Consider the field extension \({\mathbb Q}( \sqrt[4]{3}, i )\) over \(\mathbb Q\text{.}\)
Find a basis for the field extension \({\mathbb Q}( \sqrt[4]{3}, i )\) over \(\mathbb Q\text{.}\) Conclude that \([{\mathbb Q}( \sqrt[4]{3}, i ): \mathbb Q] = 8\text{.}\)
Show that \({\mathbb Z}_2[x] / \langle x^3 + x + 1 \rangle\) is a field with eight elements. Construct a multiplication table for the multiplicative group of the field.
Let \(p(x)\) be a nonconstant polynomial of degree \(n\) in \(F[x]\text{.}\) Prove that there exists a splitting field \(E\) for \(p(x)\) such that \([E : F] \leq n!\text{.}\)
Let \(K\) be an algebraic extension of \(E\text{,}\) and \(E\) an algebraic extension of \(F\text{.}\) Prove that \(K\) is algebraic over \(F\text{.}\) [Caution: Do not assume that the extensions are finite.]
Show that the set of all elements in \({\mathbb R}\) that are algebraic over \({\mathbb Q}\) form a field extension of \({\mathbb Q}\) that is not finite.
Let \(E\) be an algebraic extension of a field \(F\text{,}\) and let \(\sigma\) be an automorphism of \(E\) leaving \(F\) fixed. Let \(\alpha \in E\text{.}\) Show that \(\sigma\) induces a permutation of the set of all zeros of the minimal polynomial of \(\alpha\) that are in \(E\text{.}\)
Show that \({\mathbb Q}( \sqrt{3}, \sqrt{7}\, ) = {\mathbb Q}( \sqrt{3} + \sqrt{7}\, )\text{.}\) Extend your proof to show that \({\mathbb Q}( \sqrt{a}, \sqrt{b}\, ) = {\mathbb Q}( \sqrt{a} + \sqrt{b}\, )\text{,}\) where \(a \neq b\) and neither \(a\) nor \(b\) is a perfect square.
Let \(E\) be a finite extension of a field \(F\text{.}\) If \([E:F] = 2\text{,}\) show that \(E\) is a splitting field of \(F\) for some polynomial \(f(x) \in F[x]\text{.}\)
Prove or disprove: Given a polynomial \(p(x)\) in \({\mathbb Z}_6[x]\text{,}\) it is possible to construct a ring \(R\) such that \(p(x)\) has a root in \(R\text{.}\)
Let \(E\) be an extension field of \(F\) and \(\alpha \in E\) be transcendental over \(F\text{.}\) Prove that every element in \(F(\alpha)\) that is not in \(F\) is also transcendental over \(F\text{.}\)
Let \(\alpha\) be a root of an irreducible monic polynomial \(p(x) \in F[x]\text{,}\) with \(\deg p = n\text{.}\) Prove that \([F(\alpha) : F] = n\text{.}\)