Prove that \(\det( AB) = \det(A) \det(B)\) for \(A, B \in GL_2( {\mathbb R} )\text{.}\) This shows that the determinant is a homomorphism from \(GL_2( {\mathbb R} )\) to \({\mathbb R}^*\text{.}\)
Let \(A\) be an \(m \times n\) matrix. Show that matrix multiplication, \(x \mapsto Ax\text{,}\) defines a homomorphism \(\phi : {\mathbb R}^n \rightarrow {\mathbb R}^m\text{.}\)
Let \(\phi : {\mathbb Z} \rightarrow {\mathbb Z}\) be given by \(\phi(n) = 7n\text{.}\) Prove that \(\phi\) is a group homomorphism. Find the kernel and the image of \(\phi\text{.}\)
If \(G\) is an abelian group and \(n \in {\mathbb N}\text{,}\) show that \(\phi : G \rightarrow G\) defined by \(g \mapsto g^n\) is a group homomorphism.
Let \(G\) be a finite group and \(N\) a normal subgroup of \(G\text{.}\) If \(H\) is a subgroup of \(G/N\text{,}\) prove that \(\phi^{-1}(H)\) is a subgroup in \(G\) of order \(|H| \cdot |N|\text{,}\) where \(\phi : G \rightarrow G/N\) is the canonical homomorphism.
Let \(G_1\) and \(G_2\) be groups, and let \(H_1\) and \(H_2\) be normal subgroups of \(G_1\) and \(G_2\) respectively. Let \(\phi : G_1 \rightarrow G_2\) be a homomorphism. Show that \(\phi\) induces a homomorphism \(\overline{\phi} : (G_1/H_1) \rightarrow (G_2/H_2)\) if \(\phi(H_1) \subset H_2\text{.}\)
If \(H\) and \(K\) are normal subgroups of \(G\) and \(H \cap K = \{ e \}\text{,}\) prove that \(G\) is isomorphic to a subgroup of \(G/H \times G/K\text{.}\)
Let \(\phi : G_1 \rightarrow G_2\) be a surjective group homomorphism. Let \(H_1\) be a normal subgroup of \(G_1\) and suppose that \(\phi(H_1) = H_2\text{.}\) Prove or disprove that \(G_1/H_1 \cong G_2/H_2\text{.}\)
Given a homomorphism \(\phi :G \rightarrow H\) define a relation \(\sim\) on \(G\) by \(a \sim b\) if \(\phi(a) = \phi(b)\) for \(a, b \in G\text{.}\) Show this relation is an equivalence relation and describe the equivalence classes.