Example 16.12.
If \(i^2 = -1\text{,}\) then the set \({\mathbb Z}[ i ] = \{ m + ni : m, n \in {\mathbb Z} \}\) forms a ring known as the Gaussian integers. It is easily seen that the Gaussian integers are a subring of the complex numbers since they are closed under addition and multiplication. Let \(\alpha = a + bi\) be a unit in \({\mathbb Z}[ i ]\text{.}\) Then \(\overline{\alpha} = a - bi\) is also a unit since if \(\alpha \beta = 1\text{,}\) then \(\overline{\alpha} \overline{\beta} = 1\text{.}\) If \(\beta = c + di\text{,}\) then
\begin{equation*}
1 = \alpha \beta \overline{\alpha} \overline{\beta} = (a^2 + b^2 )(c^2 + d^2)\text{.}
\end{equation*}
Therefore, \(a^2 + b^2\) must either be \(1\) or \(-1\text{;}\) or, equivalently, \(a + bi = \pm 1\) or \(a + bi = \pm i\text{.}\) Therefore, units of this ring are \(\pm 1\) and \(\pm i\text{;}\) hence, the Gaussian integers are not a field. We will leave it as an exercise to prove that the Gaussian integers are an integral domain.

