Skip to main content\(\newcommand{\identity}{\mathrm{id}}
\newcommand{\notdivide}{\nmid}
\newcommand{\notsubset}{\not\subset}
\newcommand{\lcm}{\operatorname{lcm}}
\newcommand{\gf}{\operatorname{GF}}
\newcommand{\inn}{\operatorname{Inn}}
\newcommand{\aut}{\operatorname{Aut}}
\newcommand{\Hom}{\operatorname{Hom}}
\newcommand{\cis}{\operatorname{cis}}
\newcommand{\chr}{\operatorname{char}}
\newcommand{\Null}{\operatorname{Null}}
\newcommand{\transpose}{\text{t}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
References 16.9 References and Suggested Readings
[1]
Anderson, F. W. and Fuller, K. R. Rings and Categories of Modules. 2nd ed. Springer, New York, 1992.
[2]
Atiyah, M. F. and MacDonald, I. G. Introduction to Commutative Algebra. Westview Press, Boulder, CO, 1994.
[3]
Herstein, I. N. Noncommutative Rings. Mathematical Association of America, Washington, DC, 1994.
[4]
Kaplansky, I. Commutative Rings. Revised edition. University of Chicago Press, Chicago, 1974.
[5]
Knuth, D. E. The Art of Computer Programming: Semi-Numerical Algorithms, vol. 2. 3rd ed. Addison-Wesley Professional, Boston, 1997.
[6]
Lidl, R. and Pilz, G. Applied Abstract Algebra. 2nd ed. Springer, New York, 1998. A good source for applications.
[7]
Mackiw, G. Applications of Abstract Algebra. Wiley, New York, 1985.
[8]
McCoy, N. H. Rings and Ideals. Carus Monograph Series, No. 8. Mathematical Association of America, Washington, DC, 1968.
[9]
McCoy, N. H. The Theory of Rings. Chelsea, New York, 1972.
[10]
Zariski, O. and Samuel, P. Commutative Algebra, vols. I and II. Springer, New York, 1975, 1960.