Skip to main content
Contents Index
Dark Mode Prev Up Next
\(\newcommand{\identity}{\mathrm{id}}
\newcommand{\notdivide}{\nmid}
\newcommand{\notsubset}{\not\subset}
\newcommand{\lcm}{\operatorname{lcm}}
\newcommand{\gf}{\operatorname{GF}}
\newcommand{\inn}{\operatorname{Inn}}
\newcommand{\aut}{\operatorname{Aut}}
\newcommand{\Hom}{\operatorname{Hom}}
\newcommand{\cis}{\operatorname{cis}}
\newcommand{\chr}{\operatorname{char}}
\newcommand{\Null}{\operatorname{Null}}
\newcommand{\transpose}{\text{t}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Reading Questions 11.3 Reading Questions
1.
Consider the function
\(\phi:\mathbb Z_{10}\rightarrow\mathbb Z_{10}\) defined by
\(\phi(x)=x+x\text{.}\) Prove that
\(\phi\) is a group homomorphism.
2.
For
\(\phi\) defined in the previous question, explain why
\(\phi\) is not a group isomorphism.
3.
Compare and contrast isomorphisms and homomorphisms.
4.
Paraphrase the First Isomorphism Theorem using
only words . No symbols allowed
at all .
5.
“For every normal subgroup there is a homomorphism, and for every homomorphism there is a normal subgroup.” Explain the (precise) basis for this (vague) statement.