We induct on the order of \(G\) once again. If \(|G| = p\text{,}\) then we are done. Now suppose that the order of \(G\) is \(n\) with \(n \gt p\) and that the theorem is true for all groups of order less than \(n\text{,}\) where \(p\) divides \(n\text{.}\) We shall apply the class equation once again:
\begin{equation*}
|G| = |Z(G)| + [G: C(x_1) ] + \cdots + [ G: C(x_k)]\text{.}
\end{equation*}
First suppose that \(p\) does not divide \([G:C(x_i)]\) for some \(i\text{.}\) Then \(p^r \mid |C(x_i)|\text{,}\) since \(p^r\) divides \(|G| = |C(x_i)| \cdot [G:C(x_i)]\text{.}\) Now we can apply the induction hypothesis to \(C(x_i)\text{.}\)
Hence, we may assume that \(p\) divides \([G:C(x_i)]\) for all \(i\text{.}\) Since \(p\) divides \(|G|\text{,}\) the class equation says that \(p\) must divide \(|Z(G)|\text{;}\) hence, by Cauchy’s Theorem, \(Z(G)\) has an element of order \(p\text{,}\) say \(g\text{.}\) Let \(N\) be the group generated by \(g\text{.}\) Clearly, \(N\) is a normal subgroup of \(Z(G)\) since \(Z(G)\) is abelian; therefore, \(N\) is normal in \(G\) since every element in \(Z(G)\) commutes with every element in \(G\text{.}\) Now consider the factor group \(G/N\) of order \(|G|/p\text{.}\) By the induction hypothesis, \(G/N\) contains a subgroup \(H\) of order \(p^{r- 1}\text{.}\) The inverse image of \(H\) under the canonical homomorphism \(\phi : G \rightarrow G/N\) is a subgroup of order \(p^r\) in \(G\text{.}\)