Skip to main content
Contents Index
Dark Mode Prev Up Next
\(\newcommand{\identity}{\mathrm{id}}
\newcommand{\notdivide}{\nmid}
\newcommand{\notsubset}{\not\subset}
\newcommand{\lcm}{\operatorname{lcm}}
\newcommand{\gf}{\operatorname{GF}}
\newcommand{\inn}{\operatorname{Inn}}
\newcommand{\aut}{\operatorname{Aut}}
\newcommand{\Hom}{\operatorname{Hom}}
\newcommand{\cis}{\operatorname{cis}}
\newcommand{\chr}{\operatorname{char}}
\newcommand{\Null}{\operatorname{Null}}
\newcommand{\transpose}{\text{t}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
References 21.6 References and Suggested Readings
[1]
Dean, R. A. Elements of Abstract Algebra . Wiley, New York, 1966.
[2]
Dudley, U. A Budget of Trisections . Springer-Verlag, New York, 1987. An interesting and entertaining account of how not to trisect an angle.
[3]
Fraleigh, J. B. A First Course in Abstract Algebra . 7th ed. Pearson, Upper Saddle River, NJ, 2003.
[4]
Kaplansky, I. Fields and Rings , 2nd ed. University of Chicago Press, Chicago, 1972.
[5]
Klein, F. Famous Problems of Elementary Geometry . Chelsea, New York, 1955.
[6]
Martin, G. Geometric Constructions . Springer, New York, 1998.
[7]
H. Pollard and H. G. Diamond. Theory of Algebraic Numbers , Dover, Mineola, NY, 2010.
[8]
Walker, E. A. Introduction to Abstract Algebra . Random House, New York, 1987. This work contains a proof showing that every field has an algebraic closure.