Skip to main content
Logo image

Appendix B Hints and Answers to Selected Exercises

1 Preliminaries
1.4 Exercises

1.4.1.

Hint.
(a) \(A \cap B = \{ 2 \}\text{;}\) (b) \(B \cap C = \{ 5 \}\text{.}\)

1.4.2.

Hint.
(a) \(A \times B = \{ (a,1), (a,2), (a,3), (b,1), (b,2), (b,3), (c,1), (c,2), (c,3) \}\text{;}\) (d) \(A \times D = \emptyset\text{.}\)

1.4.6.

Hint.
Observe that \(x \in A \cup B\) if and only if \(x \in A\) or \(x \in B\text{.}\) Equivalently, \(x \in B\) or \(x \in A\text{,}\) which is the same as \(x \in B \cup A\text{.}\) Therefore, \(A \cup B = B \cup A\text{.}\)

1.4.10.

Hint.
\((A \cap B) \cup (A \setminus B) \cup (B \setminus A) = (A \cap B) \cup (A \cap B') \cup (B \cap A') = [A \cap (B \cup B')] \cup (B \cap A') = A \cup (B \cap A') = (A \cup B) \cap (A \cup A') = A \cup B\text{.}\)

1.4.14.

Hint.
\(A \setminus (B \cup C) = A \cap (B \cup C)' = (A \cap A) \cap (B' \cap C') = (A \cap B') \cap (A \cap C') = (A \setminus B) \cap (A \setminus C)\text{.}\)

1.4.17.

Hint.
(a) Not a map since \(f(2/3)\) is undefined; (b) this is a map; (c) not a map, since \(f(1/2) = 3/4\) but \(f(2/4)=3/8\text{;}\) (d) this is a map.

1.4.18.

Hint.
(a) \(f\) is one-to-one but not onto. \(f({\mathbb R} ) = \{ x \in {\mathbb R} : x \gt 0 \}\text{.}\) (c) \(f\) is neither one-to-one nor onto. \(f(\mathbb R) = \{ x : -1 \leq x \leq 1 \}\text{.}\)

1.4.20.

Hint.
(a) \(f(n) = n + 1\text{.}\)

1.4.22.

Hint.
(a) Let \(x, y \in A\text{.}\) Then \(g(f(x)) = (g \circ f)(x) = (g \circ f)(y) = g(f(y))\text{.}\) Thus, \(f(x) = f(y)\) and \(x = y\text{,}\) so \(g \circ f\) is one-to-one. (b) Let \(c \in C\text{,}\) then \(c = (g \circ f)(x) = g(f(x))\) for some \(x \in A\text{.}\) Since \(f(x) \in B\text{,}\) \(g\) is onto.

1.4.23.

Hint.
\(f^{-1}(x) = (x+1)/(x-1)\text{.}\)

1.4.24.

Hint.
(a) Let \(y \in f(A_1 \cup A_2)\text{.}\) Then there exists an \(x \in A_1 \cup A_2\) such that \(f(x) = y\text{.}\) Hence, \(y \in f(A_1)\) or \(f(A_2) \text{.}\) Therefore, \(y \in f(A_1) \cup f(A_2)\text{.}\) Consequently, \(f(A_1 \cup A_2) \subset f(A_1) \cup f(A_2)\text{.}\) Conversely, if \(y \in f(A_1) \cup f(A_2)\text{,}\) then \(y \in f(A_1)\) or \(f(A_2)\text{.}\) Hence, there exists an \(x\) in \(A_1\) or \(A_2\) such that \(f(x) = y\text{.}\) Thus, there exists an \(x \in A_1 \cup A_2\) such that \(f(x) = y\text{.}\) Therefore, \(f(A_1) \cup f(A_2) \subset f(A_1 \cup A_2)\text{,}\) and \(f(A_1 \cup A_2) = f(A_1) \cup f(A_2)\text{.}\)

1.4.25.

Hint.
(a) The relation fails to be symmetric. (b) The relation is not reflexive, since \(0\) is not equivalent to itself. (c) The relation is not transitive.

1.4.28.

Hint.
Let \(X = {\mathbb N} \cup \{ \sqrt{2}\, \}\) and define \(x \sim y\) if \(x + y \in {\mathbb N}\text{.}\)

2 The Integers
2.4 Exercises

2.4.1.

Hint.
The base case, \(S(1): [1(1 + 1)(2(1) + 1)]/6 = 1 = 1^2\) is true. Assume that \(S(k): 1^2 + 2^2 + \cdots + k^2 = [k(k + 1)(2k + 1)]/6\) is true. Then
\begin{align*} 1^2 + 2^2 + \cdots + k^2 + (k + 1)^2 & = [k(k + 1)(2k + 1)]/6 + (k + 1)^2\\ & = [(k + 1)((k + 1) + 1)(2(k + 1) + 1)]/6\text{,} \end{align*}
and so \(S(k + 1)\) is true. Thus, \(S(n)\) is true for all positive integers \(n\text{.}\)

2.4.3.

Hint.
The base case, \(S(4): 4! = 24 \gt 16 =2^4\) is true. Assume \(S(k): k! \gt 2^k\) is true. Then \((k + 1)! = k! (k + 1) \gt 2^k \cdot 2 = 2^{k + 1}\text{,}\) so \(S(k + 1)\) is true. Thus, \(S(n)\) is true for all positive integers \(n\text{.}\)

2.4.11.

Hint.
The base case, \(S(0): (1 + x)^0 - 1 = 0 \geq 0 = 0 \cdot x\) is true. Assume \(S(k): (1 + x)^k -1 \geq kx\) is true. Then
\begin{align*} (1 + x)^{k + 1} - 1 & = (1 + x)(1 + x)^k -1\\ & = (1 + x)^k + x(1 + x)^k - 1\\ & \geq kx + x(1 + x)^k\\ & \geq kx + x\\ & = (k + 1)x\text{,} \end{align*}
so \(S(k + 1)\) is true. Therefore, \(S(n)\) is true for all positive integers \(n\text{.}\)

2.4.17. Fibonacci Numbers.

Hint.
For (a) and (b) use mathematical induction. (c) Show that \(f_1 = 1\text{,}\) \(f_2 = 1\text{,}\) and \(f_{n + 2} = f_{n + 1} + f_n\text{.}\) (e) Use part (b) and Exercise 2.4.16.

2.4.19.

Hint.
Use the Fundamental Theorem of Arithmetic.

2.4.23.

Hint.
Use the Principle of Well-Ordering and the division algorithm.

2.4.27.

Hint.
Since \(\gcd(a,b) = 1\text{,}\) there exist integers \(r\) and \(s\) such that \(ar + bs = 1\text{.}\) Thus, \(acr + bcs = c\text{.}\)

2.4.29.

Hint.
Every prime must be of the form \(2\text{,}\) \(3\text{,}\) \(6n + 1\text{,}\) or \(6n + 5\text{.}\) Suppose there are only finitely many primes of the form \(6k + 5\text{.}\)

3 Groups
3.5 Exercises

3.5.1.

Hint.
(a) \(3 + 7 \mathbb Z = \{ \ldots, -4, 3, 10, \ldots \}\text{;}\) (c) \(18 + 26 \mathbb Z\text{;}\) (e) \(5 + 6 \mathbb Z\text{.}\)

3.5.2.

Hint.
(a) Not a group; (c) a group.

3.5.6.

Hint.
\begin{equation*} \begin{array}{c|cccc} \cdot & 1 & 5 & 7 & 11 \\ \hline 1 & 1 & 5 & 7 & 11 \\ 5 & 5 & 1 & 11 & 7 \\ 7 & 7 & 11 & 1 & 5 \\ 11 & 11 & 7 & 5 & 1 \end{array} \end{equation*}

3.5.8.

Hint.
Pick two matrices. Almost any pair will work.

3.5.15.

Hint.
There is a nonabelian group containing six elements.

3.5.16.

Hint.
Look at the symmetry group of an equilateral triangle or a square.

3.5.17.

Hint.
The are five different groups of order 8.

3.5.18.

Hint.
Let
\begin{equation*} \sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ a_1 & a_2 & \cdots & a_n \end{pmatrix} \end{equation*}
be in \(S_n\text{.}\) All of the \(a_i\)s must be distinct. There are \(n\) ways to choose \(a_1\text{,}\) \(n - 1\) ways to choose \(a_2, \ldots\text{,}\) 2 ways to choose \(a_{n - 1}\text{,}\) and only one way to choose \(a_n\text{.}\) Therefore, we can form \(\sigma\) in \(n(n - 1) \cdots 2 \cdot 1 = n!\) ways.

3.5.25.

Hint.
\begin{align*} (aba^{-1})^n & = (aba^{-1})(aba^{-1}) \cdots (aba^{-1})\\ & = ab(aa^{-1})b(aa^{-1})b \cdots b(aa^{-1})ba^{-1}\\ & = ab^na^{-1}\text{.} \end{align*}

3.5.31.

Hint.
Since \(abab = (ab)^2 = e = a^2 b^2 = aabb\text{,}\) we know that \(ba = ab\text{.}\)

3.5.35.

Hint.
\(H_1 = \{ \identity \}\text{,}\) \(H_2 = \{ \identity, \rho_1, \rho_2 \}\text{,}\) \(H_3 = \{ \identity, \mu_1 \}\text{,}\) \(H_4 = \{ \identity, \mu_2 \}\text{,}\) \(H_5 = \{ \identity, \mu_3 \}\text{,}\) \(S_3\text{.}\)

3.5.41.

Hint.
The identity of \(G\) is \(1 = 1 + 0 \sqrt{2}\text{.}\) Since \((a + b \sqrt{2}\, )(c + d \sqrt{2}\, ) = (ac + 2bd) + (ad + bc)\sqrt{2}\text{,}\) \(G\) is closed under multiplication. Finally, \((a + b \sqrt{2}\, )^{-1} = a/(a^2 - 2b^2) - b\sqrt{2}/(a^2 - 2 b^2)\text{.}\)

3.5.46.

Hint.
Look at \(S_3\text{.}\)

3.5.49.

Hint.
\(b a = a^4 b = a^3 a b = ab\)

4 Cyclic Groups
4.5 Exercises

4.5.1.

Hint.
(a) False; (c) false; (e) true.

4.5.2.

Hint.
(a) \(12\text{;}\) (c) infinite; (e) \(10\text{.}\)

4.5.3.

Hint.
(a) \(7 {\mathbb Z} = \{ \ldots, -7, 0, 7, 14, \ldots \}\text{;}\) (b) \(\{ 0, 3, 6, 9, 12, 15, 18, 21 \}\text{;}\) (c) \(\{ 0 \}\text{,}\) \(\{ 0, 6 \}\text{,}\) \(\{ 0, 4, 8 \}\text{,}\) \(\{ 0, 3, 6, 9 \}\text{,}\) \(\{ 0, 2, 4, 6, 8, 10 \}\text{;}\) (g) \(\{ 1, 3, 7, 9 \}\text{;}\) (j) \(\{ 1, -1, i, -i \}\text{.}\)

4.5.4.

Hint.
(a)
\begin{equation*} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}\text{.} \end{equation*}
(c)
\begin{equation*} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}, \\ \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}\text{.} \end{equation*}

4.5.10.

Hint.
(a) \(0\text{;}\) (b) \(1, -1\text{.}\)

4.5.11.

Hint.
\(1, 2, 3, 4, 6, 8, 12, 24\text{.}\)

4.5.15.

Hint.
(a) \(-3 + 3i\text{;}\) (c) \(43- 18i\text{;}\) (e) \(i\)

4.5.16.

Hint.
(a) \(\sqrt{3} + i\text{;}\) (c) \(-3\text{.}\)

4.5.17.

Hint.
(a) \(\sqrt{2} \cis( 7 \pi /4)\text{;}\) (c) \(2 \sqrt{2} \cis( \pi /4)\text{;}\) (e) \(3 \cis(3 \pi/2)\text{.}\)

4.5.18.

Hint.
(a) \((1 - i)/2\text{;}\) (c) \(16(i - \sqrt{3}\, )\text{;}\) (e) \(-1/4\text{.}\)

4.5.22.

Hint.
(a) \(292\text{;}\) (c) \(1523\text{.}\)

4.5.27.

Hint.
\(|\langle g \rangle \cap \langle h \rangle| = 1\text{.}\)

4.5.31.

Hint.
The identity element in any group has finite order. Let \(g, h \in G\) have orders \(m\) and \(n\text{,}\) respectively. Since \((g^{-1})^m = e\) and \((gh)^{mn} = e\text{,}\) the elements of finite order in \(G\) form a subgroup of \(G\text{.}\)

4.5.37.

Hint.
If \(g\) is an element distinct from the identity in \(G\text{,}\) \(g\) must generate \(G\text{;}\) otherwise, \(\langle g \rangle\) is a nontrivial proper subgroup of \(G\text{.}\)

5 Permutation Groups
5.4 Exercises

5.4.1.

Hint.
(a) \((1 \, 2 \, 4 \, 5 \, 3)\text{;}\) (c) \((1 \, 3)(2 \, 5)\text{.}\)

5.4.2.

Hint.
(a) \((1 \, 3 \, 5)(2 \, 4)\text{;}\) (c) \((1 \, 4)(2 \, 3)\text{;}\) (e) \((1 \, 3 \, 2 \, 4)\text{;}\) (g) \((1 \, 3 \, 4)(2 \, 5)\text{;}\) (n) \((1 \, 7 \, 3 \, 5 \, 2)\text{.}\)

5.4.3.

Hint.
(a) \((1 \, 6)(1 \, 5)(1 \, 3)(1 \, 4)\text{;}\) (c) \((1 \, 6)(1 \, 4)(1 \, 2)\text{.}\)

5.4.4.

Hint.
\((a_1, a_2, \ldots, a_n)^{-1} = (a_1, a_{n}, a_{n-1}, \ldots, a_2)\)

5.4.5.

Hint.
(a) \(\{ (1 \, 3), (1 \, 3)(2 \, 4), (1 \, 3 \, 2), (1 \, 3 \, 4), (1 \, 3 \, 2 \, 4), (1 \, 3 \, 4 \, 2) \}\) is not a subgroup.

5.4.8.

Hint.
\((1 \, 2 \, 3 \, 4 \, 5)(6 \, 7 \, 8)\text{.}\)

5.4.11.

Hint.
Permutations of the form
\begin{equation*} (1), (a_1, a_2)(a_3, a_4), (a_1, a_2, a_3), (a_1, a_2, a_3, a_4, a_5) \end{equation*}
are possible for \(A_5\text{.}\)

5.4.17.

Hint.
Calculate \((1 \, 2 \, 3)(1 \, 2)\) and \((1 \, 2)(1 \, 2 \, 3)\text{.}\)

5.4.25.

Hint.
Consider the cases \((a,b)(b,c)\) and \((a,b)(c,d)\text{.}\)

5.4.29.

Hint.
Show that the center of \(D_n\) consists of the identity if \(n\) is odd and consists of the identity and a \(180^\circ\) rotation if \(n\) is even.

5.4.30.

Hint.
For (a), show that \(\sigma \tau \sigma^{-1 }(\sigma(a_i)) = \sigma(a_{i + 1})\text{.}\)

6 Cosets and Lagrange’s Theorem
6.5 Exercises

6.5.1.

Hint.
The order of \(g\) and the order \(h\) must both divide the order of \(G\text{.}\)

6.5.2.

Hint.
The possible orders must divide \(60\text{.}\)

6.5.3.

Hint.
This is true for every proper nontrivial subgroup.

6.5.4.

Hint.
False.

6.5.5.

Hint.
(a) \(\langle 8 \rangle\text{,}\) \(1 + \langle 8 \rangle\text{,}\) \(2 + \langle 8 \rangle\text{,}\) \(3 + \langle 8 \rangle\text{,}\) \(4 + \langle 8 \rangle\text{,}\) \(5 + \langle 8 \rangle\text{,}\) \(6 + \langle 8 \rangle\text{,}\) and \(7 + \langle 8 \rangle\text{;}\) (c) \(3 {\mathbb Z}\text{,}\) \(1 + 3 {\mathbb Z}\text{,}\) and \(2 + 3 {\mathbb Z}\text{.}\)

6.5.7.

Hint.
\(4^{\phi(15)} \equiv 4^8 \equiv 1 \pmod{15}\text{.}\)

6.5.12.

Hint.
Let \(g_1 \in gH\text{.}\) Show that \(g_1 \in Hg\) and thus \(gH \subset Hg\text{.}\)

6.5.19.

Hint.
Show that \(g(H \cap K) = gH \cap gK\text{.}\)

7 Introduction to Cryptography
7.4 Exercises

7.4.1.

Hint.
LAORYHAPDWK

7.4.3.

Hint.
Hint: V = E, E = X (also used for spaces and punctuation), K = R.

7.4.4.

Hint.
\(26! - 1\)

7.4.7.

Hint.
(a) \(2791\text{;}\) (c) \(112135 25032 442\text{.}\)

7.4.9.

Hint.
(a) \(31\) (c) \(14\text{.}\)

7.4.10.

Hint.
(a) \(n = 11 \cdot 41\text{;}\) (c) \(n = 8779 \cdot 4327\text{.}\)

8 Algebraic Coding Theory
8.6 Exercises

8.6.2.

Hint.
This cannot be a group code since \((0000) \notin C\text{.}\)

8.6.3.

Hint.
(a) \(2\text{;}\) (c) \(2\text{.}\)

8.6.4.

Hint.
(a) \(3\text{;}\) (c) \(4\text{.}\)

8.6.6.

Hint.
(a) \(d_{\min} = 2\text{;}\) (c) \(d_{\min} = 1\text{.}\)

8.6.7.

Hint.
  1. \((00000), (00101), (10011), (10110)\)
    \begin{equation*} G = \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \end{equation*}
  2. \((000000), (010111), (101101), (111010)\)
    \begin{equation*} G = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \end{equation*}

8.6.9.

Hint.
Multiple errors occur in one of the received words.

8.6.11.

Hint.
(a) A canonical parity-check matrix with standard generator matrix
\begin{equation*} G = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}\text{.} \end{equation*}
(c) A canonical parity-check matrix with standard generator matrix
\begin{equation*} G = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}\text{.} \end{equation*}

8.6.12.

Hint.
(a) All possible syndromes occur.

8.6.15.

Hint.
(a) \(C\text{,}\) \((10000) + C\text{,}\) \((01000) + C\text{,}\) \((00100) + C\text{,}\) \((00010) + C\text{,}\) \((11000) + C\text{,}\) \((01100) + C\text{,}\) \((01010) + C\text{.}\) A decoding table does not exist for \(C\) since this is only a single error-detecting code.

8.6.19.

Hint.
Let \({\mathbf x} \in C\) have odd weight and define a map from the set of odd codewords to the set of even codewords by \({\mathbf y} \mapsto {\mathbf x} + {\mathbf y}\text{.}\) Show that this map is a bijection.

8.6.23.

Hint.
For \(20\) information positions, at least 6 check bits are needed to ensure an error-correcting code.

9 Isomorphisms
9.4 Exercises

9.4.1.

Hint.
Every infinite cyclic group is isomorphic to \({\mathbb Z}\) by Theorem 9.7.

9.4.2.

Hint.
Define \(\phi: {\mathbb C}^* \rightarrow GL_2( {\mathbb R})\) by
\begin{equation*} \phi(a + bi) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}\text{.} \end{equation*}

9.4.3.

Hint.
False.

9.4.6.

Hint.
Define a map from \({\mathbb Z}_n\) into the \(n\)th roots of unity by \(k \mapsto \cis(2k\pi / n)\text{.}\)

9.4.8.

Hint.
Assume that \({\mathbb Q}\) is cyclic and try to find a generator.

9.4.11.

Hint.
There are two nonabelian and three abelian groups that are not isomorphic.

9.4.16.

Hint.
(a) \(12\text{;}\) (c) \(5\text{.}\)

9.4.19.

Hint.
Draw the picture.

9.4.20.

Hint.
True.

9.4.25.

Hint.
True.

9.4.27.

Hint.
Let \(a\) be a generator for \(G\text{.}\) If \(\phi :G \rightarrow H\) is an isomorphism, show that \(\phi(a)\) is a generator for \(H\text{.}\)

9.4.38.

Hint.
Any automorphism of \({\mathbb Z}_6\) must send 1 to another generator of \({\mathbb Z}_6\text{.}\)

9.4.45.

Hint.
To show that \(\phi\) is one-to-one, let \(g_1 = h_1 k_1\) and \(g_2 = h_2 k_2\) and consider \(\phi(g_1) = \phi(g_2)\text{.}\)

10 Normal Subgroups and Factor Groups
10.4 Exercises

10.4.1.

Hint.
(a)
\begin{equation*} \begin{array}{c|cc} & A_4 & (1 \, 2)A_4 \\ \hline A_4 & A_4 & (1 \, 2) A_4 \\ (1 \, 2) A_4 & (1 \, 2) A_4 & A_4 \end{array} \end{equation*}
(c) \(D_4\) is not normal in \(S_4\text{.}\)

10.4.8.

Hint.
If \(a \in G\) is a generator for \(G\text{,}\) then \(aH\) is a generator for \(G/H\text{.}\)

10.4.11.

Hint.
For any \(g \in G\text{,}\) show that the map \(i_g : G \to G\) defined by \(i_g : x \mapsto gxg^{-1}\) is an isomorphism of \(G\) with itself. Then consider \(i_g(H)\text{.}\)

10.4.12.

Hint.
Suppose that \(\langle g \rangle\) is normal in \(G\) and let \(y\) be an arbitrary element of \(G\text{.}\) If \(x \in C(g)\text{,}\) we must show that \(y x y^{-1}\) is also in \(C(g)\text{.}\) Show that \((y x y^{-1}) g = g (y x y^{-1})\text{.}\)

10.4.14.

Hint.
(a) Let \(g \in G\) and \(h \in G'\text{.}\) If \(h = aba^{-1}b^{-1}\text{,}\) then
\begin{align*} ghg^{-1} & = gaba^{-1}b^{-1}g^{-1}\\ & = (gag^{-1})(gbg^{-1})(ga^{-1}g^{-1})(gb^{-1}g^{-1})\\ & = (gag^{-1})(gbg^{-1})(gag^{-1})^{-1}(gbg^{-1})^{-1}\text{.} \end{align*}
We also need to show that if \(h = h_1 \cdots h_n\) with \(h_i = a_i b_i a_i^{-1} b_i^{-1}\text{,}\) then \(ghg^{-1}\) is a product of elements of the same type. However, \(ghg^{-1} = g h_1 \cdots h_n g^{-1} = (gh_1g^{-1})(gh_2g^{-1}) \cdots (gh_ng^{-1})\text{.}\)

11 Homomorphisms
11.4 Exercises

11.4.2.

Hint.
(a) is a homomorphism with kernel \(\{ 1 \}\text{;}\) (c) is not a homomorphism.

11.4.4.

Hint.
Since \(\phi(m + n) = 7(m+n) = 7m + 7n = \phi(m) + \phi(n)\text{,}\) \(\phi\) is a homomorphism.

11.4.5.

Hint.
For any homomorphism \(\phi : {\mathbb Z}_{24} \rightarrow {\mathbb Z}_{18}\text{,}\) the kernel of \(\phi\) must be a subgroup of \({\mathbb Z}_{24}\) and the image of \(\phi\) must be a subgroup of \({\mathbb Z}_{18}\text{.}\) Now use the fact that a generator must map to a generator.

11.4.9.

Hint.
Let \(a, b \in G\text{.}\) Then \(\phi(a) \phi(b) = \phi(ab) = \phi(ba) = \phi(b)\phi(a)\text{.}\)

11.4.17.

Hint.
Find a counterexample.

12 Matrix Groups and Symmetry
12.4 Exercises

12.4.1.

Hint.
\begin{align*} \frac{1}{2} \left[ \|{\mathbf x} + {\mathbf y}\|^2 + \|{\mathbf x}\|^2 - \| {\mathbf y}\|^2 \right] & = \frac{1}{2} \left[ \langle x + y, x + y \rangle - \|{\mathbf x}\|^2 - \| {\mathbf y}\|^2 \right]\\ & = \frac{1}{2} \left[ \| {\mathbf x}\|^2 + 2 \langle x, y \rangle + \| {\mathbf y}\|^2 - \|{\mathbf x}\|^2 - \| {\mathbf y}\|^2 \right]\\ & = \langle {\mathbf x}, {\mathbf y} \rangle\text{.} \end{align*}

12.4.3.

Hint.
(a) is in \(SO(2)\text{;}\) (c) is not in \(O(3)\text{.}\)

12.4.5.

Hint.
(a) \(\langle {\mathbf x}, {\mathbf y} \rangle = \langle {\mathbf y}, {\mathbf x} \rangle\text{.}\)

12.4.7.

Hint.
Use the unimodular matrix
\begin{equation*} \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}\text{.} \end{equation*}

12.4.10.

Hint.
Show that the kernel of the map \(\det : O(n) \rightarrow {\mathbb R}^*\) is \(SO(n)\text{.}\)

12.4.13.

Hint.
True.

12.4.17.

Hint.
\(p6m\)

13 The Structure of Groups
13.4 Exercises

13.4.1.

Hint.
There are three possible groups.

13.4.4.

Hint.
(a) \(\{ 0 \} \subset \langle 6 \rangle \subset \langle 3 \rangle \subset {\mathbb Z}_{12}\text{;}\) (e) \(\{ (1) \} \times \{ 0 \} \subset \{ (1), (1 \, 2 \, 3), (1 \, 3 \, 2) \} \times \{ 0 \} \subset S_3 \times \{ 0 \} \subset S_3 \times \langle 2 \rangle\subset S_3 \times {\mathbb Z}_4\text{.}\)

13.4.7.

Hint.
Use the Fundamental Theorem of Finitely Generated Abelian Groups.

13.4.12.

Hint.
If \(N\) and \(G/N\) are solvable, then they have solvable series
\begin{gather*} N = N_n \supset N_{n - 1} \supset \cdots \supset N_1 \supset N_0 = \{ e \}\\ G/N = G_n/N \supset G_{n - 1}/N \supset \cdots G_1/N \supset G_0/N = \{ N \}\text{.} \end{gather*}

13.4.16.

Hint.
Use the fact that \(D_n\) has a cyclic subgroup of index \(2\text{.}\)

13.4.21.

Hint.
\(G/G'\) is abelian.

14 Group Actions
14.5 Exercises

14.5.1.

Hint.
Example 14.1: \(0\text{,}\) \({\mathbb R}^2 \setminus \{ 0 \}\text{.}\) Example 14.2: \(X = \{ 1, 2, 3, 4 \}\text{.}\)

14.5.2.

Hint.
(a) \(X_{(1)} = \{1, 2, 3 \}\text{,}\) \(X_{(1 \, 2)} = \{3 \}\text{,}\) \(X_{(1 \, 3)} = \{ 2 \}\text{,}\) \(X_{(2 \, 3)} = \{1 \}\text{,}\) \(X_{(1 \, 2 \, 3)} = X_{(1 \, 3 \, 2)} = \emptyset\text{.}\) \(G_1 = \{ (1), (2 \, 3) \}\text{,}\) \(G_2 = \{(1), (1 \, 3) \}\text{,}\) \(G_3 = \{ (1), (1 \, 2)\}\text{.}\)

14.5.3.

Hint.
(a) \({\mathcal O}_1 = {\mathcal O}_2 = {\mathcal O}_3 = \{ 1, 2, 3\}\text{.}\)

14.5.6.

Hint.
The conjugacy classes for \(S_4\) are
\begin{gather*} {\mathcal O}_{(1)} = \{ (1) \},\\ {\mathcal O}_{(12)} = \{ (1 \, 2), (1 \, 3), (1 \, 4), (2 \, 3), (2 \, 4), (3 \, 4) \},\\ {\mathcal O}_{(1 \, 2)(3 \, 4)} = \{ (1 \, 2)(3 \, 4), (1 \, 3)(2 \, 4), (1 \, 4)(2 \, 3) \},\\ {\mathcal O}_{(123)} = \{ (1 \, 2 \, 3), (1 \, 3 \, 2), (1 \, 2 \, 4), (1 \, 4 \, 2), (1 \, 3 \, 4), (1 \, 4 \, 3), (2 \, 3 \, 4), (2 \, 4 \, 3) \},\\ {\mathcal O}_{(1234)} = \{ (1 \, 2 \, 3 \, 4), (1 \, 2 \, 4 \, 3), (1 \, 3 \, 2 \, 4), (1 \, 3 \, 4 \, 2), (1 \, 4 \, 2 \, 3), (1 \, 4 \, 3 \, 2) \}\text{.} \end{gather*}
The class equation is \(1 + 3 + 6 + 6 + 8 = 24\text{.}\)

14.5.8.

Hint.
\((3^4 + 3^1 + 3^2 + 3^1 + 3^2 + 3^2 + 3^3 + 3^3)/8 = 21\text{.}\)

14.5.11.

Hint.
The group of rigid motions of the cube can be described by the allowable permutations of the six faces and is isomorphic to \(S_4\text{.}\) There are the identity cycle, 6 permutations with the structure \((abcd)\) that correspond to the quarter turns, 3 permutations with the structure \((ab)(cd)\) that correspond to the half turns, 6 permutations with the structure \((ab)(cd)(ef)\) that correspond to rotating the cube about the centers of opposite edges, and 8 permutations with the structure \((abc)(def)\) that correspond to rotating the cube about opposite vertices.

14.5.15.

Hint.
\((1 \cdot 2^6 + 3 \cdot 2^4 + 4 \cdot 2^3 + 2 \cdot 2^2 + 2 \cdot 2^1)/12 = 13\text{.}\)

14.5.17.

Hint.
\((1 \cdot 2^8 + 3 \cdot 2^6 + 2 \cdot 2^4)/6 = 80\text{.}\)

14.5.22.

Hint.
Use the fact that \(x \in g C(a) g^{-1}\) if and only if \(g^{-1}x g \in C(a)\text{.}\)

15 The Sylow Theorems
15.4 Exercises

15.4.1.

Hint.
If \(|G| = 18 = 2 \cdot 3^2\text{,}\) then the order of a Sylow \(2\)-subgroup is \(2\text{,}\) and the order of a Sylow \(3\)-subgroup is \(9\text{.}\)

15.4.2.

Hint.
The four Sylow \(3\)-subgroups of \(S_4\) are \(P_1 = \{ (1), (1 \, 2 \, 3), (1 \, 3 \, 2) \}\text{,}\) \(P_2 = \{ (1), (1 \, 2 \, 4), (1 \, 4 \, 2) \}\text{,}\) \(P_3 = \{ (1), (1 \, 3 \, 4), (1 \, 4 \, 3) \}\text{,}\) \(P_4 = \{ (1), (2 \, 3 \, 4), (2 \, 4 \, 3) \}\text{.}\)

15.4.5.

Hint.
Since \(|G| = 96 = 2^5 \cdot 3\text{,}\) \(G\) has either one or three Sylow \(2\)-subgroups by the Third Sylow Theorem. If there is only one subgroup, we are done. If there are three Sylow \(2\)-subgroups, let \(H\) and \(K\) be two of them. Therefore, \(|H \cap K| \geq 16\text{;}\) otherwise, \(HK\) would have \((32 \cdot 32)/8 = 128\) elements, which is impossible. Thus, \(H \cap K\) is normal in both \(H\) and \(K\) since it has index \(2\) in both groups.

15.4.8.

Hint.
Show that \(G\) has a normal Sylow \(p\)-subgroup of order \(p^2\) and a normal Sylow \(q\)-subgroup of order \(q^2\text{.}\)

15.4.10.

Hint.
False.

15.4.17.

Hint.
If \(G\) is abelian, then \(G\) is cyclic, since \(|G| = 3 \cdot 5 \cdot 17\text{.}\) Now look at Example 15.14.

15.4.23.

Hint.
Define a mapping between the right cosets of \(N(H)\) in \(G\) and the conjugates of \(H\) in \(G\) by \(N(H) g \mapsto g^{-1} H g\text{.}\) Prove that this map is a bijection.

15.4.26.

Hint.
Let \(a G', b G' \in G/G'\text{.}\) Then \((a G')( b G') = ab G' = ab(b^{-1}a^{-1}ba) G' = (abb^{-1}a^{-1})ba G' = ba G'\text{.}\)

16 Rings
16.7 Exercises

16.7.1.

Hint.
(a) \(7 {\mathbb Z}\) is a ring but not a field; (c) \({\mathbb Q}(\sqrt{2}\, )\) is a field; (f) \(R\) is not a ring.

16.7.3.

Hint.
(a) \(\{1, 3, 7, 9 \}\text{;}\) (c) \(\{ 1, 2, 3, 4, 5, 6 \}\text{;}\) (e)
\begin{equation*} \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \right\}\text{.} \end{equation*}

16.7.4.

Hint.
(a) \(\{0 \}\text{,}\) \(\{0, 9 \}\text{,}\) \(\{0, 6, 12 \}\text{,}\) \(\{0, 3, 6, 9, 12, 15 \}\text{,}\) \(\{0, 2, 4, 6, 8, 10, 12, 14, 16 \}\text{;}\) (c) there are no nontrivial ideals.

16.7.7.

Hint.
Assume there is an isomorphism \(\phi: {\mathbb C} \rightarrow {\mathbb R}\) with \(\phi(i) = a\text{.}\)

16.7.8.

Hint.
False. Assume there is an isomorphism \(\phi: {\mathbb Q}(\sqrt{2}\, ) \rightarrow {\mathbb Q}(\sqrt{3}\, )\) such that \(\phi(\sqrt{2}\, ) = a\text{.}\)

16.7.13.

Hint.
(a) \(x \equiv 17 \pmod{55}\text{;}\) (c) \(x \equiv 214 \pmod{2772}\text{.}\)

16.7.16.

Hint.
If \(I \neq \{ 0 \}\text{,}\) show that \(1 \in I\text{.}\)

16.7.18.

Hint.
(a) \(\phi(a) \phi(b) = \phi(ab) = \phi(ba) = \phi(b) \phi(a)\text{.}\)

16.7.26.

Hint.
Let \(a \in R\) with \(a \neq 0\text{.}\) Then the principal ideal generated by \(a\) is \(R\text{.}\) Thus, there exists a \(b \in R\) such that \(ab =1\text{.}\)

16.7.28.

Hint.
Compute \((a+b)^2\) and \((-ab)^2\text{.}\)

16.7.33.

Hint.
Let \(a/b, c/d \in {\mathbb Z}_{(p)}\text{.}\) Then \(a/b + c/d = (ad + bc)/bd\) and \((a/b) \cdot (c/d) = (ac)/(bd)\) are both in \({\mathbb Z}_{(p)}\text{,}\) since \(\gcd(bd,p) = 1\text{.}\)

16.7.37.

Hint.
Suppose that \(x^2 = x\) and \(x \neq 0\text{.}\) Since \(R\) is an integral domain, \(x = 1\text{.}\) To find a nontrivial idempotent, look in \({\mathbb M}_2({\mathbb R})\text{.}\)

17 Polynomials
17.5 Exercises

17.5.2.

Hint.
(a) \(9x^2 + 2x + 5\text{;}\) (b) \(8x^4 + 7x^3 + 2x^2 + 7x\text{.}\)

17.5.3.

Hint.
(a) \(5 x^3 + 6 x^2 - 3 x + 4 = (5 x^2 + 2x + 1)(x -2) + 6\text{;}\) (c) \(4x^5 - x^3 + x^2 + 4 = (4x^2 + 4)(x^3 + 3) + 4x^2 + 2\text{.}\)

17.5.5.

Hint.
(a) No zeros in \({\mathbb Z}_{12}\text{;}\) (c) \(3\text{,}\) \(4\text{.}\)

17.5.7.

Hint.
Look at \((2x + 1)\text{.}\)

17.5.8.

Hint.
(a) Reducible; (c) irreducible.

17.5.10.

Hint.
One factorization is \(x^2 + x + 8 = (x + 2)(x + 9)\text{.}\)

17.5.13.

Hint.
The integers \(\mathbb Z\) do not form a field.

17.5.14.

Hint.
False.

17.5.16.

Hint.
Let \(\phi : R \rightarrow S\) be an isomorphism. Define \(\overline{\phi} : R[x] \rightarrow S[x]\) by \(\overline{\phi}(a_0 + a_1 x + \cdots + a_n x^n) = \phi(a_0) + \phi(a_1) x + \cdots + \phi(a_n) x^n\text{.}\)

17.5.20. Cyclotomic Polynomials.

Hint.
The polynomial
\begin{equation*} \Phi_n(x) = \frac{x^n - 1}{x - 1} = x^{n - 1} + x^{n - 2} + \cdots + x + 1 \end{equation*}
is called the cyclotomic polynomial. Show that \(\Phi_p(x)\) is irreducible over \({\mathbb Q}\) for any prime \(p\text{.}\)

17.5.26.

Hint.
Find a nontrivial proper ideal in \(F[x]\text{.}\)

18 Integral Domains
18.4 Exercises

18.4.1.

Hint.
Note that \(z^{-1} = 1/(a + b\sqrt{3}\, i) = (a -b \sqrt{3}\, i)/(a^2 + 3b^2)\) is in \({\mathbb Z}[\sqrt{3}\, i]\) if and only if \(a^2 + 3 b^2 = 1\text{.}\) The only integer solutions to the equation are \(a = \pm 1, b = 0\text{.}\)

18.4.2.

Hint.
(a) \(5 = -i(1 + 2i)(2 + i)\text{;}\) (c) \(6 + 8i = -i(1 + i)^2(2 + i)^2\text{.}\)

18.4.4.

Hint.
True.

18.4.9.

Hint.
Let \(z = a + bi\) and \(w = c + di \neq 0\) be in \({\mathbb Z}[i]\text{.}\) Prove that \(z/w \in {\mathbb Q}(i)\text{.}\)

18.4.15.

Hint.
Let \(a = ub\) with \(u\) a unit. Then \(\nu(b) \leq \nu(ub) \leq \nu(a)\text{.}\) Similarly, \(\nu(a) \leq \nu(b)\text{.}\)

18.4.16.

Hint.
Show that 21 can be factored in two different ways.

19 Lattices and Boolean Algebras
19.5 Exercises

19.5.2.

Hint.
A graph with 30 at the top level which is connected to 10 and 15 at the second level.  The third level has 2, which is connected to 30 and 10, and 5, which is connected to 10 and 15, and 3 which is connected to 15.  The bottom level is 1 which is connected to 2, 3, and 5.

19.5.4.

Hint.
What are the atoms of \(B\text{?}\)

19.5.5.

Hint.
False.

19.5.6.

Hint.
(a) \((a \vee b \vee a') \wedge a\)
A graph from left to right which splits into three paths, a b, and b’ and then rejoins into a single path and goes through a.
(c) \(a \vee (a \wedge b)\)
A graph from left to right which splits into two paths and then rejoins.  The top path is a then b.  The bottom path is a.

19.5.8.

Hint.
Not equivalent.

19.5.10.

Hint.
(a) \(a' \wedge [(a \wedge b') \vee b] = a \wedge (a \vee b) \text{.}\)

19.5.14.

Hint.
Let \(I, J\) be ideals in \(R\text{.}\) We need to show that \(I + J = \{ r + s : r \in I \text{ and } s \in J \}\) is the smallest ideal in \(R\) containing both \(I\) and \(J\text{.}\) If \(r_1, r_2 \in I\) and \(s_1, s_2 \in J\text{,}\) then \((r_1 + s_1) + (r_2 + s_2) = (r_1 + r_2) +(s_1 + s_2)\) is in \(I + J\text{.}\) For \(a \in R\text{,}\) \(a(r_1 + s_1) = ar_1 + as_1 \in I + J\text{;}\) hence, \(I + J\) is an ideal in \(R\text{.}\)

19.5.18.

Hint.
(a) No.

19.5.20.

Hint.
\(( \Rightarrow)\text{.}\) \(a = b \Rightarrow (a \wedge b') \vee (a' \wedge b) = (a \wedge a') \vee (a' \wedge a) = O \vee O = O\text{.}\) \(( \Leftarrow)\text{.}\) \(( a \wedge b') \vee (a' \wedge b) = O \Rightarrow a \vee b = (a \vee a) \vee b = a \vee (a \vee b) = a \vee [I \wedge (a \vee b)] = a \vee [(a \vee a') \wedge (a \vee b)] = [a \vee (a \wedge b')] \vee [a \vee (a' \wedge b)] = a \vee [(a \wedge b') \vee (a' \wedge b)] = a \vee 0 = a\text{.}\) A symmetric argument shows that \(a \vee b = b\text{.}\)

20 Vector Spaces
20.5 Exercises

20.5.3.

Hint.
\({\mathbb Q}(\sqrt{2}, \sqrt{3}\, )\) has basis \(\{ 1, \sqrt{2}, \sqrt{3}, \sqrt{6}\, \}\) over \({\mathbb Q}\text{.}\)

20.5.5.

Hint.
The set \(\{ 1, x, x^2, \ldots, x^{n-1} \}\) is a basis for \(P_n\text{.}\)

20.5.7.

Hint.
(a) Subspace of dimension \(2\) with basis \(\{(1, 0, -3), (0, 1, 2) \}\text{;}\) (d) not a subspace

20.5.10.

Hint.
Since \(0 = \alpha 0 = \alpha(-v + v) = \alpha(-v) + \alpha v\text{,}\) it follows that \(- \alpha v = \alpha(-v)\text{.}\)

20.5.12.

Hint.
Let \(v_0 = 0, v_1, \ldots, v_n \in V\) and \(\alpha_0 \neq 0, \alpha_1, \ldots, \alpha_n \in F\text{.}\) Then \(\alpha_0 v_0 + \cdots + \alpha_n v_n = 0\text{.}\)

20.5.15. Linear Transformations.

Hint.
(a) Let \(u, v \in \ker(T)\) and \(\alpha \in F\text{.}\) Then
\begin{gather*} T(u +v) = T(u) + T(v) = 0\\ T(\alpha v) = \alpha T(v) = \alpha 0 = 0\text{.} \end{gather*}
Hence, \(u + v, \alpha v \in \ker(T)\text{,}\) and \(\ker(T)\) is a subspace of \(V\text{.}\)
(c) The statement that \(T(u) = T(v)\) is equivalent to \(T(u-v) = T(u) - T(v) = 0\text{,}\) which is true if and only if \(u-v = 0\) or \(u = v\text{.}\)

20.5.17. Direct Sums.

Hint.
(a) Let \(u, u' \in U\) and \(v, v' \in V\text{.}\) Then
\begin{align*} (u + v) + (u' + v') & = (u + u') + (v + v') \in U + V\\ \alpha(u + v) & = \alpha u + \alpha v \in U + V\text{.} \end{align*}

21 Fields
21.5 Exercises

21.5.1.

Hint.
(a) \(x^4 - (2/3) x^2 - 62/9\text{;}\) (c) \(x^4 - 2 x^2 + 25\text{.}\)

21.5.2.

Hint.
(a) \(\{ 1, \sqrt{2}, \sqrt{3}, \sqrt{6}\, \}\text{;}\) (c) \(\{ 1, i, \sqrt{2}, \sqrt{2}\, i \}\text{;}\) (e) \(\{1, 2^{1/6}, 2^{1/3}, 2^{1/2}, 2^{2/3}, 2^{5/6} \}\text{.}\)

21.5.3.

Hint.
(a) \({\mathbb Q}(\sqrt{3}, \sqrt{7}\, )\text{.}\)

21.5.5.

Hint.
Use the fact that the elements of \({\mathbb Z}_2[x]/ \langle x^3 + x + 1 \rangle\) are 0, 1, \(\alpha\text{,}\) \(1 + \alpha\text{,}\) \(\alpha^2\text{,}\) \(1 + \alpha^2\text{,}\) \(\alpha + \alpha^2\text{,}\) \(1 + \alpha + \alpha^2\) and the fact that \(\alpha^3 + \alpha + 1 = 0\text{.}\)

21.5.8.

Hint.
False.

21.5.14.

Hint.
Suppose that \(E\) is algebraic over \(F\) and \(K\) is algebraic over \(E\text{.}\) Let \(\alpha \in K\text{.}\) It suffices to show that \(\alpha\) is algebraic over some finite extension of \(F\text{.}\) Since \(\alpha\) is algebraic over \(E\text{,}\) it must be the zero of some polynomial \(p(x) = \beta_0 + \beta_1 x + \cdots + \beta_n x^n\) in \(E[x]\text{.}\) Hence \(\alpha\) is algebraic over \(F(\beta_0, \ldots, \beta_n)\text{.}\)

21.5.22.

Hint.
Since \(\{ 1, \sqrt{3}, \sqrt{7}, \sqrt{21}\, \}\) is a basis for \({\mathbb Q}( \sqrt{3}, \sqrt{7}\, )\) over \({\mathbb Q}\text{,}\) \({\mathbb Q}( \sqrt{3}, \sqrt{7}\, ) \supset {\mathbb Q}( \sqrt{3} +\sqrt{7}\, )\text{.}\) Since \([{\mathbb Q}( \sqrt{3}, \sqrt{7}\, ) : {\mathbb Q}] = 4\text{,}\) \([{\mathbb Q}( \sqrt{3} + \sqrt{7}\, ) : {\mathbb Q}] = 2\) or 4. Since the degree of the minimal polynomial of \(\sqrt{3} +\sqrt{7}\) is 4, \({\mathbb Q}( \sqrt{3}, \sqrt{7}\, ) = {\mathbb Q}( \sqrt{3} +\sqrt{7}\, )\text{.}\)

21.5.27.

Hint.
Let \(\beta \in F(\alpha)\) not in \(F\text{.}\) Then \(\beta = p(\alpha)/q(\alpha)\text{,}\) where \(p\) and \(q\) are polynomials in \(\alpha\) with \(q(\alpha) \neq 0\) and coefficients in \(F\text{.}\) If \(\beta\) is algebraic over \(F\text{,}\) then there exists a polynomial \(f(x) \in F[x]\) such that \(f(\beta) = 0\text{.}\) Let \(f(x) = a_0 + a_1 x + \cdots + a_n x^n\text{.}\) Then
\begin{equation*} 0 = f(\beta) = f\left( \frac{p(\alpha)}{q(\alpha)} \right) = a_0 + a_1 \left( \frac{p(\alpha)}{q(\alpha)} \right) + \cdots + a_n \left( \frac{p(\alpha)}{q(\alpha)} \right)^n\text{.} \end{equation*}
Now multiply both sides by \(q(\alpha)^n\) to show that there is a polynomial in \(F[x]\) that has \(\alpha\) as a zero.

22 Finite Fields
22.4 Exercises

22.4.1.

Hint.
Make sure that you have a field extension.

22.4.4.

Hint.
There are eight elements in \({\mathbb Z}_2(\alpha)\text{.}\) Exhibit two more zeros of \(x^3 + x^2 + 1\) other than \(\alpha\) in these eight elements.

22.4.5.

Hint.
Find an irreducible polynomial \(p(x)\) in \({\mathbb Z}_3[x]\) of degree \(3\) and show that \({\mathbb Z}_3[x]/ \langle p(x) \rangle\) has \(27\) elements.

22.4.7.

Hint.
(a) \(x^5 -1 = (x+1)(x^4+x^3 + x^2 + x+ 1)\text{;}\) (c) \(x^9 -1 = (x+1)( x^2 + x+ 1)(x^6+x^3+1)\text{.}\)

22.4.8.

Hint.
True.

22.4.11.

Hint.
(a) Use the fact that \(x^7 - 1 = (x + 1)( x^3 + x + 1)(x^3 + x^2 + 1)\text{.}\)

22.4.12.

Hint.
False.

22.4.17.

Hint.
If \(p(x) \in F[x]\text{,}\) then \(p(x) \in E[x]\text{.}\)

22.4.18.

Hint.
Since \(\alpha\) is algebraic over \(F\) of degree \(n\text{,}\) we can write any element \(\beta \in F(\alpha)\) uniquely as \(\beta = a_0 + a_1 \alpha + \cdots + a_{n - 1} \alpha^{n - 1}\) with \(a_i \in F\text{.}\) There are \(q^n\) possible \(n\)-tuples \((a_0, a_1, \ldots, a_{n - 1})\text{.}\)

22.4.24. Wilson’s Theorem.

Hint.
Factor \(x^{p-1} - 1\) over \({\mathbb Z}_p\text{.}\)

23 Galois Theory
23.5 Exercises

23.5.1.

Hint.
(a) \({\mathbb Z}_2\text{;}\) (c) \({\mathbb Z}_2 \times {\mathbb Z}_2 \times {\mathbb Z}_2\text{.}\)

23.5.2.

Hint.
(a) Separable over \(\mathbb Q\) since \(x^3 + 2 x^2 - x - 2 = (x - 1)(x + 1)(x + 2)\text{;}\) (c) not separable over \(\mathbb Z_3\) since \(x^4 + x^2 + 1 = (x + 1)^2 (x + 2)^2 \text{.}\)

23.5.3.

Hint.
If
\begin{equation*} [\gf(729): \gf(9)] = [\gf(729): \gf(3)] /[\gf(9): \gf(3)] = 6/2 = 3\text{,} \end{equation*}
then \(G(\gf(729)/ \gf(9)) \cong {\mathbb Z}_3\text{.}\) A generator for \(G(\gf(729)/ \gf(9))\) is \(\sigma\text{,}\) where \(\sigma_{3^6}( \alpha) = \alpha^{3^6} = \alpha^{729}\) for \(\alpha \in \gf(729)\text{.}\)

23.5.4.

Hint.
(a) \(S_5\text{;}\) (c) \(S_3\text{;}\) (g) see Example 23.11.

23.5.5.

Hint.
(a) \({\mathbb Q}(i)\)

23.5.7.

Hint.
Let \(E\) be the splitting field of a cubic polynomial in \(F[x]\text{.}\) Show that \([E:F]\) is less than or equal to \(6\) and is divisible by \(3\text{.}\) Since \(G(E/F)\) is a subgroup of \(S_3\) whose order is divisible by \(3\text{,}\) conclude that this group must be isomorphic to \({\mathbb Z}_3\) or \(S_3\text{.}\)

23.5.9.

Hint.
\(G\) is a subgroup of \(S_n\text{.}\)

23.5.16.

Hint.
True.

23.5.20.

Hint.
  1. Clearly \(\omega, \omega^2, \ldots, \omega^{p - 1}\) are distinct since \(\omega \neq 1\) or 0. To show that \(\omega^i\) is a zero of \(\Phi_p\text{,}\) calculate \(\Phi_p( \omega^i)\text{.}\)
  2. The conjugates of \(\omega\) are \(\omega, \omega^2, \ldots, \omega^{p - 1}\text{.}\) Define a map \(\phi_i: {\mathbb Q}(\omega) \rightarrow {\mathbb Q}(\omega^i)\) by
    \begin{equation*} \phi_i(a_0 + a_1 \omega + \cdots + a_{p - 2} \omega^{p - 2}) = a_0 + a_1 \omega^i + \cdots + c_{p - 2} (\omega^i)^{p - 2}\text{,} \end{equation*}
    where \(a_i \in {\mathbb Q}\text{.}\) Prove that \(\phi_i\) is an isomorphism of fields. Show that \(\phi_2\) generates \(G({\mathbb Q}(\omega)/{\mathbb Q})\text{.}\)
  3. Show that \(\{ \omega, \omega^2, \ldots, \omega^{p - 1} \}\) is a basis for \({\mathbb Q}( \omega )\) over \({\mathbb Q}\text{,}\) and consider which linear combinations of \(\omega, \omega^2, \ldots, \omega^{p - 1}\) are left fixed by all elements of \(G( {\mathbb Q}( \omega ) / {\mathbb Q})\text{.}\)