We have already shown (1) and (2) to be equivalent.
\((2) \Rightarrow (3)\text{.}\)
\begin{align*}
\langle A{\mathbf x}, A{\mathbf y} \rangle & = (A {\mathbf x})^\transpose A {\mathbf y}\\
& = {\mathbf x}^\transpose A^\transpose A {\mathbf y}\\
& = {\mathbf x}^\transpose {\mathbf y}\\
& = \langle {\mathbf x}, {\mathbf y} \rangle\text{.}
\end{align*}
\((3) \Rightarrow (2)\text{.}\) First, \(\langle A{\mathbf x}, A {\mathbf y} \rangle = (A{\mathbf x})^\transpose A{\mathbf y} = {\mathbf x}^\transpose A^\transpose A {\mathbf y} = {\mathbf x}^\transpose {\mathbf y}.\) If \(M\) is any \(n \times n\) matrix, then \(\mathbf e_i^\transpose M \mathbf e_j^\transpose = M_{ij}\text{,}\) where \(M_{ij}\) is the \(ij\)th entry of the matrix \(M\text{.}\) Noticing that \({\mathbf x}^\transpose A^\transpose A {\mathbf y} = {\mathbf x}^\transpose {\mathbf y}\text{,}\) let \(\mathbf x = \mathbf e_i\) and \(\mathbf y = \mathbf e_j\text{.}\) Then
\begin{equation*}
\mathbf e_i^\transpose A^\transpose A \mathbf e_j = \mathbf e_i^\transpose \mathbf e_j.
\end{equation*}
Thus, the \(ij\)th component of \(A^\transpose A\)is \(1\) when \(i = j\) and \(0\) otherwise. In other words \(A^\transpose A = I\text{,}\) and \(A^{-1} = A^\transpose\text{.}\)
\((3) \Rightarrow (4)\text{.}\) If \(A\) is inner product-preserving, then \(A\) is distance-preserving, since
\begin{align*}
\| A{\mathbf x} - A{\mathbf y} \|^2 & = \| A({\mathbf x} - {\mathbf y}) \|^2\\
& = \langle A({\mathbf x} - {\mathbf y}), A({\mathbf x} - {\mathbf y}) \rangle\\
& = \langle {\mathbf x} - {\mathbf y}, {\mathbf x} - {\mathbf y} \rangle\\
& = \| {\mathbf x} - {\mathbf y} \|^2\text{.}
\end{align*}
\((4) \Rightarrow (5)\text{.}\) If \(A\) is distance-preserving, then \(A\) is length-preserving. Letting \({\mathbf y} = 0\text{,}\) we have
\begin{equation*}
\| A{\mathbf x}\| = \| A{\mathbf x}- A{\mathbf y} \| = \| {\mathbf x}- {\mathbf y} \| = \| {\mathbf x} \|\text{.}
\end{equation*}
\((5) \Rightarrow (3)\text{.}\) We use the following identity to show that length-preserving implies inner product-preserving:
\begin{equation*}
\langle {\mathbf x}, {\mathbf y} \rangle = \frac{1}{2} \left[ \|{\mathbf x} +{\mathbf y}\|^2 - \|{\mathbf x}\|^2 - \|{\mathbf y}\|^2 \right]\text{.}
\end{equation*}
Observe that
\begin{align*}
\langle A {\mathbf x}, A {\mathbf y} \rangle & = \frac{1}{2} \left[ \|A {\mathbf x} + A {\mathbf y} \|^2 - \|A {\mathbf x} \|^2 - \|A {\mathbf y} \|^2 \right]\\
& = \frac{1}{2} \left[ \|A ( {\mathbf x} + {\mathbf y} ) \|^2 - \|A {\mathbf x} \|^2 - \|A {\mathbf y} \|^2 \right]\\
& = \frac{1}{2} \left[ \|{\mathbf x} + {\mathbf y}\|^2 - \|{\mathbf x}\|^2 - \|{\mathbf y}\|^2 \right]\\
& = \langle {\mathbf x}, {\mathbf y} \rangle\text{.}
\end{align*}