Suppose \(d{\mathbf x}/dt = A {\mathbf x}\text{,}\) where
\begin{equation*}
A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}.
\end{equation*}
The eigenvalues of \(A\) are \(\lambda_1 = 5\) and \(\lambda_2 = -1\) and the associated eigenvectors are \((1, 2)\) and \((1, -1)\text{,}\) respectively. In this case, our matrix \(T\) is
\begin{equation*}
\begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}.
\end{equation*}
If \({\mathbf e}_1 = (1, 0)\) and \({\mathbf e}_2 = (0, 1)\text{,}\) then \(T {\mathbf e}_i = {\mathbf v}_i\) for \(i = 1, 2\text{.}\) Consequently, \(T^{-1} {\mathbf v}_i = {\mathbf e}_i\) for \(i = 1, 2\text{,}\) where
\begin{equation*}
T^{-1} = \begin{pmatrix} 1/3 & 1/3 \\ 2/3 & -1/3 \end{pmatrix}.
\end{equation*}
Thus,
\begin{equation*}
T^{-1} A T
=
\begin{pmatrix}
1/3 & 1/3 \\
2/3 & -1/3
\end{pmatrix}
\begin{pmatrix}
1 & 2 \\
4 & 3
\end{pmatrix}
\begin{pmatrix}
1 & 1 \\
2 & -1
\end{pmatrix}
=
\begin{pmatrix}
5 & 0 \\
0 & -1
\end{pmatrix}.
\end{equation*}
The eigenvalues of the matrix
\begin{equation*}
\begin{pmatrix} 5 & 0 \\ 0 & -1 \end{pmatrix}
\end{equation*}
are \(\lambda_1 = 5\) and \(\lambda_2 = -1\) with eigenvectors \((1, 0)\) and \((0, 1)\text{,}\) respectively. Thus, the general solution of
\begin{equation*}
{\mathbf y}' = (T^{-1}AT) {\mathbf y}
\end{equation*}
is
\begin{equation*}
{\mathbf y}(t)
=
\alpha e^{5t}
\begin{pmatrix} 1 \\ 0 \end{pmatrix}
+
\beta e^{-t}
\begin{pmatrix} 0\\ 1 \end{pmatrix}.
\end{equation*}
Hence, the general solution of
\begin{equation*}
{\mathbf x}' = A {\mathbf x}
\end{equation*}
is
\begin{align*}
T {\mathbf y}(t)
& =
\begin{pmatrix}
1 & 1 \\
2 & -1
\end{pmatrix}
\left(
\alpha e^{5t}
\begin{pmatrix} 1 \\ 0 \end{pmatrix}
+
\beta e^{-t}
\begin{pmatrix} 0 \\ 1 \end{pmatrix}
\right)\\
& =
\alpha e^{5t}
\begin{pmatrix} 1 \\ 2 \end{pmatrix}
+
\beta e^{-t}
\begin{pmatrix} 1 \\ -1 \end{pmatrix}
\end{align*}
The linear map
\(T\) converts the phase portrait of the system
\({\mathbf y}' = (T^{-1}AT) {\mathbf y}\) (
Figure 3.6.3) to the phase portrait of the system
\({\mathbf x}' = A {\mathbf x}\) (
Figure 3.6.4).