If \(F\) is a field, show that \(F[x]\) is a vector space over \(F\text{,}\) where the vectors in \(F[x]\) are polynomials. Vector addition is polynomial addition, and scalar multiplication is defined by \(\alpha p(x)\) for \(\alpha \in F\text{.}\)
Let \({\mathbb Q }( \sqrt{2}, \sqrt{3}\, )\) be the field generated by elements of the form \(a + b \sqrt{2} + c \sqrt{3} + d \sqrt{6}\text{,}\) where \(a,
b, c, d\) are in \({\mathbb Q}\text{.}\) Prove that \({\mathbb Q }( \sqrt{2}, \sqrt{3}\, )\) is a vector space of dimension \(4\) over \({\mathbb Q}\text{.}\) Find a basis for \({\mathbb Q }( \sqrt{2}, \sqrt{3}\, )\text{.}\)
Prove that the set \(P_n\) of all polynomials of degree less than \(n\) form a subspace of the vector space \(F[x]\text{.}\) Find a basis for \(P_n\) and compute the dimension of \(P_n\text{.}\)
Let \(F\) be a field and denote the set of \(n\)-tuples of \(F\) by \(F^n\text{.}\) Given vectors \(u = (u_1, \ldots,
u_n)\) and \(v = (v_1, \ldots,
v_n)\) in \(F^n\) and \(\alpha\) in \(F\text{,}\) define vector addition by
Which of the following sets are subspaces of \({\mathbb R}^3\text{?}\) If the set is indeed a subspace, find a basis for the subspace and compute its dimension.
Let \(V\) be a vector space over \(F\text{.}\) Prove that \(-(\alpha v) = (-\alpha)v = \alpha(-v)\) for all \(\alpha \in F\) and all \(v \in V\text{.}\)
If \(S = \{v_1, \ldots,
v_k \}\) is a set of linearly independent vectors for \(V\) with \(k \lt n\text{,}\) then there exist vectors \(v_{k + 1}, \ldots, v_n\) such that
Let \(V\) and \(W\) be vector spaces over a field \(F\text{,}\) of dimensions \(m\) and \(n\text{,}\) respectively. If \(T: V \rightarrow W\) is a map satisfying
\begin{align*}
T( u+ v ) & = T(u ) + T(v)\\
T( \alpha v ) & = \alpha T(v)
\end{align*}
for all \(\alpha \in F\) and all \(u, v \in V\text{,}\) then \(T\) is called a linear transformation from \(V\) into \(W\text{.}\)
Prove that the kernel of \(T\text{,}\)\(\ker(T) = \{ v \in V : T(v) = {\mathbf 0} \}\text{,}\) is a subspace of \(V\text{.}\) The kernel of \(T\) is sometimes called the null space of \(T\text{.}\)
Prove that the range or range space of \(T\text{,}\)\(R(V) = \{ w \in W : T(v) = w \text{ for some } v \in V \}\text{,}\) is a subspace of \(W\text{.}\)
Let \(\{ v_1, \ldots,
v_k \}\) be a basis for the null space of \(T\text{.}\) We can extend this basis to be a basis \(\{ v_1, \ldots,
v_k, v_{k + 1}, \ldots, v_m\}\) of \(V\text{.}\) Why? Prove that \(\{ T(v_{k + 1}), \ldots, T(v_m) \}\) is a basis for the range of \(T\text{.}\) Conclude that the range of \(T\) has dimension \(m - k\text{.}\)
Let \(V\) and \(W\) be finite dimensional vector spaces of dimension \(n\) over a field \(F\text{.}\) Suppose that \(T: V \rightarrow W\) is a vector space isomorphism. If \(\{ v_1, \ldots, v_n \}\) is a basis of \(V\text{,}\) show that \(\{ T(v_1), \ldots, T(v_n) \}\) is a basis of \(W\text{.}\) Conclude that any vector space over a field \(F\) of dimension \(n\) is isomorphic to \(F^n\text{.}\)
Let \(U\) and \(V\) be subspaces of a vector space \(W\text{.}\) The sum of \(U\) and \(V\text{,}\) denoted \(U + V\text{,}\) is defined to be the set of all vectors of the form \(u + v\text{,}\) where \(u \in U\) and \(v \in V\text{.}\)
Prove that \(U + V\) and \(U \cap V\) are subspaces of \(W\text{.}\)
If \(U + V = W\) and \(U \cap V = {\mathbf 0}\text{,}\) then \(W\) is said to be the direct sum. In this case, we write \(W = U \oplus V\text{.}\) Show that every element \(w \in W\) can be written uniquely as \(w = u + v\text{,}\) where \(u \in U\) and \(v \in V\text{.}\)
Let \(U\) be a subspace of dimension \(k\) of a vector space \(W\) of dimension \(n\text{.}\) Prove that there exists a subspace \(V\) of dimension \(n-k\) such that \(W = U \oplus V\text{.}\) Is the subspace \(V\) unique?
Let \(V\) and \(W\) be finite dimensional vector spaces over a field \(F\text{.}\)
Show that the set of all linear transformations from \(V\) into \(W\text{,}\) denoted by \(\Hom(V, W)\text{,}\) is a vector space over \(F\text{,}\) where we define vector addition as follows:
Let \(V\) be an \(F\)-vector space. Define the dual space of \(V\) to be \(V^* = \Hom(V, F)\text{.}\) Elements in the dual space of \(V\) are called linear functionals. Let \(v_1, \ldots,
v_n\) be an ordered basis for \(V\text{.}\) If \(v = \alpha_1 v_1 + \cdots + \alpha_n v_n\) is any vector in \(V\text{,}\) define a linear functional \(\phi_i : V \rightarrow F\) by \(\phi_i (v) = \alpha_i\text{.}\) Show that the \(\phi_i\)’s form a basis for \(V^*\text{.}\) This basis is called the dual basis of \(v_1, \ldots, v_n\) (or simply the dual basis if the context makes the meaning clear).
Let \(V\) be a vector space of dimension \(n\) over a field \(F\) and let \(V^{* *}\) be the dual space of \(V^*\text{.}\) Show that each element \(v \in V\) gives rise to an element \(\lambda_v\) in \(V^{**}\) and that the map \(v \mapsto \lambda_v\) is an isomorphism of \(V\) with \(V^{**}\text{.}\)