Example 20.1.
The \(n\)-tuples of real numbers, denoted by \({\mathbb R}^n\text{,}\) form a vector space over \({\mathbb R}\text{.}\) Given vectors \(u = (u_1, \ldots,
u_n)\) and \(v = (v_1, \ldots,
v_n)\) in \({\mathbb R}^n\) and \(\alpha\) in \({\mathbb R}\text{,}\) we can define vector addition by
\begin{equation*}
u + v = (u_1, \ldots, u_n) + (v_1, \ldots, v_n) = (u_1 + v_1, \ldots, u_n + v_n)
\end{equation*}
and scalar multiplication by
\begin{equation*}
\alpha u = \alpha(u_1, \ldots, u_n)= (\alpha u_1, \ldots, \alpha u_n)\text{.}
\end{equation*}

