Let \(B\) be the set of positive integers that are divisors of \(210\text{.}\) Define an order on \(B\) by \(a \preceq b\) if \(a \mid b\text{.}\) Prove that \(B\) is a Boolean algebra. Find a set \(X\) such that \(B\) is isomorphic to \({\mathcal P}(X)\text{.}\)
Let \(X\) be a finite set containing \(n\) elements. Prove that \(|{\cal P}(X)| = 2^n\text{.}\) Conclude that the order of any finite Boolean algebra must be \(2^n\) for some \(n \in {\mathbb N}\text{.}\)
For each of the following circuits, write a Boolean expression. If the circuit can be replaced by one with fewer switches, give the Boolean expression and draw a diagram for the new circuit.
Let \(L\) be a nonempty set with two binary operations \(\vee\) and \(\wedge\) satisfying the commutative, associative, idempotent, and absorption laws. We can define a partial order on \(L\text{,}\) as in Theorem 19.14, by \(a \preceq b\) if \(a \vee b = b\text{.}\) Prove that the greatest lower bound of \(a\) and \(b\) is \(a \wedge b\text{.}\)
Let \(G\) be a group and \(X\) be the set of subgroups of \(G\) ordered by set-theoretic inclusion. If \(H\) and \(K\) are subgroups of \(G\text{,}\) show that the least upper bound of \(H\) and \(K\) is the subgroup generated by \(H \cup K\text{.}\)
Let \(R\) be a ring and suppose that \(X\) is the set of ideals of \(R\text{.}\) Show that \(X\) is a poset ordered by set-theoretic inclusion, \(\subset\text{.}\) Define the meet of two ideals \(I\) and \(J\) in \(X\) by \(I \cap J\) and the join of \(I\) and \(J\) by \(I + J\text{.}\) Prove that the set of ideals of \(R\) is a lattice under these operations.
Let \(X\) be a poset such that for every \(a\) and \(b\) in \(X\text{,}\) either \(a \preceq b\) or \(b \preceq a\text{.}\) Then \(X\) is said to be a totally ordered set.
Is \(a \mid b\) a total order on \({\mathbb N}\text{?}\)
Prove that \({\mathbb N}\text{,}\)\({\mathbb Z}\text{,}\)\({\mathbb Q}\text{,}\) and \({\mathbb R}\) are totally ordered sets under the usual ordering \(\leq\text{.}\)
Let \(X\) and \(Y\) be posets. A map \(\phi : X \rightarrow Y\) is order-preserving if \(a \preceq b\) implies that \(\phi(a) \preceq \phi(b)\text{.}\) Let \(L\) and \(M\) be lattices. A map \(\psi: L \rightarrow M\) is a lattice homomorphism if \(\psi( a \vee b ) = \psi(a) \vee \psi(b)\) and \(\psi( a \wedge b ) = \psi(a) \wedge \psi(b)\text{.}\) Show that every lattice homomorphism is order-preserving, but that it is not the case that every order-preserving homomorphism is a lattice homomorphism.
Let \(L\) and \(M\) be lattices. Define an order relation on \(L \times M\) by \(( a, b) \preceq (c, d)\) if \(a \preceq c\) and \(b \preceq d\text{.}\) Show that \(L \times M\) is a lattice under this partial order.