Bifurcation

Objectives
• To understand that Hopf bifurcations; that is, bifurcations for systems

parameterized by α, occur if an attracting periodic solution encircling an
equilibrium solution develops as α passes through the bifurcation value.
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If we consider the phase portrait of a system

dx

dt
= f(x, y)

dy

dt
= g(x, y),

we may see closed orbits and various types of equilibrium solutions. If we
make a slight change in the system, then we might reasonably expect the
phase portrait to change slightly. For example, a closed orbit might expand or
contract, an equilibrium solution might shift, or a spiral source might tighten
up, but we would not expect new equilibrium solutions to appear or a spiral
source to turn into a spiral sink. However, this may be exactly what happens.
If such a change occurs in the system through an adjustment of a parameter,
we say a bifurcation has occurred.

5.4.1 Bifurcations
The simplest bifurcations occur when an equilibrium solution appears, dis-
appears, or splits into two or more equilibrium solutions. For example, the
system

dx

dt
= α+ x2

dy

dt
= −y

has no equilibrium solution if α > 0 (Figure 5.4.1). However, we have a
single equilibrium solution at the origin if α = 0 and two equilibrium solutions,
(±

√
−α, 0), if α < 0.

10 5 0 5 10
x(t)

10

5

0

5

10

y(
t)

Figure 5.4.1 Solutions for α > 0

The Jacobian of the system

dx

dt
= α+ x2

dy

dt
= −y
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is
J(x, y) =

(
2x 0

0 −1

)
.

If α = 0, then J has eigenvalues 0 and −1. This is not an elementary equi-
librium point such a saddle, a sink, or a spiral source. We call this type of
equilibrium solution a saddle-node. On the right half of the xy-plane, the
equilibrium solution resembles a saddle, while on the left half it resembles a
sink (Figure 5.4.2).

10 5 0 5 10
x(t)

10

5

0

5

10

y(
t)

Figure 5.4.2 Solutions for α < 0

If α < 0, then

J =

(
2
√
−α 0

0 −1

)
or
(
−2

√
−α 0

0 −1

)
.

In the first case, we have a saddle since the eigenvalues are real and of opposite
sign. In the second case, we have a nodal sink, since both eigenvalues are nega-
tive. The two equilibrium solutions move in opposite directions as α decreases.
We can summarize what happens for various values of α with a bifurcation
diagram such as the one in Figure 5.4.3.
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x= −
√
−α , Stable Equilibrium

Figure 5.4.3 Bifurcation diagram

5.4.2 The Hopf Bifurcation
Now let us consider an entirely different type of bifurcation by examining the
system

dx

dt
= αx+ 5y − x(x2 + y2)

dy

dt
= −5x+ αy − y(x2 + y2).

The origin is an equilibrium solution for all values of α. The linearization of
our system is

dx

dt
= αx+ 5y

dy

dt
= −5x+ αy.

Since the eigenvalues of this system are α ± 5i, we can easily determine the
nature of of our linearization. If α < 0, we have a spiral sink. As α moves
from negative values to positive values, the origin changes to a center (α = 0),
and then to a spiral source (α > 0).

In the case of the nonlinear system, the origin is still a spiral sink for
α > 0 (Figure 5.4.4). If α > 0, the origin is still a spiral source (Figure 5.4.5).
However, something quite different happens at α = 0. The origin is stable
equilibrium solution with solutions spiraling into the origin very slowly. As α
increases past zero, the equilibrium solution destabilizes and becomes a source.
In addition, a closed orbit of radius

√
α develops. Solutions inside of this closed

orbit spiral out towards the orbit, while solutions outside of the orbit spiral
inward (Figure 5.4.6).
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Figure 5.4.4 Solutions for α < 0
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Figure 5.4.5 Solutions for α = 0
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Figure 5.4.6 Solutions for α > 0

To see exactly what happens as α passes zero and becomes positive, we will
rewrite our system in polar coordinates. If we make the substitution x = r cos θ
and y = r sin θ, our nonlinear system can be rewritten as

dr

dt
= αr − r3

dθ

dt
= −5.

If α < 0, the origin is a sink since αr − r3 < 0 for all r > 0. In this case all
solutions tend towards the origin as t → ∞. When α > 0, the origin is still
an equilibrium solution. Moreover, r′ = 0, when r =

√
α. We also know that

r′ > 0 for 0 < r <
√
α and r′ < 0 if r >

√
α. So the circle of radius

√
α is a

periodic solution with the trajectory moving clockwise since θ′ = −5 < 0. All
nonzero solutions spiral towards this orbit as t→ ∞. This type of bifurcation is
called a Hopf bifurcation. No new equilibrium solutions arise, but a periodic
solution develops as α passes through the bifurcation value.

Theorem 5.4.7 Hopf Bifurcation. Suppose that (x0(α), y0(α)) is a equi-
librium solution for the family of systems

dx

dt
= fα(x, y)

dy

dt
= gα(x, y)

parameterized by α, and the Jacobian matrix for the system evaluated at this
equilibrium has eigenvalues a(α) ± ib(α). Assume that at some α = α0, we
have a(α0) = 0, a′(α0) > 0, b(α0) ̸= 0, and that the equilibrium point is
asymptotically stable. Then there exists an α1 such that the system has a
periodic solution encircling the equilibrium solution for α0 < α < α1.1

Recall that our example system

dx

dt
= αx+ 5y − x(x2 + y2)

1For a proof and description of the Hopf Bifurcation Theorem see C. Chicone. Ordinary
Differential Equations with Applications. Springer-Verlag, New York, 1999.
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dy

dt
= −5x+ αy − y(x2 + y2)

has an equilibrium at (0, 0) with eigenvalues α ± 5i. If we let α0 = 0, then
a(0) = 0, a′(0) = 1, and b(0) = 5. Thus, the hypothesis of the Hopf Bifurcation
Theorem are satisfied and we are guaranteed a period solution surrounding our
equilibrium solution.
Example 5.4.8 Van der Pol’s equation. Van der Pol’s equation, a simple
nonlinear equation having applications in electrical engineering and mathemat-
ical biology, is x′′ − x(1− x2)x′ + x = 0. This equation can be written as the
system

dx

dt
= y (5.4.1)

dy

dt
= −x+ x(1− x2)y. (5.4.2)

The phase portrait for Van der Pol’s equation is given in Figure 5.4.9. The
origin is the only equilibrium solution to Van der Pol’s equation, and one might
guess that this solution acts like a spiral source by examining the phase portrait.
If we examine the system consisting of only linear terms on the right-hand side
of the equation,

dx

dt
= y

dy

dt
= −x+ y

we might get a better sense of what is happening. The matrix for this linear
system,

A =

(
0 1

−1 1

)
,

has eigenvalues λ = (1 ± i
√
3)/2. This suggests that the origin looks like a

spiral source at least locally. Indeed, the Jacobian matrix for (5.4.1)–(5.4.1) is

J =

(
0 1

−1− 2x0y0 1− x20

)
,

which agrees with A for (x0, y0) = (0, 0).

4 3 2 1 0 1 2 3 4
x(t)

4
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y(
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Figure 5.4.9 Van der Pol’s equation



CHAPTER 5. NONLINEAR SYSTEMS 339

□
Let us examine how a bifurcation might occur in a predator-prey model.

In our model, we will assume that a predator’s appetite is satiated when food
is abundant. If this is the case, an increase in the prey population has little
effect on the interaction terms in our model. We might model this satiable
predator-prey scenario by the equations

dx

dt
= (a− bx)x− cxy

d+ αx
dy

dt
= −ey + fxy

d+ αx
,

where x(t) is the prey population at time t and y(t) is the predator population
at time t. Here, a, . . . , f and α are constants. Let us choose the constants
a, . . . , f so that our system becomes

dx

dt
= (1− x)x− xy

0.3 + αx
dy

dt
= −0.5y +

xy

0.3 + αx
.

The constant α is know as the satiation constant. The larger the value of
α, the more quickly a predator’s appetite is satiated as the prey population
increases.

Let us see examine the phase portrait for several values of α. If α =
0, then there is no satiation effect. In this case, all trajectories inside the
population quadrant spiral asymptotically towards a single stable equilibrium
point (Figure 5.4.10). If α = 1.35, we have a very similar phase portrait with
solutions spiraling in towards a stable equilibrium solution (Figure 5.4.11).
However, if α = 0.9, we have a periodic trajectory. All other trajectories are
pulled toward this attracting periodic orbit (Figure 5.4.12).
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Figure 5.4.10 Predator-prey model with α = 0
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Figure 5.4.11 Predator-prey model with α = 1.35
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Figure 5.4.12 Predator-prey model with α = 0.9
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Figure 5.4.13 Bifurcation diagram for the satiable predator-prey model
As α continues to increase a Hopf bifurcation occurs at α ≈ 0.5. At this

point the equilibrium solution destabilizes and spawns an attracting periodic
orbit. As α continues to increase, the amplitude of this periodic orbit increases.
However, at α ≈ 0.85, the amplitude of the periodic solution begins to decrease.
At α ≈ 1.2, the equilibrium point re-stabilizes and the periodic solution is
absorbed. For α > 1.2, we only have a stable equilibrium solution in the first
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quadrant. The x-coordinate of our equilibrium solution is

x =
0.15

1− 0.5α
,

and we can summarize our findings with a bifurcation diagram (Figure 5.4.13).

5.4.3 Important Lessons
• If we make a slight change in the system, then we might reasonably expect

the phase portrait to change slightly. For example, a closed orbit might
expand or contract, an equilibrium solution might shift, or a spiral source
might tighten up, but we would not expect new equilibrium solutions to
appear or a spiral source to turn into a spiral sink. However, this may
be exactly what happens. If such a change occurs in the system through
an adjustment of a parameter, we say a bifurcation has occurred.

• A Hopf bifurcation if an attracting periodic solution encircling an equi-
librium solution develops as α passes through the bifurcation value.

• Suppose that (x0(α), y0(α)) is a equilibrium solution for the family of
systems

dx

dt
= fα(x, y)

dy

dt
= gα(x, y)

parameterized by α, and the Jacobian matrix for the system evaluated at
this equilibrium has eigenvalues a(α)± ib(α). Assume that at some α =
α0, we have a(α0) = 0, a′(α0) > 0, b(α0) ̸= 0, and that the equilibrium
point is asymptotically stable. Then there exists an α1 such that the
system has a periodic solution encircling the equilibrium solution for
α0 < α < α1.

• A satiable predator-prey scenario can be modeled by the equations

dx

dt
= (a− bx)x− cxy

d+ αy

dy

dt
= −ey + fxy

d+ αy
,

where x(t) is the prey population at time t and y(t) is the predator
population at time t. Here, a, . . . , f and α are constants. The constant α
is know as the satiation constant. The larger the value of α, the more
quickly a predator’s appetite is satiated as the prey population increases.

5.4.4 Reading Questions
1. Explain what a Hopf bifurcation is.
2. What scenerio does a satiated predator-prey model describe? Explain.

5.4.5 Exercises
1. Consider the system

x′ = y
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y′ = −x− y

4
+ x2.

(a) Verify that the function

L(x, y) =
x2

2
+
y2

2
− x3

3

is a Lyapunov function for the system.

(b) Sketch the level sets of L.

(c) What can you conclude about the phase portrait of the system from
(1) and (2)?

2. Let G(x, y) = x3 − 3xy2.
(a) What is the gradient system with vector field given by the gradient

of G?

(b) Sketch the graph of G and the level sets of G.

(c) Sketch the phase portrait of the gradient system in (1).
3. Suppose that the smell of a bunch of dead fish in the region −2 ≤ x ≤ 2,

−2 ≤ y ≤ 2 is given by the function

S(x, y) = x2 + y2 − x4 + y4

4
− 3x2y2 + 100.

(a) What is the gradient system who vector field is the gradient of S?

(b) Use Sage to graph the phase portrait of the system.

(c) How many dead fish are there and where are they?

(d) Using the results from part (2), sketch the level sets of S.

(e) Why is this model not realistic for large values of x or y?
4. Consider the system of differential equations

x′ = x(−x− y + 1)

y′ = y(−ax− y + b),

where a and b are parameters with a, b > 0. Suppose that this system is
only defined for x, y ≥ 0.

(a) Use nullclines to sketch the phase portrait for this system for several
values of a and b.

(b) Determine the values of a and b at which a bifurcation occurs.
5. Show that the quadratic polynomial

V (x, y) = ax2 + 2bxy + cy2

is positive definite with minimum at (x, y) = (0, 0) if and only if a > 0
and ac− b2 > 0.

6. Use the positive definite function V (x, y) = x2 + y2 to argue that the
system

x′ = −x− 2y2
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y′ = 2xy − y3

has an asymptotically stable equilibrium solution at (x, y) = (0, 0).

5.5 Projects
Project 5.5.1 Project—The Lorenz Equations. In 1963, an MIT pro-
fessor, Edward N. Lorenz, published a paper on his research in meteorology.
Using differential equations, Lorenz had developed a simplified system to model
certain weather-related phenomena. When he analyzed the system, however,
he found that the trajectories of the solutions were incredibly convoluted and
effectively unpredictable for certain parameters. The Lorenz equations can
be written as

dx

dt
= −σx+ σy

dy

dt
= ρx− y − xz

dz

dt
= −βz + xy,

where σ, ρ, and β are constants. The Existence and Uniqueness Theorem for
systems of differential equations guarantees a unique solution for each set of
initial conditions,

x(0) = x0

y(0) = y0

z(0) = z0.

However, Lorenz discovered that the trajectories of the solutions were incredi-
bly convoluted and effectively unpredictable for certain parameters. For certain
values of σ, ρ, and β, the trajectories are extremely sensitive to initial condi-
tions. Since real data always has some inherent uncertainty, initial values are
never precisely known, and we may have little success modeling real world
phenomena. In addition, solutions can stay in a bounded region of the three
dimensional version of the phase plane and wind through the region along an
incredibly convoluted path. There is much more freedom to move around in
three dimensions than there is in two.
(a) Lorenz noticed that the system behaved strangely, when he let σ = 10,

ρ = 28, and β = 8/3. Thus, our system
dx

dt
= −10x+ 10y

dy

dt
= 28x− y − xz

dz

dt
= −8

3
z + xy,

defines a vector field in R3,

F(x, y, z) =

(
−10x+ 10y, 28x− y − xz,−8

3
z + xy

)
,

and the equilibrium solutions occur exactly when this vector field is zero.
That is, (x, y, z) is an equilibrium solution if

F(x, y, z) =

(
−10x+ 10y, 28x− y − xz,−8

3
z + xy

)
= (0, 0, 0).
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Find all of the equilibrium solutions for this system.

(b) If we wish to understand the nature of the equilibrium solutions of the
Lorenz system, it makes sense to linearize the system. Compute the
Jacobian matrix of the system and determine the nature of each of the
equilibrium solutions that you found in Task 5.5.1.a.

(c) Consider the Lorenz system

x′ = −ax+ ay

y′ = rx− y − xz

z′ = −bz + xy.

In this exercise, we shall show that the solutions of the system are
bounded.

(i) If
V (x, y, z) = rx2 + ay2 + a(z − 2r)2,

Show that
V̇ = −2a[rx2 + y2 + b(z − r)2 − br2].

(ii) It is true that (z − r)2 ≥ (z − 2r)2 − r2. Assuming this, show that

rx2 + y2 + b(z − r)2 ≥ mV − br2,

where m is the smallest of the three numbers 1, 1/a, and b/2a.
(iii) Use parts Task 5.5.1.c.i and Task 5.5.1.c.ii to show that

V̇ ≤ −2maV + 4abr2.

(iv) Use part Task 5.5.1.c.iii to show that V̇ ≤ −2abr2 < 0 everywhere
outside of the ellipsoid

R =
{
(x, y, z)|V (x, y, z) ≤ 3br2/m}

}
.

(v) Use part Task 5.5.1.c.iv to show that the ellipsoid is invariant, and
that every solution curve ends up inside of R.

Project 5.5.2 Project—Tuned-Mass Dampers. The 60-story, 790-foot
mirror-glass John Hancock Tower, New England’s tallest building, was com-
pleted in 1976 and was designed by Henry N. Cobb, who founded the firm Pei
Cobb Freed & Partners with famed architect I.M. Pei. (Figure 5.5.1).1 The
building suffered many problems during construction, the most notorious of
which was how the original glass windows were attached. In early 1972 when
construction was still underway, one of the 500-pound windows popped out of
the building and committed suicide on the sidewalk below. In all, more than
100 of the building’s windows suffered the same fate. Fortunately, no one was
injured. Initially, the architects and engineers thought that the problem was
caused by the building’s tendancy to sway excessively in high winds. However,
they later determined that the falling-window problem was caused by the air
space between the double-paned windows and pressure differentials between
the interior and exterior of the building. The problem was solved by replacing
all of the windows with single sheets of fully tempered glass. During the repairs,
the windows were replaced with plywood, and the building was nicknamed the
“Plywood Palace.”
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Figure 5.5.1 The John Hancock Tower
Another flaw in the design of the building resulted in an extreme amount

of swaying. In fact, office workers in the upper stories of the building com-
plained of motion sickness. The building actually twisted as it was swaying
back and forth. Engineers determined that the building’s natural sway period
was dangerously close to the period of its torsion. To remedy the problem, the
engineers installed a pair of tuned mass dampers on the 58th floor of the build-
ing to absorb the energy created by the swaying. This is the floor of concrete
that you see near the top of the structure (Figure 5.5.1). In addition, 1,500
tons of steel braces were installed to keep the building from falling over in a
high wind.2

(a) To construct a simple model of a tuned-mass damper, we will consider a
mass, m1, connected to a fixed wall with a spring and a dashpot. To this
first mass, we attach a second mass, m2, by using a spring and a dashpot
(see Figure 5.5.2). Here the oscillator to be damped has mass m1 with
spring or restoring constant k1 and resistance or damping constant b1.
This could be a large structure, where k1 would be its stiffness while
b1 would reflect internal frictional resistance to motion proportional to
the velocity of the structure. The damping oscillator would be a large
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mass which sits atop the structure and is permitted to slide or roll as the
structure sways in response to wind or seismic forces. This damper has
mass m2 with spring or restoring constant k2 and resistance or damping
constant b2.

b1

k1

b2

k2

m1
m2

wall

x1 x2

p0 cos(ωt)

Figure 5.5.2 Diagram of a tuned mass damper

Using Newton’s Second Law, which says that the mass times the acceler-
ation of that mass is equal to the sum of all external forces acting on the
mass show that the governing equations for the motions of the structure
and the damper are given by

m1x
′′
1 = −k1x1 − b1x

′
1 − k2(x1 − x2)− b2(x

′
1 − x′2) + ρ0 cos(ωt) (5.5.1)

m2x
′′
2 = −k2(x2 − x1)− b2(x

′
2 − x′1). (5.5.2)

In our study here we will first presume an “ideal” structure with no resis-
tance or damping coefficient; i.e., b1 = 0, and the same for the damper;
i.e., b2 = 0. As we can see there is a driving force applied to the structure
of f(t) = ρ0 cos(ωt). Our interest will be in seeing if we can tune the
added mass damper to reduce or eliminate the possibility of resonance
when the initial structure is driven by a force with a frequency equal to
that of the natural frequency of the initial mass system.
If we let

p1 = m1x
′
1

p2 = m2x
′
2,

show that the system (5.5.1)–(5.5.2) can be written as a system of four
first-order linear equations.

(b) (i) Determine the system of four first-order linear equations from Task 5.5.2.a
when there is no damping; i.e., b1 = 0 and b2 = 0.

(ii) Now use m1 = 10 and k1 = 90 with xi(0) = 0, x′i(0) = 0, pi(0) = 0,
and p′i(0) = 0 for i = 1, 2, while f(t) = 10 cos(3t) and set m2 = 1
with k2 = 0; i.e., withdraw the second mass system. Explain the
physical significance and impact results of the numbers 10, 90, and 3
in the above sentence in terms of the motion of the initial oscillator.
Solve this system for the motion of mass m1 over a time interval
of 20 units and plot the displacement of that mass, x1(t), over that
time interval. Explain what you see.

(iii) In the system that you found in Task 5.5.2.b.i, use the values of
m1 = 10 and k1 = 90 with with xi(0) = 0, x′i(0) = 0, pi(0) = 0, and
p′i(0) = 0 for i = 1, 2 and f(t) = 10 cos(3t) and set m2 = 1 with
varying values of k2. Keep b1 = 0 and b2 = 0. What do you observe
in the maximum amplitude of the initial mass m1 as one changes
k2? Defend your observation with data or plot.
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(iv) From Task 5.5.2.b.iii what is the “best” value of k2? Be sure you
define the word “best.”

(v) For the best value of k2 determine the maximum amplitude displace-
ment for mass m1, x1(t) over a range of frequencies.

(c) We consider another, comparable configuration as Task 5.5.2.b for prac-
tice. Notice that mass m2 is only 1% of mass m1, which is quite realistic
in structural design when using tuned mass dampers.

(i) In the system that you found in Task 5.5.2.b.i, use m1 = 10 and
k1 = 90 with xi(0) = 0, x′i(0) = 0, pi(0) = 0, and p′i(0) = 0 for
i = 1, 2, while f(t) = 10 cos(3t) and set m2 = 0.1 with k2 = 0; i.e.,
withdraw the second mass system. Explain the physical significance
and impact results of the numbers 10, 90, and 3 in the above sentence
in terms of the motion of the initial oscillator. Solve this system for
the motion of mass m1 over a time interval of 20 units and plot the
displacement of that mass, x1(t), over that time interval. Explain
what you see.

(ii) In (5.5.1)–(5.5.2) use the values of m1 = 10 and k1 = 90 with
xi(0) = 0, x′i(0) = 0, pi(0) = 0, and p′i(0) = 0 for i = 1, 2, and
f(t) = 5 cos(3t) and set m2 = 0.1 with varying values of k2. Keep
b1 = 0 and b2 = 0. What do you observe in the maximum amplitude
of the initial mass as one changes k2? Defend your observation with
data or plot.

(iii) From Task 5.5.2.c.ii what is the “best” value of k2? Be sure you
define the word “best.”

(iv) For the best value of k2 determine the maximum amplitude displace-
ment for mass m1, x1(t) over a range of frequencies.

(d) From the introductory material for this scenario offered above and the
analysis in Task 5.5.2.b and Task 5.5.2.c offer a description of how to
build a tuned mass damper to stop the resonance phenomena in the case
of (5.5.1)–(5.5.2), where there is no damping; i.e., b1 = 0 and b2 = 0.

(e) Now let us consider a different approach. If we let

p1 = m1x
′
1

p2 = m2x
′
2,

show that the system (5.5.1)–(5.5.2) can be written as a system of four
first-order linear equations.

x′1 =
p1
m1

x′2 =
p2
m2

p′1 = −k1x1 − b1
p1
m1

− k2(x1 − x2)− b2

(
p1
m1

− p2
m2

)
+ ρ0 cos(ωt)

p′2 = −k2(x2 − x1)− b2

(
p2
m2

− p1
m1

)
.

In the case of no damping, this is

x′1 =
p1
m1
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x′2 =
p2
m2

p′1 = −k1x1 − k2(x1 − x2) + ρ0 cos(ωt)
p′2 = −k2(x2 − x1).

Of course, you have already derived these systems in Task 5.5.2.a and
Task 5.5.2.b.

(i) If we consider the kinetic and potential energy of both masses and
springs and ignore damping and the term ρ0 cos(ωt), explain we can
derive the Hamiltonian function

H(x1, x2, p1, p2) =
p21
2m1

+
p22
2m2

+
k1
2
x21 +

k2
2
(x2 − x1)

2,

and show that
dx1
dt

=
∂H

∂p1
dx2
dt

=
∂H

∂p2
dp1
dt

= − ∂H

∂x1
dp2
dt

= − ∂H

∂x2
.

We can show that a solution to the system, (x1(t), x2(t), p1(t), p2(t)),
is constant on H.3

(ii) Now suppose that we add a damping term to our system,

±b
(
dx2
dt

− dx1
dt

)
= ±b

(
p2
m2

− p1
m1

)
,

where b = b1 = b2. Our new first-order system is

x′1 =
p1
m1

x′2 =
p2
m2

p′1 = −k1(x1) + k2(x2 − x1) + b

(
p2
m2

− p1
m1

)
p′2 = −k2(x2 − x1)− b

(
p2
m2

− p1
m1

)
.

Show that

dH

dt
= −b

(
p2
m2

− p1
m1

)2

= −b
(
dx2
dt

− dx1
dt

)2

. (5.5.3)

(iii) Equation (5.5.3) tells us that dH/dt ≤ 0. Moreover, dH/dt < 0
whenever the distance between the two masses is changing. Thus,
energy decreases whenever the second mass is moving relative to the
first. Thus, if the wind or an earthquake starts our building (m1)
swaying back and forth, then the tuned mass-damper (m2) located
on one of the top floors of the building will start to move relative
to the building and energy will be removed from the system by the
dampers.
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(iv) Of course, m1 and k1 involve the building and are set by the archi-
tects and engineers. We, however, are free to choose m2, k2 and
b. We want to choose b fairly large so that there is a rapid loss of
energy; i.e., the magnitude of dH/dt is large. We should choose m2

large enough so that this mass oscillates with respect to m1. If we
choose m2 two small, then the strong damper will almost serve as a
rigid connection between m1 and m2. Therefore, we wish to choose
m2 to be large so that we guaranteed that this mass will oscillate
with respect to m1. We should, however, remember that m2 is sit-
ting on top of a very tall building. Finally, we should choose k2 to
maximize the rate at which the second mass oscillates with respect
to the first and to maximize the oscillations of m2. If we choose k2
so that the second spring is in resonance with the first, the oscilla-
tions of the first mass force the second at its resonance frequency.
Thus, we will have relatively large oscillations of the second mass
and a large loss of energy.
Let us consider example. Suppose that m1 = 1, k1 = 1, We will also
choose m2 to be 0.05 and b = 0.1. If the initial conditions for our
system are

x1(0) = 10

x2(0) = 0

p1(0) = 0

p2(0) = 0,

we will choose k2 to tune our system. To do this we will plot the time
t that it takes for the amplitude of the oscillations of m1 to reach
and stay below 2.5 for various values of k2. If we choose k2 ≈ 0.05,
then we can minimize the time to be t ≈ 120.

1The John Hancock Tower is now officially known by its street address, 200 Clarendon
Street.

2This project is adapted from Keith Alan Landry; Brian Winkel (2016), “5-040-S-
TunedMassDampers-Part I,” www.simiode.org/resources/2808.

3In general, a Hamiltonian system is a system of 2n equations of the form

dxi

dt
=

∂H

∂yi
dyi

dt
= −

∂H

∂xi

for i = 1, 2, . . . , n, where H(x1, . . . , xn, y1, . . . yn is a real-valued differentiable function on
R2n such that H is nonconstant on every open ball in R2n. We can show that H is constant
on solution curves of the system.

https://www.simiode.org/resources/2808


Chapter 6

The Laplace Transform

6.1 The Laplace Transform

Objectives
• To understand and be able to compute the Laplace transform of a

function f(t), which can be accomplished by computing

L(f)(s) = F (s) =

∫ ∞

0

e−stf(t) dt,

provided the integral converges.

• To understand that if we know the Laplace transform F (s) of a function,
we can recover the original function using the inverse Laplace transform,
L−1(F (s))(t).

• To understand that both the Laplace transform and inverse Laplace trans-
form are linear operators.

Consider the electrical circuit governed by the differential equation

LI ′′ +RI ′ +
1

C
I = E′(t).

The voltage function, E′(t), might have discontinuities. For example, the volt-
age in the circuit can be periodically turned on and off. The previous methods
that we have used to solve second order linear differential equations may not
apply here. However, the Laplace transform, an integral transform, gives a
method of solving such equations.

As a second example, let us consider a population of fish that is governed
by exponential growth,

dP

dt
= kP

P (0) = P0,

and suppose that we wish to determine the effects of seasonal fishing. In other
words, harvesting will not be continuous. For example, we might only allow

350
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fishing at a constant rate r during the first half of the year,

H(t) =



r 0 ≤ t ≤ 1/2,

0 1/2 < t < 1,

r 1 ≤ t ≤ 3/2,

0 3/2 < t < 2,
...

Our initial value problem now becomes

dP

dt
= kP −H

P (0) = P0,

It should be clear that we need some additional tools to analyze differential
equations possessing discontinuous terms.

Given an initial value problem

ay′′ + by′ + cy = g(t)

y(0) = y0

y′(0) = y′0,

the idea is to use the Laplace transform to change the differential equation
into an equation that can be solved algebraically and then transform the al-
gebraic solution back into a solution of the differential equation. Surprisingly,
this method will even work when g is a discontinuous function, provided the
discontinuities are not too bad.

6.1.1 Definition of the Laplace Transform
We shall define the Laplace transform of a function f(t) by

L(f)(s) = F (s) =

∫ ∞

0

e−stf(t) dt,

provided this integral converges. The Laplace transform of a function has many
nice properties, especially with respect to the derivative of f . However, before
we investigate these properties, let us compute several Laplace transforms.
Example 6.1.1

1. Let f(t) = k, where k is a constant. Then

L(f)(s) =
∫ ∞

0

e−stk dt =
k

s
,

for s > 0.

2. For f(t) = t, the Laplace transform is

L(f)(s) =
∫ ∞

0

e−stt dt =
1

s2
,

for s > 0.

3. If f(t) = eat with t > 0, then

L(f)(s) =
∫ ∞

0

e−steat dt =

∫ ∞

0

e−(s−a)t dt =

[
−e

−(s−a)t

s− a

]∞
0

.
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Noting that e−(s−a)t → 0 as t→ ∞ for s > a, we find that

L(eat) = 1

s− a

for s > a.

□
Example 6.1.2 The Laplace transform of a function does not always exist,
even for functions that are infinitely differentiable. For example, let f(t) = et

2 .
Then for any real number s, we know that

et
2

e−st = et(t−s) > 1,

for t > s with t ≥ 0; hence,∫ b

0

et
2

e−st dt =

∫ b

0

et(t−s) dt ≥ b.

Thus, the integral ∫ ∞

0

et
2

e−st dt

does not converge. □
The Laplace transform, however, does exist in many cases. In Subsec-

tion 6.1.3, we will show that the Laplace transform of a function exists provided
the function does not grow too quickly and does not possess bad discontinu-
ities.

6.1.2 Properties of the Laplace Transform
One of the most important properties of the Laplace transform is linearity.
That is,

L(αf + βg)(s) = αL(f)(s) + βL(g)(s),

where α, β ∈ R provided the Laplace transforms of f and g exist. The proof
of this statement follows directly from the definition of the Laplace transform
and the properties of integration,

L(αf + βg)(s) =

∫ ∞

0

e−st[αf(t) + βg(t)] dt

= lim
b→∞

∫ b

0

e−st[αf(t) + βg(t)] dt

= α lim
b→∞

∫ b

0

e−stf(t) dt+ β lim
b→∞

∫ b

0

e−stβg(t) dt

= αL(f)(s) + βL(g)(s)

We state the linearity of the Laplace transform as a theorem.

Theorem 6.1.3 Let f and g be two functions whose Laplace transforms L(f)(s)
and L(g)(s) exist for s > a and s > b, respectively. Then for any real constants
α and β and s > max{a, b}

L(αf + βg)(s) = αL(f)(s) + βL(g)(s).
Transforms of functions having the linearity property are called linear op-

erators.
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Example 6.1.4 Recall that sinh at = (eat − e−at)/2. Provided a > 0, lin-
earity makes it very easy to compute the Laplace transform of sinh at. By
Example 6.1.1,

L(sinh at) = 1

2
L(eat)− 1

2
L(e−at) =

1

2

(
1

s− k
− 1

s+ k

)
.

Thus, for s > k > 0,
L(sinh at) = k

s2 − k2
.

□
The Laplace transform of discontinuous functions also exist, provided the

disconinuities are not too bad. We say that a function f is piecewise contin-
uous on an interval [a, b] if f satisfies the following conditions.

1. There are a finite number of discontinuities of f on [a, b].

2. If c ∈ [a, b] is a discontinuity, then the one-sided limits

lim
t→c−

f(t) and lim
t→c+

f(t)

both exist. We also assume that limt→a+ f(t) and limt→b− f(t) exist.

We say that a function is function on an interval [0,∞), if it is piecewise
continuous on the interval [0, b] for all b > 0. The types of discontinuities that
we are describing are sometimes called jump discontinuities. If a function
is piecewise continuous, then the continuities are not too bad.
Example 6.1.5 One of the simplest piecewise continuous functions is

u(t) =

{
0, t < 0

1, t ≥ 0.

The function u(t) has a jump discontinuity at t = 0. It follows very quickly
that L(u(t)) = 1/s for s > 0.

If we define the unit step function at a to be

ua(t) = u(t− a) =

{
0, t < a

1, t ≥ a,

then we have a jump discontinuity at t = a (Figure 6.1.6). If a > 0, then

L(ua(t)) =
∫ ∞

0

e−stua(t) dt =

∫ ∞

a

e−st dt = lim
b→∞

[
−e

−st

s

]b
a

=
e−sa

s
,

where s > 0 and a > 0. A function of the form ua(t) = u(t − a) is called a
step function or Heaviside function, named for the British engineer Oliver
Heaviside.
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4 3 2 1 1 2 3 4
t

2.0

1.5

1.0

0.5

0.5

1.0

1.5

2.0
u(t)

Figure 6.1.6
□

Example 6.1.7 Given a function f(t), consider the new function

g(t) = ua(t)f(t− a).

To obtain the function g from f , we shift the graph of the f to the right by
a units and let g(t) = 0 for 0 ≤ t < a (see Figure 6.1.8). Let us compute the
Laplace transform of g,

L(g) =
∫ ∞

0

g(t)e−st dt =

∫ ∞

a

f(t− a)e−st dt.

If we make the substitution w = t− a, then

L(g) =
∫ ∞

0

f(w)e−s(w+a) dt = e−sa

∫ ∞

0

f(w)e−sw dt = e−saL(f).

In other words, if L(f) = F (s), then L(ua(t)f(t− a)) = e−asF (s).

2 1 1 2 3 4 5
t

4

2

2

4

f(t), g(t)

f(t)
ua(t)f(t− a)

Figure 6.1.8
□

Activity 6.1.1 Finding Laplace Transforms. Find the Laplace transform
for each of the functions below. Recall that cosh t = (et + e−t)/2 and sinh t =
(et − e−t)/2

(a) f(t) = t6
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(b) f(t) = t7e−t

(c) f(t) = 3 sin2
(√

2t
)

(d) f(t) = e3t sin 2t

(e) f(t) = 2t2 cosh t

6.1.3 Existence and Uniqueness of the Laplace Transform
If we are to use Laplace transforms to study differential equations, we would
like to know which functions actually have Laplace transforms. Furthermore,
if two functions have the same Laplace transform, we can ask if the functions
must be the same. In other words, we wish to know if the Laplace transform
of a function exists and is unique. We can answer both of these questions
affirmatively if the function f(t) is piecewise continuous on [0,∞) and does
not grow too quickly as t → ∞. We say a function f(t) is exponentially
bounded on [0,∞) if there exist constants M ≥ 0 and a such that

|f(t)| ≤Meat,

for all t in [0,∞). In other words, the graph of f must lie between the
curves y = Meat and y = −Meat. The following two theorems tell us that
Laplace transforms exist and are unique for piecewise continuous, exponen-
tially bounded functions on the interval [0,∞). We leave the proofs of these
theorem as exercises.
Theorem 6.1.9 If f is a piecewise continuous, exponentially bounded function
defined [0,∞), then the Laplace transform of f ,

L(f)(s) = F (s) =

∫ ∞

0

e−stf(t) dt

exists.
Theorem 6.1.10 Let f and g be two piecewise continuous exponentially
bounded functions with Laplace transforms, F (s) and G(s), respectively. Sup-
pose that F (s) = G(s) for all s > c, where c is some positive number. Then
f(t) = g(t) for all t ≥ 0.

In light of Theorem 6.1.10, it now makes sense to define the inverse
Laplace transform of a function F (s), which we will denote by L−1(F (s))(t),
as the function f(t) whose unique Laplace transform is F (s). Furthermore, the
inverse Laplace transform is linear,

L−1(αF + βG) = αL−1(F ) + βL−1(G).

6.1.4 Finding Laplace Transforms and Inverse Transforms
To use the method of Laplace transforms effectively, we need either tables or
computer software such as Sage so that we can easily find Laplace transforms
and inverse Laplace transforms.
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Table 6.1.11 Table of Laplace Transforms

f(t) = L−1(F (s)) F (s) = L(f(t))
1 1/s, s > 0

eat 1/(s− a), s > a

tn, n ∈ N n!/sn+1, s > 0

ta, a > −1 Γ(a+ 1)/sa+1, s > 0

sin at a/(s2 + a2), s > 0

cos at s/(s2 + a2), s > 0

sinh at a/(s2 − a2), s > |a|
cosh at s/(s2 − a2), s > |a|
eat sin bt b/[(s− a)2 + b2], s > a

eat cos bt (s− a)/[(s− a)2 + b2], s > a

tneat, n ∈ N n!/(s− a)n+1, s > a

uc(t) e−cs/s, s > 0

uc(t)f(t− c) e−csF (s)

ectf(t) F (s− c)

f(ct) (1/c)F (s/c), c > 0

δ(t− c) = δc(t) e−cs

f ′(t) sF (s)− f(0)

f ′′(t) s2F (s)− sf(0)− f ′(0)

We can also use Sage to find Laplace transforms and inverse transforms
(see Subsection 6.1.8).

Activity 6.1.2 Finding Inverse Transforms. Find the inverse Laplace
transform for each of the following functions.

(a) F (s) =
2

s2

(b) F (s) =
1

s4

(c) F (s) =
2

(s− 3)2 + 4

(d) F (s) =
2s2

(s2 + 1)(s− 1)

(e) F (s) =
2s− 13

s(s2 − 4s+ 13)

6.1.5 Important Lessons
• Many initial value problems have discontinuous forcing terms.

• The Laplace transform of a function f(t) by

L(f)(s) = F (s) =

∫ ∞

0

e−stf(t) dt,

provided the integral converges.

• If f is a piecewise continuous, exponentially bounded function defined
[0,∞), then the Laplace transform of f ,

L(f)(s) = F (s) =

∫ ∞

0

e−stf(t) dt
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exists.

• The Laplace transform is a linear operator; i.e.,

L(αf + βg)(s) = αL(f)(s) + βL(g)(s),

where α, β ∈ R provided the Laplace transforms of f and g exist.

• If we know the Laplace transform F (s) of a function, we can recover
the original function using the inverse Laplace transform of a function
L−1(F (s))(t).

• The inverse Laplace transform is linear,

L−1(αF + βG) = αL−1(F ) + βL−1(G).

• If L(f) = F (s), then L(uc(t)f(t− c)) = e−scF (s).

• If c ≥ 0, we define the Heaviside function to be

uc(t) =

{
0 t < c

1 t ≥ c.

The Laplace transform of uc is

L(uc(t))(s) =
e−cs

s
.

6.1.6 Reading Questions
1. Does the Laplace transform of a function always exist? If so, why? If not,

given an example?
2. What is the Heaviside function? Explain.

6.1.7 Exercises

Finding Laplace transforms. Find the Laplace transform for each of the
functions in Exercise Group 6.1.7.1–8. Recall that cosh t = (et + e−t)/2 and
sinh t = (et − e−t)/2.

1. f(t) = sin at 2. f(t) = cos at
3. f(t) = eat sin bt 4. f(t) = cosh at
5. f(t) = 2 cos at− 3 sinh at 6. f(t) = teat

7. f(t) = t sin at 8. f(t) = t2 cos at

Finding inverse Laplace transforms. Find the inverse Laplace transform
for each of the functions in Exercise Group 6.1.7.9–16. You will find partial
fraction decomposition very useful.

9. F (s) =
1

s(s+ 1)
10. F (s) = s−3/2

11. F (s) =
1

s+ 7
12. F (s) =

2

s2 + 9

13. F (s) =
5s− 4

2s2 + s− 1
14. F (s) =

2s2 − s+ 4

s3 + 4s

15. F (s) =
1

(s+ 2)3
16. F (s) =

1

(s+ 1)2(s2 − 9)
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17. Prove Theorem 6.1.9: If f is a piecewise continuous, exponentially bounded
function defined [0,∞), then the Laplace transform of f ,

L(f)(s) = F (s) =

∫ ∞

0

e−stf(t) dt

exists.
18. Let f be a function whose Laplace transform L(f)(s) = F (s) exists for

s > a. Prove that
L(ectf(t))(s) = F (s− c)

for s > a+ c.
19. Prove Theorem 6.1.10: Suppose that f and g are piecewise continuous,

exponentially bounded functions defined [0,∞), with Laplace transforms
of F (s) and G(s), respectively. If F (s) = G(s), then f(t) = g(t).

20. If f is a piecewise continuous, exponentially bounded function defined
[0,∞), prove that the Laplace transform of f ,

L(f)(s) = F (s) =

∫ ∞

0

e−stf(t) dt

exists.
21. Define the gamma function to be

Γ(x) =

∫ ∞

0

e−ttx−1 dt

for x > 0. The gamma function is very useful for expressing the Laplace
transform of the function tα.

(a) Show that Γ(1) = 1.

(b) Prove that Γ(x + 1) = xΓ(x) and deduce that Γ(n + 1) = n! for
n ∈ N.

(c) Show that the Laplace transform of f(t) = tα is

L(f)(s) = Γ(α+ 1)

sα+1
.

If n is a positive integer, then L(tn)(s) = n!/sn+1.

6.1.8 Laplace Transforms with Sage
Computer algebra systems have now replaced tables of Laplace transforms
just as the calculator has replaced the slide rule. It is easy to calculate Laplace
transforms with Sage. For example, suppose that we wish to compute the
Laplace transform of f(x) = t3et − cos t. We can use the Sage command
laplace.

s = var("s")
t = var("t")
f = t^3* exp(t) - cos(t)
f.laplace(t,s)

-s/(s^2 + 1) + 6/(s - 1)^4
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To recover the original function, we can use the Sage command inverse_laplace.
Suppose that

F (s) = − s

s2 + 1
+

6

(s− 1)4
.

s = var("s")
t = var("t")
F = -s/(s^2 + 1) + 6/(s - 1)^4
F.inverse_laplace(s,t)

t^3*exp(t) - cos(t)

We can even use Sage to find the Laplace transform of piecewise-defined
functions. Suppose that

f(t) =

{
1, 0 ≤ t ≤ 3

0, t > 3.

The Sage command to define a piecewise-defined function is piecewise.

t = var("t")
f1(t) = 1
f2(t) = 0
f = piecewise ([[[0 , 3], f1], [(3, infinity), f2]])
f.plot((t, 0, 6), thickness=3, color="red",

axes_labels =[ ' $t$ ' , ' $f(t)$ ' ])

Sage can be used to find the Laplace transform of a piecewise-defined func-
tion.

s = var("s")
t = var("t")
f1(t) = 1
f2(t) = 0
f = piecewise ([[[0 , 3], f1], [(3, infinity), f2]])
f.laplace(t,s)

6.1.9 Exercises
1. Use Sage to find the Laplace transform of

f(t) =

{
−t, 0 ≤ t ≤ 1

2, t > 1.

2. Use Sage to find the Laplace transforms for each of the functions in Exer-
cise Group 6.1.7.1–8.

3. Use Sage to find the inverse Laplace transform for each of the functions
in Exercise Group 6.1.7.9–16.
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6.2 Solving Initial Value Problems

Objectives
• To understand how the Laplace transform acts on derivatives.

• To understand how the Laplace transform can be used to solve initial
value problems such as

ay′′(t) + by′(t) + cy(t) = f(t)

y(0) = y0

y′(0) = y′0

even when f(t) is discontinuous.

There is no need for Laplace transforms when solving many initial value
problems. If we consider the initial value problem

y′′ + 7y′ + 10y = 0

y(0) = 1

y′(0) = 1,

the methods described in Chapter 4 work quite well. The characteristic poly-
nomial of y′′ + 7y′ + 10y = 0 is

r2 + 7r + 10 = (r + 2)(r + 5),

and the general solution of the differential equation must be

y(t) = c1e
−2t + c2e

−5t.

Applying the initial conditions, we find that the solution to our initial value
problem is

y(t) = 2e−2t − e−5t.

However, suppose that we have a harmonic oscillator with a discontinuous
forcing term,

y′′ + 2y′ + 5y = h(t)

y(0) = y′(0) = 0,

where h(t) is given by

h(t) =

{
7 t < 5

0 t ≥ 5.

None of the previous techniques that we described are sufficient to solve such
an initial value problem. Yet, we can easily imagine such equations arising in
physics or engineering.

Fortunately, Laplace transforms forms behave very nicely with respect to
derivatives. We can use Laplace transforms to transform an initial value prob-
lem into an algebraic equation. Once the algebraic equation is solved, we can
use the inverse transform to obtain the solution to our original initial value
problem.
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6.2.1 Laplace Transforms of the Derivative
Suppose that we have linear differential equation with constant coefficients

ay′′(t) + by′(t) + cy(t) = f(t)

and initial conditions y(0) = y0 and y′(0) = y′0. We can take the Laplace
transform of both sides to obtain

aL(y′′(t)) + bL(y′(t)) + cL(y(t)) = L(f(t)).

Notice that we have used the fact that the Laplace transform is a linear operator
(Theorem 6.1.3). To proceed further, we need to know the Laplace transform
of the derivative of a function.
Theorem 6.2.1 Let y = y(t) be a piecewise continuous, exponentially bounded
function and assume that y′ is also exponentially bounded. Then for large
values of s

L(y′)(s) = sL(y)(s)− y(0) = sY (s)− y(0),

where Y (s) is the Laplace transform of y.
Proof. We can evaluate the Laplace transform of y′ by using integration by
parts,

L(y′)(s) =
∫ ∞

0

y′(t)e−st dt

= lim
b→∞

[
e−sty(t)

∣∣∣b
0
+ s

∫ b

0

y(t)e−st dt

]
= lim

b→∞

[
e−sby(b)− y(0) + sL(y)(s)

]
.

We claim that limb→∞ e−sby(b) = 0. Since, y is exponentially bounded, there
exist constants M ≥ 0 and a such that |y(t)| ≤Meat, for all t in [0,∞). Thus,

|e−sby(b)| ≤Me−(s−a)b.

The right-hand side of this inequality as b→ ∞ for s > a. Thus,

L(y′)(s) = sL(y)(s)− y(0).

■
The Laplace transform also behave nicely with respect to higher order de-

rivatives.
Theorem 6.2.2 Let y = y(t) and y′(t) be piecewise continuous, exponentially
bounded functions and assume that y′′ is exponentially bounded. Then for large
values of s

L(y′′)(s) = s2L(y)(s)− sy(0)− y′(0) = s2Y (s)− sy(0)− y′(0),

where Y (s) is the Laplace transform of y. In general, if y = y(t) and all of its
derivatives up to order k − 1 are piecewise continuous, exponentially bounded
functions and y(k) is piecewise continuous, then

L(y(k))(s) = skL(y)(s)− sk−1y(0)− · · · − sy(k−2)(0)− y(k−1)(0)

= skY (s)− sk−1y(0)− sk−1y(0)− · · · − sy(k−2)(0)− y(k−1)(0).

We can use Theorem 6.2.1 and Theorem 6.2.2 to solve initial value problems.
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Example 6.2.3 Consider the initial value problem

y′′ + 7y′ + 10y = 0

y(0) = 1

y′(0) = 1.

By Theorem 6.2.1 and Theorem 6.2.2

L(y′)(s) = sL(y)(s)− y(0) = sY (s)− y(0)

L(y′′)(s) = s2L(y)(s)− sy(0)− y′(0) = s2Y (s)− sy(0)− y′(0).

where Y (s) is the Laplace transform of y. If we take the Laplace transform of
y′′ + 7y′ + 10y, we have

L(y′′ + 7y′ + 10y) = L(y′′) + 7L(y′) + 10L(y)
= [s2Y (s)− sy(0)− y′(0)] + 7[sY (s)− y(0)] + 10Y (s)

= [s2Y (s)− s− 1] + 7[sY (s)− 1] + 10Y (s).

Since L(0), we have the algebraic equation

[s2Y (s)− s− 1] + 7[sY (s)− 1] + 10Y (s) = 0.

Solving for Y (s), we get

Y (s) =
s+ 8

s2 + 7s+ 10
=

s+ 8

(s+ 5)(s+ 2)
=

2

s+ 2
− 1

s+ 5
,

where we have used partial fractions to get the last expression.
Since the Laplace transform of eat is 1/(s− a), we know that

L−1

(
1

s− a

)
= eat.

We can now solve our initial value problem,

y(t) = 2e−2t − e−5t,

and our solution agrees with the one that we found at the beginning of this
section. □
Activity 6.2.1 Solving Linear Differential Equations with Laplace
Transforms. Use Laplace Transforms to solve each of the following initial
value problems.

(a) x′ − 5x = e5t, x(0) = 0

(b) x′′ − x′ − 6x = 0, x(0) = 2, x′(0) = −1

(c) x′′ + 4x = sin 3t, x(0) = 0, x′(0) = 0

6.2.2 Discontinuous Functions
If c ≥ 0 and we define the function

uc(t) =

{
0 t < c

1 t ≥ c,
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recall that the Laplace transform of uc is given by

L(uc(t))(s) =
∫ ∞

0

uc(t)e
−st dt =

e−cs

s
.

We can use this inforamtion to solve initial value problems with discontinuous
functions.
Example 6.2.4 Consider the initial value problem

y′ + y = u3(t)

y(0) = 1.

If we take the Laplace transform of both sides of y′ + y = u3(t), we obtain

sY (s)− y(0) + Y (s) =
e−3s

s
.

Using the fact that y(0) = 1 and solving for Y (s), we get

Y (s) =
1

s+ 1
+

e−3s

s(s+ 1)
.

Therefore,

y(t) = L−1

(
1

s+ 1

)
+ L−1

(
e−3s

s(s+ 1)

)
.

The inverse Laplace transform of the first term is

L−1

(
1

s+ 1

)
= e−t.

To compute the inverse Laplace transform of the second term, recall from
Example 6.1.7 that if L(f) = F (s), then

L(ua(t)f(t− a)) = e−asF (s).

Using partial fractions to obtain

1

s(s+ 1)
=

1

s
− 1

s− 1
.

Hence,

L−1

(
e−3s

s(s+ 1)

)
= L−1

(
e−3s

s

)
− L−1

(
e−3s

s+ 1

)
= u3(t)− L−1

(
e−3s

s+ 1

)
.

If g(t) = u3(t)e
−(t−3), then the Laplace transform of g(t) is

L(g) = e−3sL(e−t) =
e−3s

s+ 1
.

Thus,
y(t) = e−t + u3(t)

(
1− e−(t−3)

)
.

□
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6.2.3 Forced Harmonic Oscillators
Example 6.2.5 Consider the forced harmonic oscillator

y′′ + 4y = 3 cos t
y(0) = y′(0) = 0.

Taking the Laplace transform of both sides of the equation y′′ + 4y = 3 cos t,
we obtain

L(y′′) + 4L(y) = 3L(cos t)

or
s2Y (s)− sy(0)− y′(0) + 4Y (s) =

3s

s2 + 1
,

where L(y)(s) = Y (s). Substituting the initial conditions and solving for Y ,
we have

Y (s) =
3s

(s2 + 4)(s2 + 1)
=

−s
s2 + 4

+
s

s2 + 1
,

where the last expression was obtained using partial fractions. Taking the
inverse Laplace transform, we have our solution

y(t) = L−1

(
−s

s2 + 4

)
+ L−1

(
s

s2 + 1

)
= − cos 2t+ cos t.

□
Example 6.2.6 Now let us consider a harmonic oscillator with discontinuous
forcing,

y′′ + 2y′ + 5y = h(t)

y(0) = y′(0) = 0,

where h(t) is given by

h(t) =

{
5 t < 7

0 t ≥ 7.

That is, h(t) = 5(1− u7(t)). We may consider this to be a mass-spring system
sliding on a table, where the mass is one unit, the spring constant is 5, and
the damping coefficient is 2. When t < 7 the table is tilted so that gravity
provides a force of 5 units when stretching the spring. At time t = 7, the table
is suddenly returned to the level position.

Taking the Laplace transform of both sides of y′′ + 2y′ + 5y = h(t), we
obtain

[s2Y (s)− sy(0)− y′(0)] + 2[sY (s)− y(0)] + 5Y (s) = L(h),

where L(y)(s) = Y (s). Substituting the initial conditions and evaluating the
Laplace transform on the right, we have

(s2 + 2s+ 5)Y (s) = 5

(
1

s
− e−7s

s

)
.

Solving for Y (s), we have

Y (s) =
5

s(s2 + 2s+ 5)
− 5e−7s

s(s2 + 2s+ 5)
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and
y = L−1

(
5

s(s2 + 2s+ 5)
− 5e−7s

s(s2 + 2s+ 5)

)
.

Using partial fractions, we can rewrite the first term as

5

s(s2 + 2s+ 5)
=

1

s
− s+ 2

s2 + 2s+ 5
.

The inverse Laplace transform of 1/s is 1. To find the inverse Laplace
transform of the second term, we complete the square of the denominator,

s+ 2

s2 + 2s+ 5
=

s+ 2

(s+ 1)2 + 4

=
s+ 1

(s+ 1)2 + 4
+

1

(s+ 1)2 + 4

=
s+ 1

(s+ 1)2 + 4
+

1

2

2

(s+ 1)2 + 4
.

Consequently,

L−1

(
s+ 2

s2 + 2s+ 5

)
= e−t cos 2t+ 1

2
e−t sin 2t = e−t

(
cos 2t+ 1

2
sin 2t

)
.

and

L−1

(
5

s(s2 + 2s+ 5)

)
= L−1

(
1

s
− s+ 2

s2 + 2s+ 5

)
= 1−e−t

(
cos 2t+ 1

2
sin 2t

)
.

We can compute the inverse Laplace transform of

5e−7s

s(s2 + 2s+ 5)

using the Heaviside function u7(t) and the inverse Laplace transform that we
just calculated to obtain

L−1

(
5e−7s

s(s2 + 2s+ 5)

)
= u7(t)

(
1− e−(t−7)

(
cos 2(t− 7) +

1

2
sin 2(t− 7)

))
.

Therefore, the solution to our original initial value problem is

y(t) = 1−e−t

(
cos 2t+ 1

2
sin 2t

)
−u7(t)

(
1− e−(t−7)

(
cos 2(t− 7) +

1

2
sin 2(t− 7)

))
.

□
Activity 6.2.2 Solving Differential Equations with Laplace Trans-
forms with Discontinuous Forcing Functions. Use Laplace Transforms
to solve each of the following initial value problems.
(a) x′ + x = u3(t), x(0) = 2

(b) x′′ + x = h(t), x(0) = 0, x′(0) = 0 where

h(t) =

{
0 t < 1

2 t ≥ 1.
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6.2.4 Important Lessons
• Using the Laplace transform including how the transform behaves, we

can solve initial value problems such as

ay′′(t) + by′(t) + cy(t) = f(t)

y(0) = y0

y′(0) = y′0

even when f(t) is discontinuous.

• Let y = y(t) be a piecewise continuous, exponentially bounded function
and assume that y′ is also exponentially bounded. Then for large values
of s

L(y′)(s) = sL(y)(s)− y(0) = sY (s)− y(0),

where Y (s) is the Laplace transform of y.

• Let y = y(t) and y′(t) be piecewise continuous, exponentially bounded
functions and assume that y′′ is exponentially bounded. Then for large
values of s

L(y′′)(s) = s2L(y)(s)− sy(0)− y′(0) = s2Y (s)− sy(0)− y′(0),

where Y (s) is the Laplace transform of y. In general, if y = y(t) and all
of its derivatives up to order k−1 are piecewise continuous, exponentially
bounded functions and y(k) is piecewise continuous, then

L(y(k))(s) = skL(y)(s)− sk−1y(0)− · · · − sy(k−2)(0)− y(k−1)(0)

= skY (s)− sk−1y(0)− sk−1y(0)− · · · − sy(k−2)(0)− y(k−1)(0).

6.2.5 Reading Questions
1. Describe in your own words how the Laplace transform can be used to

solve an initial value problem.
2. Explain what an exponentially bounded function is. Give an example.

6.2.6 Exercises
A

Solving Initial Value Problems. Solve the initial problems in Exercise
Group 6.2.6.1–8 using the Laplace transform.

1. y′′ − 2y′ − 3y = 3e2t, y(0) = 1, y′(0) = 0

2. y′′ − y′ − 2y = 4x2, y(0) = −1, y′(0) = 1

3. d2x

dx2
− 6

dx

dt
+ 25x = 64e−t, x(0) = 1, x′(0) = −2

4. y′′ + 16y = 2 sin 2t, y(0) = 1, y′(0) = 0

5. y′′ + 16y = 2 sin 4t, y(0) = 1, y′(0) = 0

6. y′′ + 2y′ + y = 2e−t, y(0) = −1, y′(0) = 3

7. y′′ + 6y′ + 8y = cos 3t, y(0) = −2, y′(0) = 1

8. u′′ + ω2
0y = cosωt, ω2 ̸= ω2

0 , u(0) = 1, u′(0) = −1
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9. Find the solution of the initial value problem

2y′′ + y′ + 2y = g(t)

y(0) = y′(0) = 0

where g(t) is defined by

g(t) = u5(t)− u20(t) =

{
1, 5 ≤ t < 20,

0, 0 ≤ t < 5 and t ≥ 20.

10. Let y = y(t) and y′(t) be piecewise continuous, exponentially bounded
functions and assume that y′′ is exponentially bounded.

(a) Prove that

L(y′′)(s) = s2L(y)(s)− sy(0)− y′(0) = s2Y (s)− sy(0)− y′(0)

for large values of s, where Y (s) is the Laplace transform of y.

(b) If y = y(t) and all of its derivatives up to order k − 1 are piecewise
continuous, exponentially bounded functions and y(k) is piecewise
continuous, prove that

L(y(k))(s) = skL(y)(s)− sk−1y(0)− · · · − sy(k−2)(0)− y(k−1)(0)

= skY (s)− sk−1y(0)− sk−1y(0)− · · · − sy(k−2)(0)− y(k−1)(0).

11. Prove Theorem 6.2.2.
12. Let f(t) be a peicewise continuous function for t ≥ 0. In addition, suppose

that f(t)satisfies the condition |f(t)| ≤Mect with t ≥ 0.
(a) Prove that

L
(∫ t

0

f(τ) dτ

)
=

1

s
L(f(t) = F (s)

s
.

(b) Show that

L−1

(
F (s)

s

)
=

∫ t

0

f(τ) dτ

follows from (a).

6.3 Delta Functions and Forcing

Objectives
• To understand Impulse forcing, a term used to describe a very quick

push or pull on a system, such as the blow of a hammer or the force of
an explosion, and that an impulse function can be described by Dirac
delta function, δ(t), which has the properties

δ(t) = 0, t ̸= 0;∫ ∞

−∞
δ(t) dt = 1.

• To understand that we can use the Dirac delta function to solve initial
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value problems such as

d2y

dt2
+ 2

dy

dt
+ 26y = δ4(t)

y(0) = 1

y′(0) = 0,

or
d2y

dt2
+ p

dy

dt
+ qy = g(t),

where g(t) is a function that is very large in a very short time interval.

6.3.1 Impulse Forcing
Impulse forcing is the term used to describe a very quick push or pull on
a system, such as the blow of a hammer or the force of an explosion. For
example, consider the equation for a damped harmonic oscillator

d2y

dt2
+ 2

dy

dt
+ 26y = g(t),

where g(t) is a function that is very large in a very short time interval, say
|t− t0| < τ and zero otherwise. The integral

I(τ) =

∫ t0+τ

t0−τ

g(t) dt

or since g(t) is zero outside of the interval |t− t0| < τ

I(τ) =

∫ ∞

−∞
g(t) dt

measures the strength or impulse of the forcing function g(t). In particular,
assume that t0 = 0 and

g(t) = dτ (t) =

{
1/2τ, −τ < t < τ

0, otherwise.

It is easy to see that I(τ) = 1 in this case.
Examining this forcing function over shorter and shorter time intervals with

τ getting closer and closer to zero, we find that I(τ) = 1 in all cases. Thus,

lim
τ→0

dτ (t) = 0

for t ̸= 0; however,
lim
τ→0

I(τ) = 1.

We can use this information to define the unit impulse function, δ(t), to
be the ``function’’ that imparts an impulse of magnitude one at t = 0, but is
zero for all values of t other than zero. In other words, δ(t) has the properties

δ(t) = 0, t ̸= 0;∫ ∞

−∞
δ(t) dt = 1.
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Of course, we study no such function in calculus. The ``function’’ δ is an
example of what is known as a generalized function. We call δ, the Dirac
delta function.

We can define a unit impulse at a point t0 by considering the function
δ(t− t0). In this case,

δ(t− t0) = 0, t ̸= t0;∫ ∞

−∞
δ(t− t0) dt = 1.

6.3.2 The Laplace Transform of the Dirac Delta Function
Even though the Dirac delta function is not a piecewise continuous, exponen-
tially bounded function, we can define its Laplace transform as the limit of the
Laplace transform of dτ (t) as τ → 0. More specifically, assume that t0 > 0
and

L(δ(t− t0)) = lim
τ→0

L(dτ (t− t0)).

Assuming that t0 − τ > 0, the Laplace transform of dτ (t− t0) is

L(dτ (t− t0)) =

∫ ∞

0

e−stdτ (t− t0) dt

=

∫ t0+τ

t0−τ

e−stdτ (t− t0) dt

=
1

2τ

∫ t0+τ

t0−τ

e−st dt

=
1

2sτ
e−st

∣∣∣∣t=t0+τ

t=t0−τ

=
1

2sτ
e−st0(esτ − e−sτ )

=
sinh sτ
sτ

e−st0 .

We can use l’Hospital’s rule to evaluate (sinh sτ)/sτ as τ → 0,

lim
τ→0

sinh sτ
sτ

= lim
τ→0

s cosh sτ
s

= 1.

Thus,
L(δ(t− t0)) = e−st0 .

We can extend this result to allow t0 = 0, by

lim
t0→0

L(δ(t− t0)) = lim
t0→0

e−st0 = 1.

Example 6.3.1 Let us now solve the initial value problem

d2y

dt2
+ 2

dy

dt
+ 26y = δ4(t)

y(0) = 1

y′(0) = 0.

We can think of this as a damped harmonic oscillator that is struck by a
hammer at time t = 4. Let Y (s) = L(y)(s) and take the Laplace transform of
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both sides of the differential equation to obtain

s2Y (s)− sy(0)− y′(0) + 2(sY (s)− y(0)) + 26Y (s) = L(δ4)(s)

or
s2Y (s)− s+ 2sY (s)− 2 + 26Y (s) = e−4s.

Solving for Y (s), we have

Y (s) =
s+ 2

s2 + 2s+ 26
+

e−4s

s2 + 2s+ 26
.

The inverse Laplace transform of Y (s) is

y = L
(

s+ 2

s2 + 2s+ 26

)
+ L

(
e−4s

s2 + 2s+ 26

)
= L

(
s+ 2

(s+ 1)2 + 25

)
+

1

5
L
(

5e−4s

(s+ 1)2 + 25

)
= e−t cos 5t+ 1

5
e−t sin 5t+

1

5
u4(t)e

−(t−4) sin(5(t− 4)).

Figure 6.3.2 Solution to y′′ + 2y′ + 26y − δ4(t)

□
It is important to notice that we are using the Dirac delta function like an

ordinary function. This requires some rigorous mathematics to justify that we
can actually do this.

6.3.3 Important Lessons
• Impulse forcing is the term used to describe a very quick push or pull

on a system, such as the blow of a hammer or the force of an explosion.
For example, consider the equation for a damped harmonic oscillator

d2y

dt2
+ p

dy

dt
+ qy = g(t),

where g(t) is a function that is very large in a very short time interval,
say |t− t0| < τ and zero otherwise. The integral

I(τ) =

∫ t0+τ

t0−τ

g(t) dt

or since g(t) is zero outside of the interval |t− t0| < τ

I(τ) =

∫ ∞

−∞
g(t) dt
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measures the strength or impulse of the forcing function g(t).

• We define the unit impulse function, δ(t), to be the ``function’’ that
imparts an impulse of magnitude one at t = 0, but is zero for all values
of t other than zero. In other words, δ(t) has the properties

δ(t) = 0, t ̸= 0;∫ ∞

−∞
δ(t) dt = 1.

The “function” δ is an example of what is known as a generalized func-
tion. We call δ, the Dirac delta function.

• Similarly, we can define a unit impulse at a point t0 by considering the
function δ(t− t0). In this case,

δ(t− t0) = 0, t ̸= 0;∫ ∞

−∞
δ(t− t0) dt = 1.

• The Laplace transform of the Dirac delta function is

L(δ(t− t0)) = e−st0 .

We can extend this result to allow t0 = 0, by

lim
t0→0

L(δ(t− t0)) = lim
t0→0

e−st0 = 1.

• We can use the Dirac delta function to solve initial value problems such
as

d2y

dt2
+ 2

dy

dt
+ 26y = δ4(t)

y(0) = 1

y′(0) = 0,

or
d2y

dt2
+ p

dy

dt
+ qy = g(t),

where g(t) is a function that is very large in a very short time interval.

6.3.4 Reading Questions
1. What is impulse forcing? Give an example of a physical system where

impulse forcing might be useful.
2. Is the Dirac delta function an actual function? Why or why not.

6.3.5 Exercises

Solving Initial Value Problems. Solve the initial problems in Exercise
Group 6.3.5.1–6 using the Laplace transform, δ(t) is the unit impulse function.

1. 2y′′ + y′ + 2y = δ(t), y(0) = 0, y′(0) = 0

2. y′′ − y′ − 2y = δ(t− 5), y(0) = 0, y′(0) = 0



CHAPTER 6. THE LAPLACE TRANSFORM 372

3. d2x

dx2
− 6

dx

dt
+ 25x = δ(t), x(0) = 1, x′(0) = −2

4. y′′ + 16y = δ(t), y(0) = 1, y′(0) = 0

5. y′′ + 16y = δ(t− 4), y(0) = 1, y′(0) = 0

6. y′′ + 2y′ + y = δ(t+ 4), y(0) = −1, y′(0) = 3

6.4 Convolution

Objectives
• To understand that if f and g are two piecewise continuous exponentially

bounded functions, then we can define the convolution product of f
and g to be

(f ∗ g)(t) =
∫ t

0

f(t− τ)g(τ) dτ =

∫ t

0

f(τ)g(t− τ) dτ.

• To understand that the convolution product has many properties similar
to those of ordinary multiplication.

• To understand that if f and g be two piecewise continuous exponentially
bounded functions and L(f)(s) = F (s) and L(g)(s) = G(s) for s ≥ a > 0,
then

F (s)G(s) = L(f ∗ g)(s)

for s > a.

• To understand that it is possible to write a solution for the initial value
problem

ay′′ + by′ + cy = g(t)

y(0) = y0

y′(0) = y1.

using the Convolution Theorem.

When solving an initial value problem using Laplace transforms, we em-
ployed the strategy of converting the differential equation to an algebraic equa-
tion. Once the the algebraic equation is solved, we can recover the solution to
the initial value problem using the inverse Laplace transform. While our strat-
egy is straight forward, finding an inverse Laplace tranform can be a hindrance.
Often finding the inverse transform involves decomposing a complicated prod-
uct into the sum for partial fractions. Fortunately, there is a product rule for
inverse Laplace transforms. This product rule will allow us to quickly compute
solutions of a harmonic oscillator with different forcing functions.

6.4.1 Convolution
If f and g are two piecewise continuous exponentially bounded functions, then
we define the convolution product of f and g to be

(f ∗ g)(t) =
∫ t

0

f(t− τ)g(τ) dτ =

∫ t

0

f(τ)g(t− τ) dτ.
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The convolution product has many properties similar to those of ordinary mul-
tiplication.

• Commutivity: f ∗ g = g ∗ f .

• Distribution: f ∗ (g + h) = f ∗ g + f ∗ h.

• Associativity: f ∗ (g ∗ h) = (f ∗ g) ∗ h.

• 0 ∗ f = f ∗ 0 = 0.

All of these properties can be proven using the definition of convolution and
the properties of integration.

There is, however, no multiplicative identity. In other words, f ∗1 ̸= f . For
example, suppose that f(t) = cos t. Then

(f ∗ 1)(t) =
∫ t

0

cos(t− τ) · 1 dτ = sin t.

Also, it may not be the case that f ∗ f is a nonnegative function.
A key property of the Laplace transform is how convolution products be-

have.
Theorem 6.4.1 Convolution Theorem. Let f and g be two piecewise
continuous exponentially bounded functions, and suppose that L(f)(s) = F (s)
and L(g)(s) = G(s) for s ≥ a > 0. Then

F (s)G(s) = L(f ∗ g)(s)

for s > a.
Proof. If

F (s) =

∫ ∞

0

e−sξf(ξ) dξ

G(s) =

∫ ∞

0

e−sτg(τ) dτ,

then

F (s)G(s) =

∫ ∞

0

e−sξf(ξ) dξ

∫ ∞

0

e−sτg(τ) dτ

=

∫ ∞

0

g(τ)

(∫ ∞

τ

e−stf(t− τ) dt

)
dτ,

where ξ = t − τ is the change of variable. Reversing the order of integration,
we have∫ ∞

0

g(τ)

(∫ ∞

τ

e−stf(t− τ) dt

)
dτ =

∫ ∞

0

e−st

(∫ t

0

f(t− τ)g(τ) dτ

)
dt.

However, this last expression is just the Laplace transform of f ∗ g. ■

6.4.2 Applying the Convolution Theorem
The Convolution Theorem (Theorem 6.4.1) can be very useful for finding the
inverse transforms of products, since

F (s)G(s) = L(f ∗ g)(s).
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For example, suppose that we wish to find the inverse transform of
1

s2(s+ 1)
=

1

s2
· 1

s+ 1
.

Since L[t] = 1/s2 and L[e−t] = 1/(s+ 1), we know that

L−1

[
1

s2(s+ 1)

]
= L−1

[
1

s2

]
∗ L−1

[
1

s+ 1

]
=

∫ t

0

(t− u)e−u du

= t+ e−t − 1.

Of course, we could have used partial fractions to decompose 1/(s2(s+ 1)).

Example 6.4.2 Instead of using partial fractions, let us use the Convolution
Theorem (Theorem 6.4.1) to calculate the inverse Laplace transform of

H(s) =
a

s2(s2 + a2)
=

1

s2
· a

s2 + a2
.

The inverse Laplace transform of 1/s2 is t, and the inverse Laplace transform
of a/(s2 + a2). is sin at. Using the Convolution Theorem, the inverse Laplace
transform of H(s) is

h(t) =

∫ t

0

(t− τ) sin aτ dτ =
at− sin at

a2
.

□
We can also use the Convolution Theorem to solve initial value problems.

Example 6.4.3 Consider the initial value problem

y′′ + 4y = g(t)

y(0) = 3

y′(0) = −1.

Taking the Laplace transform of both sides of the differential equation and
applying the initial conditions, we obtain

s2Y (s)− 3s+ 1 + 4Y (s) = G(s),

where G(s) is the Laplace transform of g(t). Solving for Y (s), we have

Y (s) =
3s− 1

s2 + 4
+

G(s)

s2 + 4
= 3

s

s2 + 4
− 1

2

2

s2 + 4
+

1

2

2

s2 + 4
G(s).

The last term corresponds to the forcing term of our differential equation. Tak-
ing the inverse Laplace transform of both sides and applying the Convolution
Theorem, we get

y = 3 cos 2t− 2

2
sin 2t+

1

2

∫ t

0

sin 2(t− τ)g(τ) dτ.

□
Notice that we did not specify a particular forcing function in Example 6.4.3.

In fact, it is possible to write a solution for the initial value problem

ay′′ + by′ + cy = g(t)
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y(0) = y0

y′(0) = y1

using the Convolution Theorem without knowing what the actual forcing func-
tion g(t). Taking the Laplace transform of both sides of the differential equa-
tion and using the initial conditions, we have

(as2 + bs+ c)Y (s)− (as+ b)y0 − ay1 = G(s)

or
Y (s) = Φ(s) + Ψ(s),

where

Φ(s) =
(as+ b)y0 + ay1
as2 + bs+ c

Ψ(s) =
G(s)

as2 + bs+ c
.

Therefore,
y = ϕ(t) + ψ(t),

where ϕ(t) = L−1(Φ(s)) and ψ(t) = L−1(Ψ(s)). Observe that ϕ(t) is the
solution to the initial value problem

ay′′ + by′ + cy = 0

y(0) = y0

y′(0) = y1.

Once we have values for a, b, and c, the function ϕ(t) is easy to find. To find
ψ(t), we first write

Ψ(s) =
1

as2 + bs+ c
G(s) = H(s)G(s),

where H(s) = 1/(as2+bs+c). If h(t) is the inverse Laplace transform of H(s),
then

ψ(t) = L−1(H(s)G(s)) =

∫ t

0

h(t− τ)g(τ) dτ.

If we consider the case where G(s) = 1, then g(t) = δ(t) and ψ(s) = H(s).
This means that h(t) is a solution to the initial value problem

ay′′ + by′ + cy = δ(t)

y(0) = y0

y′(0) = y1.

For this reason, h(t) is sometimes called the impulse response of the sys-
tem.

6.4.3 Important Lessons
• If f and g are two piecewise continuous exponentially bounded functions,

then we define the convolution product of f and g to be

(f ∗ g)(t) =
∫ t

0

f(t− τ)g(τ) dτ =

∫ t

0

f(τ)g(t− τ) dτ.
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• The convolution product has many properties similar to those of ordinary
multiplication.

◦ Commutivity: f ∗ g = g ∗ f
◦ Distribution: f ∗ (g + h) = f ∗ g + f ∗ h
◦ Associativity: f ∗ (g ∗ h) = (f ∗ g) ∗ h
◦ 0 ∗ f = f ∗ 0 = 0

There is, however, no multiplicative identity. In other words, f ∗ 1 ̸= f .
Also, it may not be the case that f ∗ f is a nonnegative function.

• Let f and g be two piecewise continuous exponentially bounded functions,
and suppose that L(f)(s) = F (s) and L(g)(s) = G(s) for s ≥ a > 0.
Then

F (s)G(s) = L(f ∗ g)(s)

for s > a.

• It is possible to write a solution for the initial value problem

ay′′ + by′ + cy = g(t)

y(0) = y0

y′(0) = y1.

using the Convolution Theorem.

6.4.4 Reading Questions
1. Explain how the convolution product of two functions is useful when solv-

ing an initial value problem.

6.4.5 Exercises

Convolution of Two Functions. Calculate the convolution product of f(t)
and g(t) in Exercise Group 6.4.5.1–6 using the definition of the convolution of
two functions.

1. f(t) = 2 and g(t) = t

2. f(t) = t and g(t) = t

3. f(t) = t and g(t) = e3t

4. f(t) = t and g(t) = sin t
5. f(t) = e2t and g(t) = e3t

6. f(t) = e3t and g(t) = e2t

Convolution and the Inverse Transform. Calculate the inverse Laplace
transform of F (s) in Exercise Group 6.4.5.7–12 using the convolution product.

7. F (s) =
1

(s− 1)(s− 3)

8. F (s) =
3

s(s− 1)

9. F (s) =
2

s2(s2 + 2)
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10. F (s) =
1

s2 + 4s− 12

11. F (s) =
1

(s− 1)(s− 3)

12. F (s) =
1

(s− 1)(s− 3)

Solving Initial Value Problems. Solve the initial problems in Exercise
Group 6.4.5.13–18 using the method described in Subsection 6.4.2.

13. 2y′′ + y′ + 2y = g(t), y(0) = 0, y′(0) = 0

14. y′′ − y′ − 2y = g(t), y(0) = 0, y′(0) = 0

15. d2x

dx2
− 6

dx

dt
+ 25x = g(t), x(0) = 1, x′(0) = −2

16. y′′ + 16y = g(t), y(0) = 1, y′(0) = 0

17. y′′ + 16y = g(t), y(0) = 1, y′(0) = 0

18. y′′ + 2y′ + y = g(t), y(0) = −1, y′(0) = 3

19. Prove that the distributive property holds for the convolution product.
That is, show that f ∗ g = g ∗ f .

20. Prove that the convolution product of two functions f and g distributes
multiplication over addition. That is, show that f ∗ (g+h) = f ∗ g+ f ∗h
for functions f , g, and h.

21. Prove that the convolution product is associative. In other words, show
that f ∗ (g ∗ h) = (f ∗ g) ∗ h for functions f , g, and h.

22. Prove that 0 ∗ f = f ∗ 0 = 0.

6.5 Projects for Laplace Transforms
Project 6.5.1 Project—Tank Interrupt Mixing. Water containing 2
kg of salt per liter (L) is poured into a tank at a rate of 1 L/min, and the
well-stirred mixture leaves at the same rate. After 10 min, the process is
stopped and fresh water is poured into the tank at a rate of 1 L/min, with the
new mixture leaving at 1 L/min. We seek to model this situation in order to
determine the amount (kg) of salt in the tank at the end of 20 minutes if there
were 100 L of pure water initially in the tank.1

(a) Build a mathematical model for the amount of salt in kg in the tank
at time t in min with two parts, first over the time interval [0, 10] min-
utes and then over the time interval [10, 20] minutes. You can assume
instantaneous mixing of the two different solutions.

(b) Build a mathematical model for the amount of salt in kg in the tank at
time t in min using the Heaviside or Unit Step functions to represent the
sudden change in input water types and apply Laplace Transforms and
Inverse Laplace Transforms to determine the amount of salt in the tank
over the entire interval [0, 20] minutes. Then compare your results with
Activity 1.

1This project is adapted from Norman Loney (2018), “7-040-S-TankInterruptMixing,”
https://www.simiode.org/resources/5103.

 https://www.simiode.org/resources/5103
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GNU Free Documentation Li-
cense

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<www.fsf.org>
Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

0. PREAMBLE. The purpose of this License is to make a manual, text-
book, or other functional and useful document “free” in the sense of freedom:
to assure everyone the effective freedom to copy and redistribute it, with or
without modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It complements
the GNU General Public License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS. This License applies to
any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The “Document”, below,
refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute
the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.
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A “Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers or
authors of the Document to the Document’s overall subject (or to related mat-
ters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Sec-
tion may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the Doc-
ument is released under this License. A Front-Cover Text may be at most 5
words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public,
that is suitable for revising the document straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for draw-
ings) some widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of formats suitable
for input to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy
that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML
using a publicly available DTD, and standard-conforming simple HTML, Post-
Script or PDF designed for human modification. Examples of transparent
image formats include PNG, XCF and JPG. Opaque formats include propri-
etary formats that can be read and edited only by proprietary word processors,
SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript or PDF produced by
some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title
page as such, “Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the
Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text
that translates XYZ in another language. (Here XYZ stands for a specific
section name mentioned below, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the Title” of such a section when
you modify the Document means that it remains a section “Entitled XYZ”
according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
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are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING. You may copy and distribute the Document
in any medium, either commercially or noncommercially, provided that this
License, the copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also
follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY. If you publish printed copies (or copies
in media that commonly have printed covers) of the Document, numbering
more than 100, and the Document’s license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back
cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of
the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as they
preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus ac-
cessible at the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Doc-
ument well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the Document.

4. MODIFICATIONS. You may copy and distribute a Modified Version
of the Document under the conditions of sections 2 and 3 above, provided
that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
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there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities re-
sponsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all
of its principal authors, if it has fewer than five), unless they release you
from this requirement.

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to
it an item stating at least the title, year, new authors, and publisher of
the Modified Version as given on the Title Page. If there is no section
Entitled “History” in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve
the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications
given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their
text and in their titles. Section numbers or the equivalent are not con-
sidered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.
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If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled “Endorsements”, provided it contains noth-
ing but endorsements of your Modified Version by various parties — for ex-
ample, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5. COMBINING DOCUMENTS. You may combine the Document with
other documents released under this License, under the terms defined in section
4 above for modified versions, provided that you include in the combination
all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice,
and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in
the various original documents, forming one section Entitled “History”; likewise
combine any sections Entitled “Acknowledgements”, and any sections Entitled
“Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS. You may make a collection
consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS. A compila-
tion of the Document or its derivatives with other separate and independent
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documents or works, in or on a volume of a storage or distribution medium, is
called an “aggregate” if the copyright resulting from the compilation is not used
to limit the legal rights of the compilation’s users beyond what the individual
works permit. When the Document is included in an aggregate, this License
does not apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire
aggregate, the Document’s Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must appear on printed
covers that bracket the whole aggregate.

8. TRANSLATION. Translation is considered a kind of modification, so
you may distribute translations of the Document under the terms of section
4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license
notices in the Document, and any Warranty Disclaimers, provided that you also
include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation
and the original version of this License or a notice or disclaimer, the original
version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedica-
tions”, or “History”, the requirement (section 4) to Preserve its Title (section
1) will typically require changing the actual title.

9. TERMINATION. You may not copy, modify, sublicense, or distribute
the Document except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, or distribute it is void, and will auto-
matically terminate your rights under this License.

However, if you cease all violation of this License, then your license from
a particular copyright holder is reinstated (a) provisionally, unless and until
the copyright holder explicitly and finally terminates your license, and (b)
permanently, if the copyright holder fails to notify you of the violation by
some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated per-
manently if the copyright holder notifies you of the violation by some reasonable
means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to
30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses
of parties who have received copies or rights from you under this License. If
your rights have been terminated and not permanently reinstated, receipt of a
copy of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE. The Free Software
Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
See www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License “or

http://www.gnu.org/copyleft/
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any later version” applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that
has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose
any version ever published (not as a draft) by the Free Software Foundation.
If the Document specifies that a proxy can decide which future versions of this
License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Document.

11. RELICENSING. “Massive Multiauthor Collaboration Site” (or “MMC
Site”) means any World Wide Web server that publishes copyrightable works
and also provides prominent facilities for anybody to edit those works. A pub-
lic wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means any set
of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit corpora-
tion with a principal place of business in San Francisco, California, as well as
future copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in
part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and
if all works that were first published under this License somewhere other than
this MMC, and subsequently incorporated in whole or in part into the MMC,
(1) had no cover texts or invariant sections, and (2) were thus incorporated
prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009, provided
the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents. To use
this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the
title page:

Copyright (C) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, re-
place the “with… Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination
of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.
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Hints and Answers to Selected
Exercises

1 · A First Look at Differential Equations
1.1 · Modeling with Differential Equations
1.1.9 · Exercises
1.1.9.29. Hint. Rewriting the differential equation as x′+ax− q(t) = 0 and
using the fact that

x′(t) = −aCe−at − ae−at

∫ t

t0

easq(s) ds+ b(t),

we see that

x′(t) + ax(t)− q(t) = −aCe−at − ae−at

∫ t

t0

easq(s) ds+ q(t)

+ aCe−at + ae−at

∫ t

t0

easq(s) ds− q(t)

= 0.

1.1.9.31. Hint. Think about the limit of the interaction term as the number
of prey becomes very large.

1.4 · Analyzing Equations Numerically
1.4.6 · Exercises

Finding Solutions.

1.4.6.5. Hint. This equation is
a first-order linear equation
(Section 1.5), but it is possible to
find the analytic solution using
Sage (Subsection 1.2.10).

1.4.6.8. Hint. Hints for part (2):
• For fixed i show that

ai+1 ≤ (1 + s)ai + t

≤ (1 + s)[(1 + s)ai−1 + t] + t

≤ (1 + s){(1 + s)[(1 + s)ai−2 + t] + t}+ t

385
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...
≤ (1 + s)i+1a0 + [1 + (1 + s) + (1 + s)2 + · · ·+ (1 + s)i]t.

• Now use a geometric sum to show that

ai+1 ≤ (1 + s)i+1a0 +
t

s
[(1 + s)i+1 − 1] = (1 + s)i+1

(
t

s
+ a0

)
− t

s
.

• Apply part (1) to derive

ai+1 ≤ e(i+1)s

(
t

s
+ a0

)
− t

s
.

1.5 · First-Order Linear Equations
1.5.8 · Exercises

Solving Initial Value Problems.
1.5.8.16.
Hint. y =

3x4 + 8x3 + 6x2 + 12

6(x+ 1)2

1.5.8.17.
Hint. y = (ex + 1)/(x+ 1)2

1.5.8.19. Hint. y = ex secx 1.5.8.20.
Hint. y = sinx/(x+ 2)

1.5.8.21. Hint. If x(t) is the amount of salt in the tank at time t, we know
that x(0) = 10. The volume of the tank is V = 200 + 5t. We can model the
amount of salt in the tank at time t with a differential equation,

dx

dt
= rate in − rate out

= 10(0.1)− 5
x

V

= 1− 5
x

200 + 5t

= 1− x

40 + t
.

The resulting equation
dx

dt
+

1

40 + t
x = 1

is a first order linear differential equation. An integrating factor for this equa-
tion is given by

µ(t) = exp
(∫

1

40 + t
dt

)
= 40 + t.

Multiplying both sides of the differential equation by µ(t), we have

d

dt
[(40 + t)x] = (40 + t)

dx

dt
+ x = (40 + t)

(
dx

dt
+

1

40 + t
x

)
= 40 + t.

Integrating both sides of this equation, we obtain

(40 + t)x = 40t+
t2

2
+ C.

Using the intial condition x(0) = 10, we can determine that C = 400 or

x(t) =
t2 + 80t+ 800

2t+ 80
.
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The tank is full at time t = 400/5 = 80, and the tank contains x(80) = 170/3 ≈
56.67 kilograms of salt when the tank is full.

1.5.8.26. Hint.
(a) If y = y1 + 1/v, then y′ = y′1 − v′/v2. Substituting into our original

equation, we obtain

y′ = y′1 −
v′

v2
= p+ qy1 + ry21 −

v′

v2
.

On the other hand,

y′ = p+ q

(
y1 +

1

v

)
+ r

(
y1 +

1

v

)2

= p+ qy1 +
q

v
+ ry21 +

2ry1
v

+
r

v2

= y′1 +
q

v
+

2ry1
v

+
r

v2
.

Therefore,
− v′

v2
=
q

v
+

2ry1
v

+
r

v2
,

which is just the first-order linear equation

v′ + [q(t) + 2r(t)y1(t)]v = −r(t).

(b)
y = t+

1

C − t

(c)
y(t) =

1

C cos t− sin t + sin t

(d)
y(t) = 2 +

1

Cet − 1

1.6 · Existence and Uniqueness of Solutions
1.6.5 · Exercises
1.6.5.1. Hint.

(a) There exists a unique solution to y′ = y2 + y3, y(0) = 1, since f(t, y) =
y2 + y3 and ∂f(t, y)/∂y = 2y + 3y2 are continuous at the point (0, 1).

(b) The Existence and Uniqueness Theorem does not apply to y′ = 4
√
y,

y(1) = 0, since f(t, y) = 4
√
y is not continuous at (1, 0).

(c) There exists a unique solution to y′ = 4
√
y, y(1) = 1, since f(t, y) = 4

√
y

and ∂f(t, y)/∂y = y−3/4/4 are both continuous at the point (1, 1).

(d) The Existence and Uniqueness Theorem does not apply to x′ = t/(x2−4),
x(0) = 2, since f(t, x) = t/(x2 − 4) is not continuous at (0, 2).

(e) There exists a unique solution to x′ = t/(x2−4), x(2) = 0, since f(t, x) =
t/(x2 − 4) and ∂f(t, x)/∂x = −2tx/(x2 − 4)2 are both continuous at the
point (2, 0).
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(f) There exists a unique solution to y′ = x sin y, y(0) = 0, since f(x, y) =
x sin y and ∂f(x, y)/∂y = x cos y are both continuous at the point (0, 0).

(g) The Existence and Uniqueness Theorem does not apply to y′ = 1/(t −
1)y + 2t, y(1) = 1, since f(t, y) = 1/(t − 1)y + 2t is not continuous at
(1, 1).

1.6.5.3. Hint. (b) Make sure that the derivative of y(t) exists at t = t0.

3 · Linear Systems
3.2 · Planar Systems
3.2.6 · Exercises
3.2.6.10. Hint. Assume that your solution must be of the form

xp =

(
a2t

2 + a1t+ a0
b2t

2 + b1t+ b0.

)
This is called the method of undetermined coefficients.

4 · Second-Order Linear Equations
4.1 · Homogeneous Linear Equations
4.1.6 · Exercises

Oscillations of a Hanging Mass. 4.1.6.31. Hint. Pay careful attention
to units.

4.1.6.32. Hint.
(a) Observe that

ax′′1 + b′1 + cx1 = a

(
−b
2a

)2

e−bt/2a + b

(
−b
2a

)
e−bt/2a + ce−bt/2a

= e−bt/2a

(
b2

4a
− b2

2a
+ c

)
= e−bt/2a

(
−b2 + 4ac

4a

)
= 0.

(b) If y = v(t)x1(t) = v(t)e−bt/2a is a solution to our differential equation,
then

ay′′ + by′ + cy = a(v′′x1 + 2v′x′1 + vx′′1) + b(v′x1 + vx′1) + cvx1

= av′′x1 + 2av′x′1 + bv′x1 + v(ax′′1 + bx′1 + cx1)

= av′′e−bt/2a +

[
2a

(
−b
2a

)
e−bt/2a + be−bt/2a

]
v′

= av′′e−bt/2a

= 0.

Since a ̸= 0, we know that v′′ = 0. Hence, v(t) = c1 + c2t.
4.1.6.33. Hint.

(a)

x′′ + px′ + qx = (v′′x1 + 2v′x′1 + vx′′1) + p(v′x1 + vx′1) + q(vx1)

= x1v
′′ + 2v′x′1 + px1v

′ + v(x′′1 + px′1 + qx1)
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= x1v
′′ + (2x′1 + px1)v

′

= 0.

(b) If u = v′, then x1u
′ + (2x′1 + px1)u = 0.

(c) If x1(t) = 1/t, then

2t2x′′1 + 3tx′1 − x1 = 2t2
(

2

t3

)
+ 3t

(
−1

t2

)
− 1

t
= 0.

If we assume that x = v/t is a second solution, then

2t2x′′ + 3tx′ − x = 2tv′′ − v′ = 0.

If we let u = v′, then a solution of 2tu′ − u = 0 is u =
√
t and v =∫ √

t dt = 2t3/2/3. Therefore, the second solution to our equation is

x =
v

t
=

2

3

√
t.

4.2 · Forcing
4.2.7 · Exercises
4.2.7.25. Hint. Suppose that that f(t) and g(t) are linearly dependent
on an interval I = (a, b). Then one function is a multiple of the other, say
f(t) = cg(t). Thus, f ′(t) = cg′(t).

W (f, g)(t) = det
(
f(t) g(t)

f ′(t) g′(t)

)
= f(t)g′(t)−f ′(t)g(t) = cg(t)g′(t)−cg′(t)g(t) = 0.

Conversely, suppose that

W (f, g)(t) = det
(
f(t) g(t)

f ′(t) g′(t)

)
= 0,

for all t in (a, b). If g = 0, then 0f = g and the two functions are linearly
dependent. Assume that g(t0) ̸= 0 for some t0 in (a, b). Since g is differentiable,
it must also be continuous and there is some interval (c, d) contained in (a, b)
such that t0 ∈ (c, d) and g does not vanish on this interval. Therefore,

d

dt

(
f

g

)
=
f ′g − fg′

g2
= −W (f, g)

g2
= 0,

and f/g is constant on the interval (c, d). Thus, f(t0) = cg(t0) and f ′(t0) =
cg′(t0). Since f and cg are both solutions to the differential equation y′′ +
py′ + qy = 0 and have the same initial condition, f(t) = cg(t) for all t ∈ (a, b)
by the existence and uniqueness theorem. Consequently, f and g are linearly
dependent.
4.2.7.26. Hint.

(a) We can rewrite 2t2y′′ + 3ty′ − y = 0 as

y′′ +
3

2t
y′ − 1

2t2
y = 0.

Since p(t) = 1/2t, Abel’s Theorem tells us that

W [y1, y2](t) = c exp
(
−
∫

3

2t
dt

)
= c exp

(
−3

2
ln t
)

= ct−3/2.
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(b) Since y1 and y2 are solutions to our differential equation, we know that

y′′1 + p(t)y′1 + q(t)y1 = 0

y′′2 + p(t)y′2 + q(t)y2 = 0.

Multiplying the first equation by y2 and the second equation by y1 and
subtracting, we obtain

(y1y
′′
2 − y′′1 y2) + p(t)(y1y

′
2 − y′1y2) = 0. (B.0.1)

If
W (t) =W (y1, y2)(t) = y1y

′
2 − y′1y2,

then
W ′ = y1y

′′
2 − y′′1 y2,

and equation (B.0.1) becomes

W ′ + p(t)W = 0.

This equation is separable with solution

W (t) = c exp
(
−
∫
p(t) dt

)
.

4.2.7.27. Hint.
(a) If yp = u1y1 + u2y2, then

y′p = u′1y1 + u1y
′
1 + u′2y2 + u2y

′
2 = u1y

′
1 + u2y

′
2

y′′p = u′1y
′
1 + u1y

′′
1 + u′2y

′
2 + u2y

′′
2 .

Substituting these expressions into equation (4.2.6), we have

y′′p + py′p + qyp = (u′1y
′
1 + u1y

′′
1 + u′2y

′
2 + u2y

′′
2 ) + p(u1y

′
1 + u2y

′
2)

+ q(u1y1 + u2y2)

= u1[y
′′
1 + py′1 + qy1] + u2[y

′′
2 + py′2 + qy2] + u′1y

′
1 + u′2y

′
2

= u′1y
′
1 + u′2y

′
2

= f(t).

(b) If we solve the system

u′1(t)y1(t) + u′2(t)y2(t) = 0

u′1(t)y
′
1(t) + u′2(t)y

′
2(t) = f(t).

for u′1 and u′2, we obtain

u′1(t) =
−y2(t)f(t)
W [y1, y2](t)

u′2(t) =
y1(t)f(t)

W [y1, y2](t)
.

(c) Integrate the two equations from part (2).

(d) The general solution to the homogeneous equation y′′ + 4y = 0 is

yh = c1 cos 2t+ c2 sin 2t.
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To find a particular solution, assume that the solution has the form

yp = u1(t) cos 2t+ u2(t) sin 2t.

By part (2)

u′1(t) = −3 cos t

u′2(t) =
3

2
csc t− 3 sin t.

Integrating, we obtain

u1(t) = −3 sin t

u2(t) =
3

2
ln | csc t− cot t|+ 3 cos t.

Therefore,

yp(t) = u1(t)y1(t) + u2(t)y2(t)

= −3 sin t cos 2t+
[
3

2
ln | csc t− cot t|+ 3 cos t

]
sin 2t,

and the general solution is

y = yh + yp

= c1 cos 2t+ c2 sin 2t− 3 sin t cos 2t+
[
3

2
ln | csc t− cot t|+ 3 cos t

]
sin 2t.

4.3 · Sinusoidal Forcing
4.3.5 · Exercises

Finding Particular Solutions.
4.3.5.2. Hint. Assume the
complex solution has form
yc = Ae3it.

Finding Frequencies, Amplitudes, and Phase Angles.
4.3.5.12. Hint. Assume the
complex solution has form
yc = Ae3it.

5 · Nonlinear Systems
5.3 · More Nonlinear Mechanics
5.3.6 · Exercises
5.3.6.17. Lobster Navigation.
Hint. You may find Sage useful.
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Notation

The following table defines the notation used in this book. Page numbers or
references refer to the first appearance of each symbol.

Symbol Description Page
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Abel’s Theorem, 262

basis, 147
standard basis, 147

beats, 275
bifurcation, 84, 333

bifurcation value, 86
diagram, 87
pitch fork, 87

bifurcation value, 210

carrying capacity, 4
Convolution Theorem, 373
coordiantes

change of, 190
coordinates, 147
Coulomb’s Law, 34

differential equation, 19
autonomous, 38
exact, 61
first-order linear, 58, 61
one-parameter family, 85
order, 19
separable, 20, 27
solution, 19

Dirac delta function, 369
direction field, 35
discontinuity

jump discontinuity, 353
driving frequency, 275
Duffing’s equation, 123

eigenvalue, 148
dominant, 167

eigenvector, 148
envelope, 280
equilibrium solution, 39

center, 204
linear system, 156
nodal sink, 205

nodal source, 205
node, 40
saddle, 165, 205, 214
sink, 40, 167
source, 40, 168
spiral sink, 204
spiral source, 204
stable, 40, 99, 214
stable line, 214
systems of differential

equations, 97
unstable, 40, 214
unstable plane, 214

Euler’s method, 46
error bound, 49
improved, 50, 51
step size, 46

Existence and Uniqueness
Theorem, 73

exponential growth, 2

frequency, 265
function

exponentially bounded, 355
gamma function, 358
Heaviside function, 353
piecewise continuous, 353
step function, 353

gain, 283
gamma function, 358
general solution, 3
generalized function, 369
gradient system, 327

half difference, 279
harmonic oscillator, 7

critically-damped, 242
damped, 8, 240
over-damped, 9, 242
under-damped, 9, 241
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harvesting, 38
Heaviside function, 353
Hooke’s Law, 7
Hopf bifurcation, 337

impulse, 368
unit impulse function, 368

impulse forcing, 368
impulse response, 375
initial condition, 2
initial value problem, 2
integral curves, 3
integral equation, 28
integrating factor, 62
IVP, 2

Kirchhoff’s Second Law, 34

Laplace transform, 350
definition, 351
inverse Laplace transform,

355
linear map, 189

invertible, 189
linear operator, 352
linear system

particular solution, 161
straight-line solution, 156

linear transformation, 189
linearly dependent, 262
linearly independent, 261
Lipschitz condition, 49
logistic equation, 4
logistic population model, 4
Lorenz equations, 343
Lyapunov function, 322, 327

matrix
characteristic polynomial, 148
coefficient matrix, 146
determinant, 146
identity, 152
invertible matrix, 146
nonsingular matrix, 146
trace, 152, 202
transpose, 151
uppper triangular, 153

mean frequency, 279
Method of Undetermined

Coefficients, 257
Method of Variation of

Parameters, 263
mixing problems, 24

natural frequency, 275

negative definite function, 326
negative semidefinite function, 326
Newton’s law of cooling, 22
nonautonomous system, 269
nullcline, 113

Ohm’s Law, 34

parameter, 81
parameter plane, 206
particular solution, 3
period of a function, 265
periodic function, 265
phase angle, 268
phase line, 39
phase plane, 98
Picard iteration, 75
positive definite function, 326
positive semidefinite function, 326
Principle of Superposition, 158

radio carbon dating, 17
RC circuit, 33
reduction of order, 239
resonance, 275
retirement model, 25
Ricatti equation, 71
Runge-Kutta method, 50

order 4, 53
second-order, 51

saddle-node, 334
satiation constant, 339
second-order differential equation,

7
sinusoidal forcing, 265
SIR model, 102
slope field, 35
solution curves, 3
stable line of solutions, 165
steady-state term, 283
step function, 353
system

autonomous, 104, 109
decoupled, 134
direction field, 109
equilibrium solution, 97
first-order linear, 154
homogeneous first-order

linear, 154
partially coupled, 134
planar, 154

Taylor’s theorem, 48
trace-determinant plane, 202
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transfer function, 282
transient term, 283

uniform continuity, 81
unstable line, 165

vector field, 112

vectors
linear combination, 147
linearly dependent, 146
linearly independent, 146

Wronskian, 262
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