We will show that
\(B\) is isomorphic to
\({\mathcal P}(X)\text{,}\) where
\(X\) is the set of atoms of
\(B\text{.}\) Let
\(a \in B\text{.}\) By
Lemma 19.22, we can write
\(a\) uniquely as
\(a = a_1 \vee \cdots \vee a_n\) for
\(a_1, \ldots,
a_n \in X\text{.}\) Consequently, we can define a map
\(\phi : B \rightarrow {\mathcal P}(X)\) by
\begin{equation*}
\phi(a) = \phi( a_1 \vee \cdots \vee a_n ) = \{a_1, \ldots, a_n \}\text{.}
\end{equation*}
Clearly, \(\phi\) is onto.
Now let \(a = a_1 \vee \cdots \vee a_n\) and \(b = b_1 \vee \cdots \vee b_m\) be elements in \(B\text{,}\) where each \(a_i\) and each \(b_i\) is an atom. If \(\phi(a) = \phi(b)\text{,}\) then \(\{a_1, \ldots, a_n \} = \{b_1, \ldots,
b_m \}\) and \(a = b\text{.}\) Consequently, \(\phi\) is injective.
The join of \(a\) and \(b\) is preserved by \(\phi\) since
\begin{align*}
\phi(a \vee b) & = \phi( a_1 \vee \cdots \vee a_n \vee b_1 \vee \cdots \vee b_m )\\
& = \{ a_1, \ldots, a_n, b_1, \ldots, b_m \}\\
& = \{ a_1, \ldots, a_n \} \cup \{ b_1, \ldots, b_m \}\\
& = \phi( a_1 \vee \cdots \vee a_n ) \cup \phi( b_1 \wedge \cdots \vee b_m )\\
& = \phi(a) \cup \phi(b)\text{.}
\end{align*}
Similarly, \(\phi( a \wedge b ) = \phi(a) \cap \phi(b)\text{.}\)