Let \(\alpha\) be a zero of \(x^3 + x^2 + 1\) over \({\mathbb Z}_2\text{.}\) Construct a finite field of order \(8\text{.}\) Show that \(x^3 + x^2 + 1\) splits in \({\mathbb Z}_2(\alpha)\text{.}\)
Let \(F \subset E \subset K\) be fields. If \(K\) is a separable extension of \(F\text{,}\) show that \(K\) is also separable extension of \(E\text{.}\)
Let \(E\) be an extension of a finite field \(F\text{,}\) where \(F\) has \(q\) elements. Let \(\alpha \in E\) be algebraic over \(F\) of degree \(n\text{.}\) Prove that \(F( \alpha )\) has \(q^n\) elements.
Show that every finite extension of a finite field \(F\) is simple; that is, if \(E\) is a finite extension of a finite field \(F\text{,}\) prove that there exists an \(\alpha \in E\) such that \(E = F( \alpha )\text{.}\)
Prove that the Frobenius map \(\Phi : \gf(p^n) \rightarrow \gf(p^n)\) given by \(\Phi : \alpha \mapsto \alpha^p\) is an automorphism of order \(n\text{.}\)
Often it is conceivable that a burst of errors might occur during transmission, as in the case of a power surge. Such a momentary burst of interference might alter several consecutive bits in a codeword. Cyclic codes permit the detection of such error bursts. Let \(C\) be an \((n,k)\)-cyclic code. Prove that any error burst up to \(n-k\) digits can be detected.
Let \(C\) be a code in \(R_n\) that is generated by \(g(t)\text{.}\) If \(\langle f(t) \rangle\) is another code in \(R_n\text{,}\) show that \(\langle g(t) \rangle \subset \langle f(t) \rangle\) if and only if \(f(x)\) divides \(g(x)\) in \({\mathbb Z}_2[x]\text{.}\)
Let \(C = \langle g(t) \rangle\) be a cyclic code in \(R_n\) and suppose that \(x^n - 1 = g(x) h(x)\text{,}\) where \(g(x) = g_0 + g_1 x + \cdots + g_{n - k} x^{n - k}\) and \(h(x) = h_0 + h_1 x + \cdots + h_k x^k\text{.}\) Define \(G\) to be the \(n \times k\) matrix