Skip to main content
Logo image

Section 9.1 Definition and Examples

Two groups (G,) and (H,) are isomorphic if there exists a one-to-one and onto map ϕ:GH such that the group operation is preserved; that is,
ϕ(ab)=ϕ(a)ϕ(b)
for all a and b in G. If G is isomorphic to H, we write GH. The map ϕ is called an isomorphism.

Example 9.1.

To show that Z4i, define a map ϕ:Z4i by ϕ(n)=in. We must show that ϕ is bijective and preserves the group operation. The map ϕ is one-to-one and onto because
ϕ(0)=1ϕ(1)=iϕ(2)=1ϕ(3)=i.
Since
ϕ(m+n)=im+n=imin=ϕ(m)ϕ(n),
the group operation is preserved.

Example 9.2.

We can define an isomorphism ϕ from the additive group of real numbers (R,+) to the multiplicative group of positive real numbers (R+,) with the exponential map; that is,
ϕ(x+y)=ex+y=exey=ϕ(x)ϕ(y).
Of course, we must still show that ϕ is one-to-one and onto, but this can be determined using calculus.

Example 9.3.

The integers are isomorphic to the subgroup of Q consisting of elements of the form 2n. Define a map ϕ:ZQ by ϕ(n)=2n. Then
ϕ(m+n)=2m+n=2m2n=ϕ(m)ϕ(n).
By definition the map ϕ is onto the subset {2n:nZ} of Q. To show that the map is injective, assume that mn. If we can show that ϕ(m)ϕ(n), then we are done. Suppose that m>n and assume that ϕ(m)=ϕ(n). Then 2m=2n or 2mn=1, which is impossible since mn>0.

Example 9.4.

The groups Z8 and Z12 cannot be isomorphic since they have different orders; however, it is true that U(8)U(12). We know that
U(8)={1,3,5,7}U(12)={1,5,7,11}.
An isomorphism ϕ:U(8)U(12) is then given by
113557711.
The map ϕ is not the only possible isomorphism between these two groups. We could define another isomorphism ψ by ψ(1)=1, ψ(3)=11, ψ(5)=5, ψ(7)=7. In fact, both of these groups are isomorphic to Z2×Z2 (see Example 3.28 in Chapter 3).

Example 9.5.

Even though S3 and Z6 possess the same number of elements, we would suspect that they are not isomorphic, because Z6 is abelian and S3 is nonabelian. To demonstrate that this is indeed the case, suppose that ϕ:Z6S3 is an isomorphism. Let a,bS3 be two elements such that abba. Since ϕ is an isomorphism, there exist elements m and n in Z6 such that
ϕ(m)=aandϕ(n)=b.
However,
ab=ϕ(m)ϕ(n)=ϕ(m+n)=ϕ(n+m)=ϕ(n)ϕ(m)=ba,
which contradicts the fact that a and b do not commute.

Proof.

Assertions (1) and (2) follow from the fact that ϕ is a bijection. We will prove (3) here and leave the remainder of the theorem to be proved in the exercises.
(3) Suppose that h1 and h2 are elements of H. Since ϕ is onto, there exist elements g1,g2G such that ϕ(g1)=h1 and ϕ(g2)=h2. Therefore,
h1h2=ϕ(g1)ϕ(g2)=ϕ(g1g2)=ϕ(g2g1)=ϕ(g2)ϕ(g1)=h2h1.
We are now in a position to characterize all cyclic groups.

Proof.

Let G be a cyclic group with infinite order and suppose that a is a generator of G. Define a map ϕ:ZG by ϕ:nan. Then
ϕ(m+n)=am+n=aman=ϕ(m)ϕ(n).
To show that ϕ is injective, suppose that m and n are two elements in Z, where mn. We can assume that m>n. We must show that aman. Let us suppose the contrary; that is, am=an. In this case amn=e, where mn>0, which contradicts the fact that a has infinite order. Our map is onto since any element in G can be written as an for some integer n and ϕ(n)=an.

Proof.

Let G be a cyclic group of order n generated by a and define a map ϕ:ZnG by ϕ:kak, where 0k<n. The proof that ϕ is an isomorphism is one of the end-of-chapter exercises.

Proof.

The main goal in group theory is to classify all groups; however, it makes sense to consider two groups to be the same if they are isomorphic. We state this result in the following theorem, whose proof is left as an exercise.
Hence, we can modify our goal of classifying all groups to classifying all groups up to isomorphism; that is, we will consider two groups to be the same if they are isomorphic.

Subsection Cayley’s Theorem

Cayley proved that if G is a group, it is isomorphic to a group of permutations on some set; hence, every group is a permutation group. Cayley’s Theorem is what we call a representation theorem. The aim of representation theory is to find an isomorphism of some group G that we wish to study into a group that we know a great deal about, such as a group of permutations or matrices.

Example 9.11.

Consider the group Z3. The Cayley table for Z3 is as follows.
+012001211202201
The addition table of Z3 suggests that it is the same as the permutation group G={(0),(012),(021)}. The isomorphism here is
0(012012)=(0)1(012120)=(012)2(012201)=(021).

Proof.

Let G be a group. We must find a group of permutations G that is isomorphic to G. For any gG, define a function λg:GG by λg(a)=ga. We claim that λg is a permutation of G. To show that λg is one-to-one, suppose that λg(a)=λg(b). Then
ga=λg(a)=λg(b)=gb.
Hence, a=b. To show that λg is onto, we must prove that for each aG, there is a b such that λg(b)=a. Let b=g1a.
Now we are ready to define our group G. Let
G={λg:gG}.
We must show that G is a group under composition of functions and find an isomorphism between G and G. We have closure under composition of functions since
(λgλh)(a)=λg(ha)=gha=λgh(a).
Also,
λe(a)=ea=a
and
(λg1λg)(a)=λg1(ga)=g1ga=a=λe(a).
We can define an isomorphism from G to G by ϕ:gλg. The group operation is preserved since
ϕ(gh)=λgh=λgλh=ϕ(g)ϕ(h).
It is also one-to-one, because if ϕ(g)(a)=ϕ(h)(a), then
ga=λga=λha=ha.
Hence, g=h. That ϕ is onto follows from the fact that ϕ(g)=λg for any λgG.
The isomorphism gλg is known as the left regular representation of G.

Subsection Historical Note

Arthur Cayley was born in England in 1821, though he spent much of the first part of his life in Russia, where his father was a merchant. Cayley was educated at Cambridge, where he took the first Smith’s Prize in mathematics. A lawyer for much of his adult life, he wrote several papers in his early twenties before entering the legal profession at the age of 25. While practicing law he continued his mathematical research, writing more than 300 papers during this period of his life. These included some of his best work. In 1863 he left law to become a professor at Cambridge. Cayley wrote more than 900 papers in fields such as group theory, geometry, and linear algebra. His legal knowledge was very valuable to Cambridge; he participated in the writing of many of the university’s statutes. Cayley was also one of the people responsible for the admission of women to Cambridge.