Let \(G\text{,}\)\(H\text{,}\) and \(K\) be finitely generated abelian groups. Show that if \(G \times H \cong G \times K\text{,}\) then \(H \cong K\text{.}\) Give a counterexample to show that this cannot be true in general.
If \(G\) has a composition (principal) series and if \(N\) is a proper normal subgroup of \(G\text{,}\) show there exists a composition (principal) series containing \(N\text{.}\)
Prove or disprove: Let \(N\) be a normal subgroup of \(G\text{.}\) If \(N\) and \(G/N\) have composition series, then \(G\) must also have a composition series.
Let \(G\) be a cyclic \(p\)-group with subgroups \(H\) and \(K\text{.}\) Prove that either \(H\) is contained in \(K\) or \(K\) is contained in \(H\text{.}\)
Recall that the commutator subgroup \(G'\) of a group \(G\) is defined as the subgroup of \(G\) generated by elements of the form \(a^{-1} b ^{-1} ab\) for \(a, b \in G\text{.}\) We can define a series of subgroups of \(G\) by \(G^{(0)} = G\text{,}\)\(G^{(1)} = G'\text{,}\) and \(G^{(i + 1)} = (G^{(i)})'\text{.}\)
Prove that \(G^{(i+1)}\) is normal in \((G^{(i)})'\text{.}\) The series of subgroups
Let \(H\) and \(K\) be subgroups of a group \(G\text{.}\) Suppose also that \(H^*\) and \(K^*\) are normal subgroups of \(H\) and \(K\) respectively. Then
\(H^* ( H \cap K^*)\) is a normal subgroup of \(H^* ( H \cap K)\text{.}\)