Let \(H\) be a subgroup of \(G\) containing \(N\text{.}\) Since \(N\) is normal in \(H\text{,}\) \(H/N\) is a factor group. Let \(aN\) and \(bN\) be elements of \(H/N\text{.}\) Then \((aN)( b^{-1} N )= ab^{-1}N \in H/N\text{;}\) hence, \(H/N\) is a subgroup of \(G/N\text{.}\)
Let \(S\) be a subgroup of \(G/N\text{.}\) This subgroup is a set of cosets of \(N\text{.}\) If \(H= \{ g \in G : gN \in S \}\text{,}\) then for \(h_1, h_2 \in H\text{,}\) we have that \((h_1 N)( h_2 N )= h_1 h_2 N \in S\) and \(h_1^{-1} N \in S\text{.}\) Therefore, \(H\) must be a subgroup of \(G\text{.}\) Clearly, \(H\) contains \(N\text{.}\) Therefore, \(S = H / N\text{.}\) Consequently, the map \(H \mapsto H/N\) is onto.
Suppose that \(H_1\) and \(H_2\) are subgroups of \(G\) containing \(N\) such that \(H_1/N = H_2/N\text{.}\) If \(h_1 \in H_1\text{,}\) then \(h_1 N \in H_1/N\text{.}\) Hence, \(h_1 N = h_2 N \subset H_2\) for some \(h_2\) in \(H_2\text{.}\) However, since \(N\) is contained in \(H_2\text{,}\) we know that \(h_1 \in H_2\) or \(H_1 \subset H_2\text{.}\) Similarly, \(H_2 \subset H_1\text{.}\) Since \(H_1 = H_2\text{,}\) the map \(H \mapsto H/N\) is one-to-one.
Suppose that \(H\) is normal in \(G\) and \(N\) is a subgroup of \(H\text{.}\) Then it is easy to verify that the map \(G/N \rightarrow G/H\) defined by \(gN \mapsto gH\) is a homomorphism. The kernel of this homomorphism is \(H/N\text{,}\) which proves that \(H/N\) is normal in \(G/N\text{.}\)
Conversely, suppose that \(H/N\) is normal in \(G/N\text{.}\) The homomorphism given by
\begin{equation*}
G \rightarrow G/N \rightarrow \frac{G/N}{H/N}
\end{equation*}
has kernel \(H\text{.}\) Hence, \(H\) must be normal in \(G\text{.}\)