Let \(\sigma\) be an arbitrary element in a normal subgroup \(N\text{.}\) There are several possible cycle structures for \(\sigma\text{.}\)
\(\sigma\) is a \(3\)-cycle.
\(\sigma\) is the product of disjoint cycles, \(\sigma = \tau(a_1, a_2, \ldots, a_r) \in N\text{,}\) where \(r \gt 3\text{.}\)
\(\sigma\) is the product of disjoint cycles, \(\sigma = \tau(a_1, a_2, a_3)(a_4, a_5, a_6)\text{.}\)
\(\sigma = \tau(a_1, a_2, a_3)\text{,}\) where \(\tau\) is the product of disjoint 2-cycles.
\(\sigma = \tau (a_1, a_2) (a_3, a_4)\text{,}\) where \(\tau\) is the product of an even number of disjoint 2-cycles.
If \(\sigma\) is a \(3\)-cycle, then we are done. If \(N\) contains a product of disjoint cycles, \(\sigma\text{,}\) and at least one of these cycles has length greater than 3, say \(\sigma = \tau(a_1, a_2, \ldots, a_r)\text{,}\) then
\begin{equation*}
(a_1, a_2, a_3)\sigma(a_1, a_2, a_3)^{-1}
\end{equation*}
is in \(N\) since \(N\) is normal; hence,
\begin{equation*}
\sigma^{-1}(a_1, a_2, a_3)\sigma(a_1, a_2, a_3)^{-1}
\end{equation*}
is also in \(N\text{.}\) Since
\begin{align*}
\sigma^{-1}(a_1, a_2, a_3)\sigma(a_1, a_2, a_3)^{-1} & = \sigma^{-1}(a_1, a_2, a_3)\sigma(a_1, a_3, a_2)\\
& = (a_1, a_2, \ldots, a_r)^{-1}\tau^{-1}(a_1, a_2, a_3) \tau(a_1, a_2, \ldots, a_r)(a_1, a_3, a_2)\\
& = (a_1, a_r, a_{r-1}, \ldots, a_2 )(a_1, a_2, a_3) (a_1, a_2, \ldots, a_r)(a_1, a_3, a_2)\\
& = (a_1, a_3, a_r)\text{,}
\end{align*}
\(N\) must contain a \(3\)-cycle; hence, \(N = A_n\text{.}\)
Now suppose that \(N\) contains a disjoint product of the form
\begin{equation*}
\sigma = \tau(a_1, a_2, a_3)(a_4, a_5, a_6)\text{.}
\end{equation*}
Then
\begin{equation*}
\sigma^{-1}(a_1, a_2, a_4)\sigma(a_1, a_2, a_4)^{-1} \in N
\end{equation*}
since
\begin{equation*}
(a_1, a_2, a_4)\sigma(a_1, a_2, a_4)^{-1} \in N\text{.}
\end{equation*}
So
\begin{align*}
\sigma^{-1}(a_1, a_2, a_4) \sigma(a_1, a_2, a_4)^{-1} & = [ \tau (a_1, a_2, a_3) (a_4, a_5, a_6) ]^{-1} (a_1, a_2, a_4) \tau (a_1, a_2, a_3) (a_4, a_5, a_6) (a_1, a_2, a_4)^{-1}\\
& = (a_4, a_6, a_5) (a_1, a_3, a_2) \tau^{-1}(a_1, a_2, a_4) \tau (a_1, a_2, a_3) (a_4, a_5, a_6) (a_1, a_4, a_2)\\
& = (a_4, a_6, a_5)(a_1, a_3, a_2) (a_1, a_2, a_4) (a_1, a_2, a_3) (a_4, a_5, a_6)(a_1, a_4, a_2)\\
& = (a_1, a_4, a_2, a_6, a_3)\text{.}
\end{align*}
So \(N\) contains a disjoint cycle of length greater than 3, and we can apply the previous case.
Suppose \(N\) contains a disjoint product of the form \(\sigma = \tau(a_1, a_2, a_3)\text{,}\) where \(\tau\) is the product of disjoint 2-cycles. Since \(\sigma \in N\text{,}\) \(\sigma^2 \in N\text{,}\) and
\begin{align*}
\sigma^2 & = \tau(a_1, a_2, a_3)\tau(a_1, a_2, a_3)\\
& =(a_1, a_3, a_2)\text{.}
\end{align*}
So \(N\) contains a \(3\)-cycle.
The only remaining possible case is a disjoint product of the form
\begin{equation*}
\sigma = \tau (a_1, a_2) (a_3, a_4)\text{,}
\end{equation*}
where \(\tau\) is the product of an even number of disjoint \(2\)-cycles. But
\begin{equation*}
\sigma^{-1}(a_1, a_2, a_3)\sigma(a_1, a_2, a_3)^{-1}
\end{equation*}
is in \(N\) since \((a_1, a_2, a_3)\sigma(a_1, a_2, a_3)^{-1}\) is in \(N\text{;}\) and so
\begin{align*}
\sigma^{-1}(a_1, a_2, a_3)\sigma(a_1, a_2, a_3)^{-1} & = \tau^{-1} (a_1, a_2) (a_3, a_4) (a_1, a_2, a_3) \tau (a_1, a_2)(a_3, a_4)(a_1, a_2, a_3)^{-1}\\
& = (a_1, a_3)(a_2, a_4)\text{.}
\end{align*}
Since \(n \geq 5\text{,}\) we can find \(b \in \{1, 2, \ldots,
n \}\) such that \(b \neq a_1, a_2, a_3, a_4\text{.}\) Let \(\mu = (a_1, a_3, b)\text{.}\) Then
\begin{equation*}
\mu^{-1} (a_1, a_3)(a_2, a_4) \mu (a_1, a_3)(a_2, a_4) \in N
\end{equation*}
and
\begin{align*}
\mu^{-1} (a_1, a_3)(a_2, a_4) \mu (a_1, a_3)(a_2, a_4) & = (a_1, b a_3)(a_1, a_3)(a_2, a_4) (a_1, a_3, b)(a_1, a_3)(a_2, a_4)\\
& = (a_1 a_3 b )\text{.}
\end{align*}
Therefore, \(N\) contains a \(3\)-cycle. This completes the proof of the lemma.