Skip to main content
Contents Index
Dark Mode Prev Up Next
\(\newcommand{\identity}{\mathrm{id}}
\newcommand{\notdivide}{\nmid}
\newcommand{\notsubset}{\not\subset}
\newcommand{\lcm}{\operatorname{lcm}}
\newcommand{\gf}{\operatorname{GF}}
\newcommand{\inn}{\operatorname{Inn}}
\newcommand{\aut}{\operatorname{Aut}}
\newcommand{\Hom}{\operatorname{Hom}}
\newcommand{\cis}{\operatorname{cis}}
\newcommand{\chr}{\operatorname{char}}
\newcommand{\Null}{\operatorname{Null}}
\newcommand{\transpose}{\text{t}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Exercises 11.5 Additional Exercises: Automorphisms
1.
Let
\(\aut(G)\) be the set of all automorphisms of
\(G\text{;}\) that is, isomorphisms from
\(G\) to itself. Prove this set forms a group and is a subgroup of the group of permutations of
\(G\text{;}\) that is,
\(\aut(G) \leq S_G\text{.}\)
2.
An inner automorphism of \(G\text{,}\)
\begin{equation*}
i_g : G \rightarrow G\text{,}
\end{equation*}
is defined by the map
\begin{equation*}
i_g(x) = g x g^{-1}\text{,}
\end{equation*}
for \(g \in G\text{.}\) Show that \(i_g \in \aut(G)\text{.}\)
3.
The set of all inner automorphisms is denoted by
\(\inn(G)\text{.}\) Show that
\(\inn(G)\) is a subgroup of
\(\aut(G)\text{.}\)
4.
Find an automorphism of a group
\(G\) that is not an inner automorphism.
5.
Let \(G\) be a group and \(i_g\) be an inner automorphism of \(G\text{,}\) and define a map
\begin{equation*}
G \rightarrow \aut(G)
\end{equation*}
by
\begin{equation*}
g \mapsto i_g\text{.}
\end{equation*}
Prove that this map is a homomorphism with image \(\inn(G)\) and kernel \(Z(G)\text{.}\) Use this result to conclude that
\begin{equation*}
G/Z(G) \cong \inn(G)\text{.}
\end{equation*}
6.
Compute
\(\aut(S_3)\) and
\(\inn(S_3)\text{.}\) Do the same thing for
\(D_4\text{.}\)
7.
Find all of the homomorphisms
\(\phi : {\mathbb Z} \rightarrow {\mathbb Z}\text{.}\) What is
\(\aut({\mathbb Z})\text{?}\)
8.
Find all of the automorphisms of
\({\mathbb Z}_8\text{.}\) Prove that
\(\aut({\mathbb Z}_8) \cong U(8)\text{.}\)
9.
For
\(k \in {\mathbb Z}_n\text{,}\) define a map
\(\phi_k : {\mathbb Z}_n \rightarrow {\mathbb Z}_n\) by
\(a \mapsto ka\text{.}\) Prove that
\(\phi_k\) is a homomorphism.
10.
Prove that
\(\phi_k\) is an isomorphism if and only if
\(k\) is a generator of
\({\mathbb Z}_n\text{.}\)
11.
Show that every automorphism of
\({\mathbb Z}_n\) is of the form
\(\phi_k\text{,}\) where
\(k\) is a generator of
\({\mathbb Z}_n\text{.}\)
12.
Prove that
\(\psi : U(n) \rightarrow \aut({\mathbb Z}_n)\) is an isomorphism, where
\(\psi : k \mapsto \phi_k\text{.}\)