Prove or disprove: The ring \({\mathbb Q}( \sqrt{2}\, ) = \{ a + b \sqrt{2} : a, b \in {\mathbb Q} \}\) is isomorphic to the ring \({\mathbb Q}( \sqrt{3}\, ) = \{a + b \sqrt{3} : a, b \in {\mathbb Q} \}\text{.}\)
Use the method of parallel computation outlined in the text to calculate \(2234 + 4121\) by dividing the calculation into four separate additions modulo \(95\text{,}\)\(97\text{,}\)\(98\text{,}\) and \(99\text{.}\)
Explain why the method of parallel computation outlined in the text fails for \(2134 \cdot 1531\) if we attempt to break the calculation down into two smaller calculations modulo \(98\) and \(99\text{.}\)
Prove the Second Isomorphism Theorem for rings: Let \(I\) be a subring of a ring \(R\) and \(J\) an ideal in \(R\text{.}\) Then \(I \cap J\) is an ideal in \(I\) and
\begin{equation*}
I / I \cap J \cong I + J /J\text{.}
\end{equation*}
Prove the Correspondence Theorem: Let \(I\) be an ideal of a ring \(R\text{.}\) Then \(S \rightarrow S/I\) is a one-to-one correspondence between the set of subrings \(S\) containing \(I\) and the set of subrings of \(R/I\text{.}\) Furthermore, the ideals of \(R\) correspond to ideals of \(R/I\text{.}\)
Let \(R\) be a ring and \(S\) a subset of \(R\text{.}\) Show that \(S\) is a subring of \(R\) if and only if each of the following conditions is satisfied.
Let \(R\) be a ring with a collection of subrings \(\{ R_{\alpha} \}\text{.}\) Prove that \(\bigcap R_{\alpha}\) is a subring of \(R\text{.}\) Give an example to show that the union of two subrings is not necessarily a subring.
Let \(\{ I_{\alpha} \}_{\alpha \in A}\) be a collection of ideals in a ring \(R\text{.}\) Prove that \(\bigcap_{\alpha \in A} I_{\alpha}\) is also an ideal in \(R\text{.}\) Give an example to show that if \(I_1\) and \(I_2\) are ideals in \(R\text{,}\) then \(I_1 \cup I_2\) may not be an ideal.
Let \(R\) be a commutative ring. An element \(a\) in \(R\) is nilpotent if \(a^n = 0\) for some positive integer \(n\text{.}\) Show that the set of all nilpotent elements forms an ideal in \(R\text{.}\)
If we do not require the identity of a ring to be distinct from 0, we will not have a very interesting mathematical structure. Let \(R\) be a ring such that \(1 = 0\text{.}\) Prove that \(R = \{ 0 \}\text{.}\)
Let \(u\) be a unit in \(R\text{.}\) Define a map \(i_u : R \rightarrow R\) by \(r \mapsto uru^{-1}\text{.}\) Prove that \(i_u\) is an automorphism of \(R\text{.}\) Such an automorphism of \(R\) is called an inner automorphism of \(R\text{.}\) Denote the set of all inner automorphisms of \(R\) by \(\inn(R)\text{.}\)
An element \(x\) in a ring is called an idempotent if \(x^2 = x\text{.}\) Prove that the only idempotents in an integral domain are \(0\) and \(1\text{.}\) Find a ring with a idempotent \(x\) not equal to 0 or 1.