Skip to main content
Contents Index
Dark Mode Prev Up Next
\(\newcommand{\identity}{\mathrm{id}}
\newcommand{\notdivide}{\nmid}
\newcommand{\notsubset}{\not\subset}
\newcommand{\lcm}{\operatorname{lcm}}
\newcommand{\gf}{\operatorname{GF}}
\newcommand{\inn}{\operatorname{Inn}}
\newcommand{\aut}{\operatorname{Aut}}
\newcommand{\Hom}{\operatorname{Hom}}
\newcommand{\cis}{\operatorname{cis}}
\newcommand{\chr}{\operatorname{char}}
\newcommand{\Null}{\operatorname{Null}}
\newcommand{\transpose}{\text{t}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Reading Questions 7.3 Reading Questions
1.
Use the
euler_phi()function in Sage to compute
\(\phi(893\,456\,123)\text{.}\)
2.
Use the
power_mod()function in Sage to compute
\(7^{324}\pmod{895}\text{.}\)
3.
Explain the mathematical basis for saying: encrypting a message using an
RSA public key is very simple computationally, while decrypting a communication without the private key is very hard computationally.
4.
Explain how in
RSA message encoding differs from message verification.
5.
Explain how one could be justified in saying that Diffie and Hellman’s proposal in 1976 was “revolutionary.”