Example 3.1.
The following examples illustrate integer arithmetic modulo \(n\text{:}\)
\begin{align*}
7 + 4 & \equiv 1 \pmod{ 5} & 7 \cdot 3 & \equiv 1 \pmod{ 5}\\
3 + 5 & \equiv 0 \pmod{ 8} & 3 \cdot 5 & \equiv 7 \pmod{ 8}\\
3 + 4 & \equiv 7 \pmod{ 12} & 3 \cdot 4 & \equiv 0 \pmod{ 12}\text{.}
\end{align*}
In particular, notice that it is possible that the product of two nonzero numbers modulo \(n\) can be equivalent to \(0\) modulo \(n\text{.}\)